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PROJECTIVE J-REPRESENTATIONS ASSOCIATED WITH
PROJECTIVE u-COVARIANT (a)-COMPLETELY POSITIVE
LINEAR MAPS AND THEIR CORRESPONDING p-MAPS

Tania-Luminita Costache!

In this paper we construct a Krein space, a J-representation and a
projective J-unitary representation associated with a unital projective J-covariant
completely positive linear map. We also find a Krein space representation for a
unital projective (0,u)-covariant a-completely positive linear map. For a given
projective unital (0, u)-covariant a-completely positive linear map p and a projec-
tive (7,0, u)-covariant p-map we construct a projective covariant J-representation
of a C*-dynamical system. We form projective J-unitary representations associ-
ated to a projective (u,u’)-covariant completely positive p-maps. Also, we prove
that there is a projective covariant representation associated with a projective co-
variant a-completely positive linear map on an S-module.
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1. Introduction

Krein spaces as indefinite generalization of Hilbert spaces were first used in
the quantum field theory by Dirac [6] and Pauli [17] and then formally defined by
Ginzburg [7]. Krein spaces arise naturally in situations where the indefinite inner
product has an analitically useful property (such as Lorentz invariance) which the
Hilbert inner product lacks. Motivated by the physical fact that in massless quan-
tum field theory the state space may be a space with an indefinite metric, many
authors extended the GNS construction to Krein spaces. Heo, Hong, Ji [9] pro-
vided a KSGNS type representation on a Krein C*-module for a C*-algebra and a
x-algebra introducing the notion of a-completely positive map as a generalization
of a completely positive map. Moreover, Heo and Ji [10] constructed a Stinespring
type covariant representation for a pair of a covariant completely positive map p and
a covariant p-map. In [13], Heo introduced the notion of a covariant a-completely
positive map of a topological group into a (locally) C*-algebra, which is a counter-
part of a covariant a-completely positive linear map between (locally) C*-algebra
[9], [11] and constructed a covariant KSGNS type representation of a group on a
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Krein module over a (locally) C*-algebra, which is associated to a covariant a-
completely positive map of a group system. In [16], M. S. Moslehian, M. Joita and
U. C. Ji proved a KSGNS type theorem for a-completely positive maps on Hilbert
C*-modules and showed that the minimal KSGNS construction is unique up to uni-
tary equivalence and studied a covariant version of the KSGNS type theorem for
a covariant a-completely positive map. S. Dey and H. Trivedi introduced in [5]
S-modules, generalizing the notion of Krein C*-modules, where a fixed unitary re-
places the symmetry of Krein C*-modules and proved a KSGNS construction for
a-completely positive maps in the context of S-modules.

In this paper we construct a Krein space, a J-representation and a projec-
tive J-unitary representation associated with a unital projective J-covariant com-
pletely positive linear map. We also find a Krein space representation for a uni-
tal projective (@, u)-covariant a-completely positive linear map. For a given pro-
jective unital (0, wu)-covariant a-completely positive linear map p and a projective
(1,0, u)-covariant p-map we construct a projective covariant J-representation of a
C*-dynamical system. We form projective J-unitary representations associated to
a projective (u,u’)-covariant completely positive p-maps. Also, we prove that there
is a projective covariant representation associated with a projective covariant a-
completely positive linear map on an S-module.

First we remind and introduce some notions and definitions that we’ll use in
what follows.

Definition 1.1. [9] Let H be a Hilbert space with the inner product (-|-) which is
linear in the second variable and conjugate linear in the first variable. A fundamental
symmetry J on H (i.e. J=J* J?> =1 sau J = J* = J~1) induces an indefinite
inner product [z,y|; = (Jz|y) (x,y € H) and the pair (H,J) is called Krein space
or J-space.

For each T € L(H), there is an operator T € £(H) such that [T€,n]; =
= [¢,T/n];, &,n € H and then T” is called the J-adjoint of T. It can be easily
seen that 77 = JT*J.

Let B be a C*-algebra and let (H,J) be a Krein space. We denote by U;(H)
the set of all J-unitary operators in £L(H), i.e for each s € G, ulus = usu! = I,

which is equivalent to u} = Jug—1.J or uf = us—1. Uy(H) is called the J-unitary
group.

Definition 1.2. A projective J-unitary representation of a locally compact
group G into the J-unitary group Uy(H) is a map u: G — U;(H) that satisfies the
following properties:

(1) ul = Jug1J orul

(i) ust = w(s,t)usug for all s,t € G

= Ug—1;

Definition 1.3. Let (G, A,0) be a C*-dynamical system and let u be a projective
J-unitary representation of G on a Krein space (H,J). We say that a completely
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positive linear map p from A to L(H) is projective J-covariant with respect to
the C*-dynamical system (G, A,0) if p(85(a)) = usp(a)ul for alla € A and s € G.

Definition 1.4. ([8]) Let A be a C*-algebra and let (H, J) be a Krein space. A rep-
resentation m: A — L(H) of A on the Hilbert space H is called a J-representation

on the Krein space (H,J) if m is a representation of A on the Hilbert space H and
m(a*) = w(a)! = Jn(a)*J, a € A.

Definition 1.5. A projective covariant J-representation of a C*- dynami-
cal system (G, A,0) on a Krein space (H,J) is a triple (m,u,(H,J)), where
is a J-representation of A on (H,J) and u is a projective J-unitary representa-
tion of G into Uy(H) such that the (0,u)-covariance property holds: w(0s(a)) =
usm(a)ul for all a € A and s € G.

2. Main results
Following the results in [4] , we rewrite and prove them for Krein spaces.

Theorem 2.1. Let (G, A, 0) be a unital C*-dynamical system such that 0% = I 4 (=the
identity map on A), for all s € G, (H,J) a Krein space and u a projective J-unitary
representation of G on H with the normalized multiplier w. If p: A — L(H) is a uni-
tal projective J-covariant completely positive linear map, then there are a Krein space
(K,J), a J-representation m of A on the Krein space (K, J), a projective J-unitary
representation v of G into U (K) with multiplier w and an isometry V: H — K
such that:
i) pla) =V*n(a)V foralla € A;
i) ug = V*uV for all s € G;
iii) 7(05(a)) = vem(a)v!, for all a€ A and s € G.

Proof. Following the proof of Stinespring’s Theorem (Th.1.1.1, [1]), we form the
algebraic tensor product A ®44 H and endow it with a pre-inner product by setting
<a®§,b®n>A®al9H = (¢|p(05(a*)b)n)u. To obtain K we divide A ®q4 H by the
kernel N = {z € A®qqaH|(z, 2)AQqgH = 0} of (-, '>A®ang and complete. K becomes
a Hilbert space with respect to the inner product given by (x1 + N, 22+ N), =
= <x1’x2>A®ang’ r1,T9 € A Ralg H.

The map 6 induces a linear involution J on the quotient space A®qy H/N by
Ja® &+ N)=0s(a) ®&+ N.

We define an indefinite inner product [-,-]; on the quotient space A ®qy H/N
by [a® &+ N,b@n+ Ny = ({[p(a™d)n)n.

We have (J(a @&+ N),b@n+ N) = (0s(a) @€+ N, b@n+ N) o =
— (0:(0) 8 EbE D) a0, g1 = (Elp(O(0,() V)11 = (€] (0, (0u(a))O)) i =
= (Elp(02 (@) = (Elp(a* b)) = [a® E+ N,b@n+ Ny, for all a,b € A,&,n €
H,s € G. So (K, J) becomes a Krein space.

For all a € A we define a linear map 7(a): K — K by

m(a)(b® &+ N) = (ab) ® £ + N,
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for all £ € H,b € A.
For ai,a2,b € A,&,n € H, we have (m(b)(a1 @+ N), a2 @0+ N)
(b D64 N.az &1+ Ny = (€lp(Ba((ban) az)n)s = (€lp(Os(aibYaim)sr
On the other hand, (a1 ® £+ N, Jn(b*)J(ae @ n+ N)) e =
= (a1 @&+ N, Jr(b")(0s(a2) @1+ N))g = (a1 © E+ N, J(0*0s(az) @0+ N)) i =
= (a1 @&+ N, 0,(b*05(a2)) @+ N)) e = (a1 @ E+ N, 0,(b*)02(a2) @ n+ N)) . =
=(@m® 5 +N,0,(b")az @0+ N)) g = (a1 ©&,05(b0")az ®n) 4, 1
= (€lp(0s(a1)0s(0%)az)n)m = (£]p(0s(aTb)az)n)m
Hence, 7(b)* = Jm(b*)J and 7 is a J-representation.
We define a linear map V: H > Kby VE=1,® &+ N.
For {,n e H and a € A, we have (V& a®@n+ N), =
— (L@ E+Nawn+ N = Elp0s(L)a)ma = (€6, (L)am)n = €lplama
which implies that V*(a ® n + N) = p(a)n, so V is an isometry.
For £,m € H and a € A, we have
EV @)V = €V r(a)(1a @1+ N = €V (a®n+ N =
= (|p(a)n)m, so V*m(a)V = p(a) and i) is verified.
We define v: G — U;(K) by setting

vs(a®@ &+ N) =0s(a) @usE+ N forall ae A,s € G, & € H.

For a,b € A and &, € H, we have (vs(a @&+ N),b@n+ N), =
= (05(a) © usl + N,b @1+ N) e = (05(a) © usl, b @n) g, g =
= (us€|p(0s(0s(a) Vo) m = (usélp(0s(0s(a*)b)n)m = (usé|p(0%(a*)b)n) =
= (us&lp(a™b)n)m

On the other hand, we have (a ® { + N, Ju,-1J(b@n+ N))y =
=@®E&+ N, Jvg-1(05(b) @+ N)) e = (@®@E+ N, J(05-1(05(b)) @ ug-1n+ N)) o =
= <a®£+NaJ(b®us*1n+N)>K = <a®£+N798(b)®us*1n+N>K =
— (€lp(0(a)85 () tarm) it = (€lp(0s(a™))usrm) i = (Eluzp(aB)n) i = (usklpla™b)n)i

Therefore, vi = Jv,—1J, which means that v, is a J-unitary representation.

We show now that v is a projective representation with multiplier w. Let
a € A,s,t € G,£ € H. Since 0 is a group homomorphism and w is a projective
representation with the multiplier w, we have vg(a ® { + N) =
=0s(a) @ usé + N = 05(a)0i(a) @ w(s, t)usué + N =
= w(s,t)05(0:(a)) ® us(u€) + N = w(s, t)vs(Or(a) @ u + N) =
= w(s,t)vsv(a®@ &+ N).

We verify now condition ii). Let s € G and £ € H. We have V*u V¢ =
=V*'(1la®@&E+N)=V*0s(1a) @usl + N) =V*(1ag @usf + N) = p(1a)usé =
= Iqus€ = ugs€, because p is unital.

We prove condition iii). Let a,b € A,s € G,£ € H.

Then vsm(a)v! (b ® &+ N) = vsm(a)vs1(b® €+ N) =
= vs7(a)(0-1(b) @ ug—1& + N) = vg5(aby-1(b) @ug—1&+ N) =
— 0,1 (6)) © tgtty 1€ + N) = 0y(a)0 (031 (8)) & (5,5 gy 1€ + N =
—0,()b® IyE+ N = 0,(a)b @ &+ N = n(0,(a)) (b2 € + N). O
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Definition 2.1. Let (G, A,0) be a C*-dynamical system and let u be a projective
unitary representation of G on a Hilbert space H. We say that an a-completely
positive linear map ¢ from A to L(H) is projective (0, u)-covariant with respect
to the C*-dynamical system (G, A,0) if o(as(a)) = usp(a)ul for all a € A and
seq.

Theorem 2.2. Let (G, A, 0) be a unital C*-dynamical system such that 62 = I, let
u be a projective unitary representation of G on a Hilbert space H with the normalized
multiplier w. If p: A — L(H) is a unital projective (0, u)-covariant a-completely
positive linear map, where 8 and o are equivariant, then there are a Krein space
(K, J), a J-representation w of A on the Krein space (K, J), a projective J-unitary
representation v of G into Uy(K) with multiplier w and an isometry V: H — K
such that:

i) p(a) =V*n(a)V for alla € A;
i) us = V*usV for all s € G;
iii) 7(0s(a)) = vsm(a)v!, for all a € A and s € G.

Proof. Following the proof of Theorem 2.1 and endow the algebraic tensor product
A ®q19 H with a pre-inner product by setting

(@®&b®M) g, n = (Elplala®)b)n)n.

We divide A®qiy H by the kernel N = {z € A®q,H|(z, 2) AQugH = 0} of (-, '>A®ang
and complete and thus we obtain K, which becomes a Hilbert space with respect to
the inner product given by (x1 + N,z2 + N) . = (21, x2>A®algHv T, %2 € ARqq H.

The map « induces a linear involution J on the quotient space A ®q, H/N
by J(a®&+ N)=ala) ® €+ N.

We define an indefinite inner product [-,-]; on the quotient space
A®qg H/N by [a®@ &+ N,b@n+ N|j = ({pa*b)n)n-

We have (J(a® €&+ N),b@n+ N) e = (a(a) @€+ N,b@n+ Ny =
— (a(a) ® &b @) ag,, 1 = (Elpalala) )i = (Elp(a®(@)b)n) =
= (|p(a*b)n)g = [aRE+N,b®@n+N]y, foralla,b € A, &,n € H. So (K, J) becomes
a Krein space.

We define a linear map 7m(a): A®qg H = A®qig H as in the proof of Theorem
2.1: m(a)(b® &) = (ab) ® & for all a,b € A and £ € H.

We have (7(a)(b ® £),m(a)(b @ §)) gg,, n = ((ab) ©® &, (ab) ® &) pg,, 1 =
— (€lp(al(ab))ab)e)r = (Elp(alab) ab)e)n < c(a)(Elo(a(b) b)) =
=c(a) (bR EDDE) 4, 1

Therefore 7(a) leaves N-invariant and naturally define a linear transformation
on A ®qqe H/N. Since m(a) is bounded, 7(a) extends to a bounded linear operator
on K and it is denoted also by 7(a).

We prove that 7 is a J-representation. Let ai,as,b € A and £,n9 € H. We
have (m(b)(a1 ® €+ N),a2 @+ N)p = (ba1 @+ N,aa @+ N) e =
— (glp(a((bar)")az)n) i = (€lp(a(aib*)az)m)a-
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On the other hand, (a1 ® £+ N, Jn(b*)J(a2 @ n+ N)) i =
= (a1 @&+ N, Jr(b*)(alaz) @+ N)) g = (a1 @+ N, J(b*a(az) @ n+ N)) g
= (a1 ® £+ N,a(b*afaz)) @+ N)) g = (a1 @ &+ N, a(b*)a?(a2) @+ N)) - =
— (a1 @€+ N, a(b")as @+ N)) i = (Elp(ala})ab )az)n)n = (€lplalaib )az)n) .
This means that w(b)* = Jr(b*)J.
We define V' as in Theorem 2.1 and prove i) as in the proof of Theorem 2.1.
We define v: G — U;(K) by setting

v5(a®@E&+ N) =0s(a) @us& + N forall a€ A,s € G,& € H.

Let a,be A, s € G and ,n € H. We have (v,(a®&+ N),b@n+ N))p =
= (0s(a) @ usl + N, b@n+ N)) e = (usé|p(e(0s(a)*)b)n) i =
= (usé|p(a(bs(a™)0)n)m = (us|p(a(fs(a”))a(c(b)))n)n =
= (us&lp(a(fs(a®)a(d))n) = (us&|p(fs(a®)(b))n)m =
= (lus—1p(0s(a”)a(b))n) i = (§|us-1p(a(fs(a”)a(b)
= (lug-1p(a(0s(a”))a((b))))n) = (§lus-1p(0s(a(a”))b)n) g =
= (§lus-1p(0s(a(a”)0s-1(0))n) 1
On the other hand, (a ® £ + N, Ju,-1J(b@n+ N)), =
®§+N Jv —1( (b)@"?-FN))K: <a®£+N,J(95_1(a(b))®us_1n+N)>K:
®§+N a(f5-1((b))) ® ug-1n + N)) g = (§]p(ala®)a(f-1(a(b)))us-17)
Elp(a(a*0s-1(a(d))))us—1mu = (§lp(a”bs-1(a(b)))us-1m)m =
&lp(a” Oé( 1(0))us—1m)m = (€lp(ala(a®))a(f-1(b)))us—1n)n =
Elp(afafa®)f-1 (b)) us—1n)a = (§|p(a(a®)bs-1(0))us—1m)H

By the covariance of p, we get that

= (a
= (a
= (
=
=

(vs(a @&+ N),b@n+N))g =(a®@E+ N, Jog1 J(b@n+ N))g

so v is a J-representation.
As in the proof of Theorem 2.1 we can prove that v is a projective represen-
tation and that ii) and iii) hold.
O

We rewrite the definition in [12] for projective unitary representations and
Krein spaces.

Definition 2.2. Let (G, A, «) be a C*-dynamical system and let (H, Jg) be a Krein
space. A group homomorphism T from G into U, (H) such that for any s € G,a € A
and £,¢' € H,

i) Ts(ga) = Ts(f)es(a)

i) [75(£), 7s(€)]um = 05(1,€]n)
is called a 0-compatible action of G on (H, Jyg). Let (K, Jk) and (L, Jr) be Krein
spaces. For a 0-compatible action 7 of G on (H, Jg) and a map ®: H — L(K, L), if
there are a projective Jg - unitary representation v: G — Uy, (K) and a projective
Jr-unitary representation o: G — Uy, (L) such that ®(75(£)) = os®(E)v% for any
£ € H and s € G, then ® is called projective (1,0, v)-covariant.
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In the following theorem we construct a projective covariant representation
associated to a pair of two projective covariant maps as in [12].

Theorem 2.3. Let H, K, L be Hilbert spaces, (G, A,0) a C*-dynamical system such
that 02 = I4 and u: G — W(H) a projective unitary representation with the normal-
ized multiplier w. If p: A — L(K) is a unital projective (8, u)-covariant a-completely
positive map, where 8 and a are equivariant and if ®: H — L(K, L) is a projective
(1,0,v)-covariant p-map, then there is a pair (7, V, (K1, J)), I, W, L1)) such that

i) (K1,J) is a Krein space and Ly is a Hilbert space

ii) m: A — L(K3) is a J-representation

iii) II: H — L(K1, L) is a J o m-map

iv) V. e L(K,Ky) is an isometry and W € L(L,L1) is a projection satisfying
conditions (i)-(ii1) in Theorem 4.4, [9] and ®(&) = W*IL(E)V for all £ € H.

Moreover, there is a projective J-unitary representation v and a map
o': G — U(L1) such that

(1) (m,v,(K1,J)) is a projective covariant J-representation of (G, A,0)
(2) II is projective (1,0’ ,v)-covariant.

Proof. By Theorem 2.2, there are a Krein space K, a J-representation 7: A —
L(K), a projective J-unitary representation v: G — U (K) and an operator V €
L(K, K1) such that conditions (i)-(iii) in Theorem 2.2 hold.

We prove the existence of Ly, II, W, ¢’ as in the proof of Theorem 3.2, [12]. O

We remind some notions and remarks in [2], [18] and [16].

A morphism of Hilbert C*-modules [2] or a generalized isometry [18] is
amap ¢¥: E — F from a Hilbert A-module E to a Hilbert B-module F' with the
property that there is a C*-morphism ¢: A — B such that (¥ (x),¥(y)) = ¢((z,y))
forall z,y € E. A map ¢: E — F is an isomorphism of Hilbert C*-modules if
it is invertible, ¢ and 1 ~! are morphisms of Hilbert C*-modules.

Let G be a locally compact group. A continuous action of G on a full Hilbert
A-module E is a group morphism 1: G — Aut(FE), where Aut(FE) is the group of all
isomorphisms of Hilbert C*-modules from E to E, such that the map (¢, z) — n(z)
from G x E to E is continuous. The triple (G, E,n) is called a dynamical system
on Hilbert C*-modules. Any C*-dynamical system (G, A,0) can be regarded
as a dynamical system on Hilbert C*-modules. Any continuous action 1 of G on FE
induces a unique continuous action 6" of G on A such that 07 ((z,y)) = (ns(z),ns(y))
for all z,y € E,s € G [16].

Definition 2.3. Let u and u' be two projective unitary representations of G on the
Hilbert spaces H and K, E a Hilbert module and (G, E,n) a dynamical system. A
p-map ©: E — L(H, K) is projective (u',u)-covariant with respect to (G, E,n) if
D (ns(z)) = u,®(x)u’ for allz € E,s € G and 0 o =

=aob! forall s € G.
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Remark 2.1. Clearly, if p: E — L(H) is a completely positive map projective
u-covariant with respect to the C*-dynamical system (G, A,0), then it is projec-
tive (u,u)-covariant with respect to the dynamical system on Hilbert C*-modules

(G, A,0).

Remark 2.2. Let : E — L(H, K) be a p-map. If ® is projective (v, u)-covariant
with respect to (G, E,n), then p is projective u-covariant with respect to 0", which
means that p(0d(a)) = usp(a)ul for alla € A,s € G.

Definition 2.4. Let (G, E,n) be a dynamical system on Hilbert C*-modules. A
projective covariant representation of (G, E,n) is a quadruple (m,v,w, H, K)
consists of two Hilbert spaces H and K, a representation w: E — L(H,K), a pro-
jective unitary representation v of G on H, a projective unitary representation w of
G on K such that m(ns(x)) = wsm(z)vi for allz € E,s € G.

Clearly, any projective covariant representation of a C*-dynamical system
(G, A,0) is a projective covariant representation of (G, A,#) regarded as dynami-
cal system on Hilbert C*-modules.

We prove now the projective version of Theorem 3.4 in [15] in terms of Krein
spaces.

Theorem 2.4. Let E be a Hilbert C*-module over a C*-algebra A, (G, E,n) be a
dynamical system (H,Jy) and (K, J2) two Krein spaces, u: G — L(H) a projec-
tive Jy-unitary representation, u': G — L(K) a projective Jy-unitary representation
with the normalized multiplier w, p: A — L(H) a unital projective Ji-covariant
completely positive map with respect to (G,A,a") and ®: E — L(H,K) a unital
completely positive map projective (u,u’)-covariant p-map with respect to (G, E,n).
Then there are two Krein spaces (Hg, J1) and (Ko, J2), a Ji-representation m: A —

® a projective Ja-

L(Hg), v® a projective Ji-unitary representation of G on Hg, w
unitary representation of G on K¢, a Jiom-map ne: E — L(Hg, Kg), an isometry
Vo: H— Hgp and a coisometry Wg: K — Kg such that

(a) ®(&) = Wgma(§)Ve for allE € E

(b) v¥Ve = Vpus for all s € G

(c) weWe = Weul, for all s € G

(d) [mo(E)VoH] = Ko

(e) [ro(E)*"WoK] = Ho

Proof. By Theorem 2.1, there are a Krein space (Hg, J1), a Ji-representation 7: A —
L(Hg), a projective Jj-unitary representation v® of G on Hp and an isometry
Vs : H — Hg such that

i) p(a) = Vim(a)Ve for all a € A;
i) u® = VivVs for all s € G

i) 7(ad(a)) = v¥7(a)(v®)’, forall a € A and s € G.

s

By Theorem 2.1 and Theorem 2.3, following the proof of Theorem 3.4, [15], we
complete the proof. O
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Definition 2.5. ([5]) Let (E, (-,-)) be a Hilbert C*-module over a C*-algebra A and
let U be a unitary on E, i.e. U is an invertible adjointable map on E such that
U* = UL, We define an A-valued sesquilinear form by [x,y] = (z,Uy) for all
z,y € E. We say that (E,A,U) is an S-module. If U = I, then (-,-) and [-,"]
coincide for the S-module (E, A,U). When U = U*, the S-module (E,A,U) forms
a Krein A-module.

Let (E1, B,Uy) and (Eq, B, Uz) be two S-modules, where Ey and Fs are Hilbert
C*-modules over a C*-algebra B. For each T' € L(E;, E2) there is an operator
T? € L(E,, Ey) such that (T'(z), Usy) = (x,U1T*(y)) for all x € Ey,y € Ey. In fact
T% = U T*Us.

Suppose A is a C*-algebra and (E,B,U) is an S-module. A homomor-
phism 7: A — L(FE) is called an U-representation of A on (E,B,U) if m(a*) =
Utn(a)*U = m(a)?, i.e. [r(a)x,y] = [z, 7(a*)y] for all z,y € E.

Definition 2.6. A projective U-unitary representation with the multiplier w
of a locally compact group G into W(E) is a map v: G — W(E) that satisfies the
following properties:

i) vi = Uvg1U or vl = v,

i) vs = w(s, t)vsvy for all s,t € G.

Definition 2.7. A projective covariant U-representation of a C*- dynamical
system (G, A, 0) on an S-module (E, B,U) is a triple (w,v, (E, B,U)), where 7 is an
U-representation of A on (E,B,U) and v is a projective U-unitary representation
of G into W(E) such that w(0s(a)) = vem(a)vy for alla € A and s € G.

Definition 2.8. Let (G, A, 0) be a C*-dynamical system, B a C*-algebra, (E, B,U)
an S-module and v a projective U-unitary representation of G into U(E). We say
that a completely positive linear map p from A to L(F) is projective U -covariant
with respect to the C*-dynamical system (G, A,0) if p(0s(a)) = vsp(a)v¥ for all
a€ AandseQG.

Theorem 2.5. Let A and B two unital C*-algebras and a: A — A an automor-
phism. Let (E,B,U) be an S-module, (G,A,68) be a C*-dynamical system and v
a projective U-unitary representation of G on E with the normalized multiplier w.
If p: A — L(E) is a unital projective U-covariant a-completely positive map, then
there are

(i) a Hilbert B-module Ey and a unitary Uy such that (Eo, B, Up) is an S-module;
(i) @ map V € L(E,Ey) such that V¥ = V*, an Uy-representation my of A on
(Eo, B,Uy) satisfying V*mo(a)*mo(b)V = V*mo(a(a)*b)V for all a,b € A and
pla) = V*m(a)V for all a € A;
(iii) a projective Uy-unitary representation w of G into UW(Ey) with the multiplier
w;
(iv) 7(8s(a)) = wsm(a)wlo for alla € A and s € G.
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Proof. (i) Following the proof of Lemma 4.1, [9], we form the algebraic tensor product
A ®qg E and endow it with a pre-inner product by setting

<ilai®mi,ia} ®yj> ZZ (x4, plefai)al)y;)

i=1j5=1

for all a1, ag,...,an,ay,dh, ... al, € Ajx1, 29, ..., TnyY1,Y2y -« -, Ym € E.
By Cauchy—Schwarz 1nequahty for p081tlve definite sesquilinear forms we ob-

serve that N = {Zaz Rx; € AQug E/ Z i, p(aa;)a;)z;) = 0} is a submodule
=1 3,j=1
of A ®qiq E. Therefore (-,-) induces naturally on the quotient module A ®4;4 £/N

as a B-valued inner product. We denote this inner product also by (-,-). To obtain
Ey we divide A ®q4 I/ by the kernel N and complete and Ey becomes a Hilbert
B-module.

We define Uy by Uo(Zai ®x;+N) = Za(ai) Q@ Uz; + N for all
i=1 i=1

a; EA,x; € Eji=1,n.

For all ai,ageA,xZ,yjeE i=1,n,7 =1,m we have
n

<U0(Zai ® ; +N),U0(Za;- ® y; +N)> =
i=1 j 1

<Za (a;) ® Uz; + N, Za ®Uy]+N>
= ZZ (U, plalala))ld))Uy;) = S5 (a4, plalar))al)y;) =

i=1j=1 i=1j=1

n m
= <Zai ®x; + N, Za; ®yj + N>, so Up is unitary.

i=1 j=1

Since <U0(Zai ® z; + N), Za; ®yj + N> =

i=1 j=1

3
3

n o m

<Oé((li)®sz+N CL ®y; +N> ZZ <Uxi7p(a(a(al) y]> =

i=1j=1

(i, p(a(a;‘)a_l(a <Za1 ®x; + N, Zoz )@ U y; + N>

@
Il
—
<.
I
—

I
M=
1

i=1j=1
we get UO*(Za;- ®y; +N) Za )@ U"y; + N
j=1
(ii) We define V': E—>E0 by Ve=1y@Ux+ N, x € E.
[Vzl|? = [ (Vz,Vz) || = || (la®@ Uz + N, 14 @ Uz + N) || =

= || (Uz, p(14)Uz) || < [|p(La)] - [|l[]?, then V" is bounded.
For each a1, a0,...,a, € A and x,y1,¥y2,...,Yn € E, we have
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<Vﬂ: Zai®yi+N> = <1A®Ux+N Zal®yz+N>

_ =1

<U:1; Zp (La)a;) y,> = <JJ,Z:U*,0((1Z > < Z,o (a;))U* yl> (1)

i=1
From Lemma 2.8, [9], there is M > 0 such that p(a )p(a]) < Mp(a(a))a;).
Hence, for a1, a0,...,an € A, y1,92, - - . ,yn € E, we have
\IZP(%’)U"‘MII2 <ZP a;)U* yuzp a;)U > =
= | Z (U*yi, plaf)plag)U*y;) || < M| Z “yi, pla(al)a;)Uy;) || =
7] 1 ,j 1
=M|> a; @y + N|* (2)
i=1

By (1) and (2) it results that V is an adjointable map with the adjoint
n n

V*(Zai ®x;+ N) = Zp(ai)U*xi, a; € A,x; € E,i =1,n.
i=1 i=1

Let ai,a9,...,a, € A, x1,29,...,2, € E. We have
n n
VEQ “ai®@ i+ N) = UV U() ai @z + N) =
i=1 =1
n n
=UV*() a(a) @ Uz + N) = U*( Zp DU Uz;) = U _plalai))a;) =
i=1 i=1
Zaz ® x; + N). This implies that Vi=1V*,
i=1
n n
We define 7(: A — L(Ep) by ﬂf)(a)(Zai Qi+ N) = Zaai ® x; + N for all
i=1 =1
a,ai,a,. .. anEAxlnyw- Tn € E. z

We have ||7((a) Zal®xl+N W? = ||Zaaz®xl+N||2

= | <Zaal®xl—|—N Zaa]®x]—l—N> | = Hle, (aja™)aaj)z;|| <

3,j=1

a)ll Z xi, pla(ay)aj)z;) || = (a)||2ai®a:i+N||2 for all a,ay,as,...,a, €
t,j=1 i=1
A, x1,29,...,2,4 € E.
Thus for each a € A, 7(,(a) is a well defined bounded linear operator from Ej
to Ey.
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Using <W6(@)(Zai ® x; + N),Za;- ® o’ + N> =

i=1 j=1
n m n m
= < aa; @ x; + N, Za; ® x; + N> = ZZ <xi,p(a(a;‘a*)a9):17;> =
i=1 j=1 i=1j=1
n m n m
DO UCVACREREE) SIERERS WINEEEERY
i=1j=1 i=1 j=1
m
UOW(’J(@*)U{{(Za; ® oy + N) = Uprg(a®) (Y o' (df) @ Uz + N) =
j=1 j=1

=Up(> (a*aYa D) eU x4+ N) = Za(a*)a&@x;—i—Nfor all ay,as,...,an,

&

Il
A

j
ay,ay, ... al, € Aand x1,x9,..., Ty, 21, 2h, ..., 2, € E and it follows that 7(: A —

L(Ep) is a well defined map and is an Up-representation.
We define an Up-representation my: A — L(Ey) by mo(a) = mj(a(a)) for all
a € A.
We have Vir)(a)Vx = V*(a ® Ur + N) = U*p(a)Uz = p(a)z. Therefore
pla) = Vir)(a)V for all a € A.
For each x € E and a,b € A, we get V*m(a)*n((b)Va =
= V*Uyn((a*)Ug () Ve = V*Uon| (a*)Uiny(b)(la @ Uz + N) =
= V*Ur(a*) U (b® Uz + N) = V*Uyrh(a*) (a1 (b) @ U*Uz + N) =
= V*Uprh(a*) (a1 (b) @ 2 + N) = V*Up(a*a (b)) @ z + N) =
=V*a(a*a (b)) @ Uz + N) = p(a(a*a (b)) U*Ux =
= p(a(a)*b)z = V*r{(a(a)*b)Va
We have V*mg(a)*mo(b)Ve = Viry(a(a)) n)(a(b)) Ve =
= V*rj(a(ala))*a(d)Ve = Vi (a(a(a)*d)) Ve = Vro(ala)*db)Ve for all a,b € A
and z € E.

(iii) We define w: G — U(Ep) by ws(Zai @z + N)= Zﬁg(ai) ® vsx; + N
i=1 i=1
foralla; € A,z; € E,i=1,n,s € G.

We have <w5(2ai ® T; —i—N),ij ® yj +N> =

i=1 j=1

< 07(a;) ® vsw; + N, Zb ® y; +N> = (vswi, p(a(6L(a)")b;)y;) =
i=1

j=1 i=1j=1
n

= ZZ UsTi, P a*))b;)y;)

n m
On the other hand, <Zai ® x; + N, Upwg—1 Uo(ij ®y; + N)> =
i=1 j=1

<Zaz®x,+N Upwg—1( Za ®Uy]+N)>
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Zaz@)l‘ri‘N Un( Z@n ®v_1Uy]—f—N)>

a; @ x; + N, Za (- (b‘)))®UUS—1ij+N>:
] 1

Zai ® x; + N, Za(a(@?,l(bj))) ® Uvg-1Uy; + N> =
j 1

=1

3l

Il
T N~ T — T
:iM:H

a; @ x; + N, 29’7 ;) @ Uvy- 1Uy]+N>

i=1 j=1

= SO (a @i+ N0 (b)) @ vty + N) = SN (i plalad)ol, (b)vly;) =
i=1j=1 i=1j5=1

S (i vip(O ()01 (b)) vi1vty) =

i=1j=1

n

= 20 vkl et o)) =

n

:ZZ xi,vap(0 ZZ T, vg pa ))b )y]>

i=1 i=1j=1
For alla; € A,x; € E,i =1,n,s,t € G, we have
n n

wst(Zai ®x;+ N) = Z@Zt(ai) Qugxi + N =

i=1 i=1
= ZQ?H?(ai) @ w(s, t)vsvez; + N = w(s, t)ws(ZG?(ai) Quiz; + N) =
i=1 1=1
= w(s,t)wswt(Zai ®x; + N)
i=1

Thus, we proved that w is a projective Uy-unitary representation.
(1v) Foralla a; € A,x; € E;i =1,n, SEG we have

Zaz®azz+N) = 7 (a (0" Zaz®$Z+N) S a(0(a))a; @z + N

=1 =1 =1

On the other hand, w,m(a)w?o Zaz ®x;+ N) =
=1

= wymp(a)we—1( Za,@xz—l—N)—wswo 29 (a;) @ vg—12; + N) =
=1

Za _1 (a;) @ vg—1x; + N) = 20’7 (a;)) @ vsvg—1x; + N =

= Zﬁg(a( a; @x; + N = Za a))a; @ x; + N
= =1
Therefore, condition (iv) is verified. O
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