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ϕ - CONTRACTIVE ORBITAL AFFINE ITERATED FUNCTION

SYSTEMS

Alexandru Mihail1, Irina Savu2

In this paper, we introduce the notion of ϕ-contractive orbital affine iter-

ated function system (oAIFS for short), which is based on the notions of affine iterated
function system and ϕ-contractive orbital iterated function system. We present two

results which give a description of the functions of an oAIFS and establish sufficient

conditions to exist a norm with specific properties on the linear spaces where the func-
tions are defined. Two examples are provided.
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1. Introduction

The concept of iterated function system (IFS for short) was introduced by J. Hutchin-
son in [9] and in the last decades, many generalizations of this concept have been considered.
For example, there have been studied IFSs consisting of ϕ-contractions (see [10]), convex
contractions (see [7]), systems with an infinite number of functions (see [6], [8], [11]), graph-
directed Markov systems (see [13]) and others. Also, important contibutions in the study of
IFSs are presented in [12] and [22]. For certain types of IFSs, the fractal operator associated
is Picard (see [15]), but there have been introduced and studied IFSs for which the fractal
operator is weakly Picard. For the last case, let us mention the orbital iterated function
systems, which have been studied largely in [16], [17] and [20]. An orbital iterated function
system is a finite family of continuous functions defined on a metric space (X, d) having the
property that on the orbit of every element x ∈ X, the functions are contractions with the
same contractivity constant. It was proved (see [16]) that the fractal operator associated to
such a system is weakly Picard.

An important type of IFS is represented by the affine iterated function systems. For
example, in [1], the authors studied the hyperbolic affine iterated function systems and in
[14], R. Miculescu and A. Mihail gave an alternative characterization of hyperbolic affine
infinite iterated function systems defined on an arbitrary normed space. Moreover, in [4],
the authors studied an application of affine iterated function systems, namely equilibrium
states of generalized singular value potentials. Affine iterated function systems have been
also studied in [2], [3], [5], [18], [19] and [23]).

In this paper, we use the notions of affine iterated function system and ϕ-contractive
orbital iterated function system in order to introduce the notion of ϕ-contractive orbital
affine iterated function system (oAIFS for short). This is an affine iterated function system
defined on the normed space (Rn, ‖·‖), consisting of a finite family of functions (fi)i∈I having
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the property that for every i ∈ I, there exist Ãi ∈ L (Rn,Rn) and ãi ∈ Rn such that fi (x) =

Ãix+ãi for all x ∈ Rn. Moreover, there exists a comparison function ϕ: [0,∞)→ [0,∞) such
that d (fi (y) , fi (z)) ≤ ϕ (d (y, z)) for every x ∈ Rn, y, z ∈ O (x) and i ∈ I. We denote such a
system by S =

(
(Rn, ‖·‖) , (fi)i∈I

)
. We present a result (see Theorem 3.1) which states that

there exist two linear subspaces Y,Z ⊂ Rn such that Y + Z = Rn, Y ∩ Z = {0Rn} and for

every i ∈ I, there exist Bi ∈ L (Z,Z), Ci ∈ L (Y,Z) and bi ∈ Z such that Ãi =

[
IY OZ,Y
Ci Bi

]
and ãi =

[
0Y
bi

]
. We also prove that there exists a norm ‖·‖Z on Z such that ‖Bi‖Z < c

for all i ∈ I. Moreover, we prove that we can find a norm ‖·‖θ :Rn → [0,∞), such that∥∥∥Ãi∥∥∥
θ
≤ 1 and ‖Bi‖θ < c for all i ∈ I (see Theorem 3.2). Two examples are provided.

2. Preliminaries

Notations and terminology

Given a set X, a function f :X → X and n ∈ N∗, by fn we mean f ◦ f ◦ · · · ◦ f by n
times. By f0 we mean the identity function.

Given a metric space (X, d) , by:
- diam (A) we mean the diameter of the subset A of X;
- Pcp (X) we mean the set of non-empty compact subsets of X;
- the Hausdorff-Pompeiu metric we mean h:Pcp (X) × Pcp (X) → [0,∞) given by

h (A,B) = max {d (A,B) , d (B,A)} for all A,B ∈ Pcp (X) , where d (A,B) = sup
x∈A

inf
y∈B

d (x, y) ;

- a weakly Picard operator we mean a function f :X → X having the property that
for every x ∈ X, the sequence (fn (x))n∈N is convergent to a fixed point of f .

Results regarding the Hausdorff-Pompeiu metric

Proposition 2.1 (see [21]). For a metric space (X, d), we have

h

(
∪
i∈I
Ai, ∪

i∈I
Bi

)
≤ sup

i∈I
h (Ai, Bi) (1)

for every (Ai)i∈I and (Bi)i∈I families of elements from Pcp (X).

Proposition 2.2 (see [21]). For a metric space (X, d), we have

h (A,B) ≤ diam (A ∪B)

for every A,B ∈ Pcp (X).

Proposition 2.3 (see [21]). If the metric space (X, d) is complete, then the metric space
(Pcp (X) , h) is complete.

Let Y , Z ⊂ Rn be two real linear spaces. By Y + Z we mean {y + z | y ∈ Y, z ∈ Z}
and by L (Y, Z) we denote the space of linear applications from Y to Z.

By 0Y we mean the null vector from Y and by IY we mean the identity function from
L (Y, Y ). By dimY we mean the dimension of the space Y .

By OY,Z we denote the linear application from Y to Z which, applied to every element
from Y , is equal to 0Z . If Y = Z, OY,Y will be denoted by OY .

If ‖·‖Y is a norm on Y and A ∈ L (Y, Y ), by ‖A‖Y we mean sup
y∈Y,y 6=0Y

‖Ay‖Y
‖y‖Y

.

Let Y , Z ⊂ Rn be two real linear spaces such that Y + Z = Rn and Y ∩ Z = {0Rn}.
If x ∈ Rn, then there exist a unique y ∈ Y and a unique z ∈ Z such that y + z = x. In



ϕ - Contractive Orbital Affine Iterated Function Systems 15

this case, we make the notation x =

[
y
z

]
. Let A ∈ L (Rn,Rn) and x =

[
y
z

]
∈ Rn. We

make the notation A =

[
A11 A12

A21 A22

]
, where A11 ∈ L (Y, Y ), A12 ∈ L (Z, Y ), A21 ∈ L (Y,Z)

and A22 ∈ L (Z,Z) are defined by Ay =

[
A11y
A21y

]
and Az =

[
A12z
A22z

]
for every y ∈ Y and

z ∈ Z. Let us note that Ax =

[
A11y
A21y

]
+

[
A12z
A22z

]
for every x =

[
y
z

]
∈ Rn.

The shift (code) space

Given two sets A and B, by BA we mean the set of all functions from A to B.

For a set I and n ∈ N∗, we use the notation I{1,2,··· ,n}
not
= Λn (I). If n = 0, then

Λ0 (I) consists of a single element, namely the empty word, denoted by λ.
For n ∈ N∗, the elements of Λn (I) are finite words with n letters from I, namely

α = α1α2 · · ·αn. In this case, n is called the length of α and it is denoted by |α|. For
α ∈ Λn (I) and m ∈ N∗, by [α]m we mean the word formed with the first m letters from α
if m ≤ n, or the word α if n < m. By [α]0 we mean the word λ.

Let n ∈ N∗. For a family of functions (fi)i∈I , where fi:X → X for all i ∈ I and
α = α1α2 · · ·αn ∈ Λn (I), we use the notation fα = fα1

◦ · · · ◦ fαn . By fλ we mean the
identity function.

Let Y , Z ⊂ Rn be two real linear spaces, (Bi)i∈I ⊂ L (Y, Z), m ∈ N∗ and α =
i1i2 · · · im ∈ Λm (I). We use the notation Bα = Bi1 ◦Bi2 ◦ · · · ◦Bim .

By Λ∗ (I) we mean the set of all finite words with letters from I, namely Λ∗ (I) =
∪
n∈N

Λn (I).

By Λ (I) we mean the set IN
∗
. The elements of Λ (I) can be written as infinite words,

namely α = α1α2 · · ·αn · · · . For α ∈ Λ (I) and n ∈ N∗, by αn we mean the letter on
position n in α. By [α]n we mean the word formed with the first n letters from α. By [α]0
we mean λ.

Orbital iterated function systems

Definition 2.1. Let (X, d) be a complete metric space and (fi)i∈I a finite family of contin-
uous functions, with fi:X → X for all i ∈ I. Let B ∈ Pcp (X). By the orbit of B we mean
the set O (B) = ∪

n∈N
∪

α∈Λ(I)
f[α]n

(B). If B = {x}, for the orbit of {x} we make the notation

O (x).

Definition 2.2. A function ϕ: [0,∞)→ [0,∞) is called comparison function if ϕ(r) < r for
all r > 0 and ϕ is increasing and right continuous on [0,∞).

We note that if ϕ: [0,∞)→ [0,∞) is a comparison function, then lim
n→∞

ϕn (r) = 0 for

all r > 0.

Definition 2.3. By an iterated function system (IFS) we mean a pair denoted by S =(
(X, d) , (fi)i∈I

)
, where (X, d) is a complete metric space and (fi)i∈I is a finite family of

continuous functions, with fi:X → X for all i ∈ I. If there exists ϕ: [0,∞) → [0,∞) a
comparison function such that

d (fi (y) , fi (z)) ≤ ϕ (d (y, z))

for every i ∈ I and y, z ∈ X, S is called ϕ-contractive iterated function system. If there
exists a constant C ∈ [0, 1) such that ϕ (t) = C · t for all t ∈ [0,∞), S is called C-contractive
iterated function system.
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Definition 2.4. By a ϕ-contractive orbital iterated function system (oIFS for short) we
mean a pair denoted by S =

(
(X, d) , (fi)i∈I

)
, where (X, d) is a complete metric space and

(fi)i∈I is a finite family of continuous functions, with fi:X → X for all i ∈ I, having the
property that there exists ϕ: [0,∞)→ [0,∞) a comparison function such that

d (fi (y) , fi (z)) ≤ ϕ (d (y, z))

for every x ∈ X, i ∈ I and y, z ∈ O (x) . If there exists C ∈ [0, 1) such that ϕ (t) = C · t for
all t ∈ [0,∞), S is called C-contractive orbital iterated function system.

Definition 2.5. Let S =
(
(X, d) , (fi)i∈I

)
be an oIFS. The fractal operator associated to S is

the function FS:Pcp (X)→ Pcp (X) defined by FS (K) = ∪
i∈I
fi (K), for every K ∈ Pcp (X) .

Definition 2.6. Let S =
(
(X, d) , (fi)i∈I

)
be an IFS. By an attractor of S we mean a fixed

point of the fractal operator associated to S. We say that S has a unique attractor if there
exists a set denoted by A such that lim

n→∞
h (FnS (K) , A) = 0 and FS (A) = A for every

K ∈ Pcp (X).

Theorem 2.1 (see [17]). Every oIFS has at least one attractor. More precisely, the associ-
ated fractal operator is weakly Picard.

Let S =
(
(X, d) , (fi)i∈I

)
be an oIFS. Then, for every K ∈ Pcp (X), there exists a set

(an attractor) corresponding toK, denoted byAK ∈ Pcp (X), such that lim
n→∞

h (FnS (K) , AK) =

0 and FS (AK) = AK . If K = {x}, we will denote its corresponding attractor by Ax.

Remark 2.1. Let S =
(
(X, d) , (fi)i∈I

)
be an oIFS. As for every x ∈ X the sequence

(FnS ({x}))n∈N is convergent to Ax, we have O (x) = O (x) ∪ Ax. We note that O (x) is
bounded for every x ∈ X.

Using a technique similar with the one used in [17] and [20], one can prove the
following:

Proposition 2.4. Let S =
(
(X, d) , (fi)i∈I

)
be an oIFS, (Kn)n∈N a sequence with Kn ∈

Pcp (X) for all n ∈ N and K ∈ Pcp (X) such that lim
n→∞

h (Kn,K) = 0.

Then, lim
n→∞

h (AKn , AK) = 0.

Proposition 2.5 (see [17]). Let S =
(
(X, d) , (fi)i∈I

)
be an oIFS. Then, AB = Ax for every

x ∈ X and B ∈ Pcp
(
O (x)

)
.

Proposition 2.6 (see [17]). Let S =
(
(X, d) , (fi)i∈I

)
be an oIFS. Then,

∩
n≥1

f[α]n
(Ax) = {aα (x)}

and
d
(
f[α]n

(x) , aα (x)
)
≤ ϕn (diam (O (x)))

for all x ∈ X, n ∈ N and α ∈ Λ (I).

Definition 2.7. Let x, y ∈ X. We say that x is equivalent with y and we use the notation
x v y if Ax = Ay.

Remark 2.2. The above relation is an equivalence relation. For an element x ∈ X, we
denote its class by x̂.

Remark 2.3. If x, y ∈ X such that x v y, then using Proposition 2.6, we obtain aα (x) =
aα (y).

Remark 2.4. If x, y ∈ X such that Ax ∩Ay 6= ∅, then Ax = Ay.
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Affine iterated function systems

Definition 2.8. On Rn we consider a fixed norm denoted by ‖·‖. By an affine iterated
function system we mean a pair denoted by S =

(
(Rn, ‖·‖) , (fi)i∈I

)
, where (fi)i∈I is a finite

family of continuous functions, with fi:Rn → Rn for all i ∈ I, having the property that for

every i ∈ I, there exist Ãi ∈ L (Rn,Rn) and ãi ∈ Rn such that fi (x) = Ãix + ãi for all
x ∈ Rn.

Definition 2.9. Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an affine iterated function system. S is

called hyperbolic if there exists a norm ||| · ||| on Rn and C ∈ [0, 1) such that the system(
(Rn, ||| · |||) , (fi)i∈I

)
is a C-contractive iterated function system.

Definition 2.10. Let ϕ: [0,∞)→ [0,∞) be a comparison function and S =
(
(Rn, ‖·‖) , (fi)i∈I

)
an affine iterated function system. S is called ϕ-hyperbolic if there exists a norm ||| · ||| on
Rn such that

(
(Rn, ||| · |||) , (fi)i∈I

)
is a ϕ-contractive iterated function system.

Theorem 2.2 (see [14]). Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an affine iterated function system.

Then, the following statements are equivalent:
1) S is hyperbolic;
2) there exists a comparison function ϕ0 such that S is ϕ0-hyperbolic;
3) S has a unique attractor.

Definition 2.11. By a ϕ-contractive orbital affine iterated function system (oAIFS for
short) we mean a pair denoted by S =

(
(Rn, ‖·‖) , (fi)i∈I

)
which is an affine iterated function

system and has the property that there exists a comparison function ϕ: [0,∞)→ [0,∞) such
that S is a ϕ-contractive orbital iterated function system.

3. Main results

Proposition 3.1. Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an oAIFS, m ∈ N, m ≥ 2 and α ∈ Λm (I).

Then,

fα (x) = Ãαx+ ãα1
+

m∑
k=2

Ã[α]k−1
ãαk

for all x ∈ Rn.

Proof. By mathematical induction. �

Remark 3.1. Using Proposition 3.1, we have that

fα (x1)− fα (x2) = Ãα (x1 − x2) (2)

for all x1, x2 ∈ Rn, m ∈ N∗ and α ∈ Λm (I).

Theorem 3.1. Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an oAIFS. Then, there exist two linear sub-

spaces Y, Z ⊂ Rn such that
1) Y + Z = Rn, Y ∩ Z = {0Rn};
2) for every i ∈ I, there exist Bi ∈ L (Z,Z), Ci ∈ L (Y, Z) and bi ∈ Z such that

Ãi =

[
IY OZ,Y
Ci Bi

]
and ãi =

[
0Y
bi

]
;

3) there exist c ∈ (0, 1) and a norm ‖·‖Z on Z such that ‖Bi‖Z < c for all i ∈ I.

Proof. Let us consider

Z =
{
z ∈ Rn | lim

m→∞
Ã[α]mz = 0Rn for all α ∈ Λ (I)

}
.

One can easily prove that Z is a linear subspace of Rn. It results that there exists a
subspace of Rn denoted by Y such that Y + Z = Rn and Y ∩ Z = {0Rn}.
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This implies that there exist Bi ∈ L (Z,Z), Ci ∈ L (Y,Z) , Di ∈ L (Y, Y ), Ei ∈
L (Z, Y ), bi ∈ Z and ci ∈ Y such that

Ãi =

[
Di Ei
Ci Bi

]
and ãi =

[
ci
bi

]
.

Claim 1. lim
m→∞

Ã[α]m (x1 − x2) = 0 for all x1, x2 ∈ Rn with x1 v x2.

Justification: Let x1, x2 ∈ Rn with x1 v x2. From Remark 3.1, Proposition 2.6 and
Remark 2.3, we have

lim
m→∞

Ã[α]m (x1 − x2) = lim
m→∞

(
f[α]m

(x1)− f[α]m
(x2)

)
= aα (x1)− aα (x2) = 0.

Claim 2. x̂ = x+ Z for all x ∈ Rn.
Justification: Let x ∈ Rn. Applying Proposition 2.6, we have

lim
m→∞

sup
α∈Λ(I)

∥∥f[α]m
(x)− aα (x)

∥∥ ≤ lim
m→∞

ϕm (diam (O (x))) = 0,

so

lim
m→∞

sup
α∈Λ(I)

∥∥f[α]m
(x)− aα (x)

∥∥ = 0 (3)

for every x ∈ Rn.
Let x1, x2 ∈ Rn with x1 v x2. Using Remark 2.3, we have aα (x1) = aα (x2) for all

α ∈ Λ (I). From Remark 3.1 and the triangle inequality, we obtain

lim
m→∞

sup
α∈Λ(I)

∥∥∥Ã[α]m (x1 − x2)
∥∥∥ = lim

m→∞
sup

α∈Λ(I)

∥∥f[α]m
(x1)− f[α]m

(x2)
∥∥

= lim
m→∞

sup
α∈Λ(I)

∥∥f[α]m
(x1)− aα (x1) + aα (x2)− f[α]m

(x2)
∥∥

≤ lim
m→∞

sup
α∈Λ(I)

∥∥f[α]m
(x1)− aα (x1)

∥∥+ lim
m→∞

sup
α∈Λ(I)

∥∥aα (x2)− f[α]m
(x2)

∥∥ .

Using relation (3) and the above inequality, it results

lim
m→∞

sup
α∈Λ(I)

∥∥∥Ã[α]m (x1 − x2)
∥∥∥ = 0.

We deduce that x1 − x2 ∈ Z, so x1 ∈ x2 + Z. Hence, we proved that x̂ ⊂ x + Z for
all x ∈ Rn.

Let us consider x1 ∈ x+ Z. Then,

f[α]m
(x1) = f[α]m

(x) + f[α]m
(x1)− f[α]m

(x)

= f[α]m
(x) + Ã[α]m (x1 − x)

for all m ∈ N∗ and α ∈ Λ (I). By passing to limit as m→∞ in the above relation and using
the fact that x1−x ∈ Z, we obtain aα (x1) = aα (x). Applying Proposition 2.6 and Remark
2.4, we infer that x1 v x, so x1 ∈ x̂. Therefore, x+ Z ⊂ x̂, for all x ∈ Rn.

From the both inclusions we deduce the conclusion of the claim.
For all p ∈ N∗ and β ∈ Λp (I), we have fβ (x) ∈ O (x) and using Proposition 2.5, we

deduce that Afβ(x) = Ax. Hence, fβ (x) ∈ x̂ and it results that O (x) ⊂ x̂ for all x ∈ Rn.
Let x ∈ Rn and i ∈ I. As fi (x) ∈ O (x), we have fi (x) ∈ x̂. Applying Claim 2, we

obtain that fi (x) ∈ x+ Z. Thus, there exists tx ∈ Z such that Ãix+ ãi = x+ tx. So,(
Ãi − IRn

)
x+ ãi = tx. (4)



ϕ - Contractive Orbital Affine Iterated Function Systems 19

As Y + Z = Rn and Y ∩ Z = {0Rn}, there exist y ∈ Y and z ∈ Z such that x =

[
y
z

]
.

Therefore, relation (4) is equivalent with[
Di − IY Ei
Ci Bi − IZ

] [
y
z

]
+

[
ci
bi

]
=

[
0
tx

]
.

As x ∈ Rn was arbitrary chosen, we obtain{
(Di − IY ) y + Eiz + ci = 0
Ciy + (Bi − IZ) z + bi = tx

for every y ∈ Y and z ∈ Z. Taking y = 0Y and z = 0Z in the first equation of the system, it
results ci = 0Y for all i ∈ I. Taking y = 0Y and z 6= 0Z in first equation, we have Ei = OZ,Y
for all i ∈ I. In the same equation, for z = 0Z and y 6= 0Y , it results that Di = Iy for all
i ∈ I. Thus,

fi

([
y
z

])
=

[
IY OZ,Y
Ci Bi

] [
y
z

]
+

[
0Y
bi

]
=

[
y

Ciy +Biz + bi

]
for all y ∈ Y , z ∈ Z and i ∈ I.

Using the mathematical induction, one can prove that

Ã[α]m

[
0Y
z

]
=

[
0Y

B[α]m
z

]
(5)

for all m ∈ N∗, α ∈ Λ (I) and z ∈ Z.
Let us consider the system SZ =

(
(Z, ‖·‖) , (gi)i∈I

)
with gi:Z → Z given by gi (z) =

Biz for all z ∈ Z and i ∈ I. As gi (0Z) = 0Z for every i ∈ I, we deduce that F
S̃Z

({0Z}) =

{0Z}.
Using the fact that x̂ = x + Z for all x ∈ Rn, by taking x = 0Z , we obtain that

0̂Z = Z.
Let us consider B ∈ Pcp (Z) and z ∈ B ∪ {0Z} ⊂ Z. As z ∈ 0̂Z , we infer that

aα (z) = aα (0Z).
For α ∈ Λ (I), we have that

B[α]p
z

(5)
= Ã[α]pz = Ã[α]p (z − 0Z)

(2)
= f[α]p

(z)− f[α]p
(0Z) (6)

for every p ∈ N∗. Thus,
B[α]p

z = f[α]p
(z)− f[α]p

(0Z)

for every p ∈ N∗. Moreover,

sup
|α|=p

∥∥∥B[α]p
z
∥∥∥ (6)

= sup
|α|=p

∥∥∥f[α]p
(z)− f[α]p

(0Z)
∥∥∥

= sup
|α|=p

∥∥∥f[α]p
(z)− f[α]p

(0Z)− aα (z) + aα (0Z)
∥∥∥

≤ sup
|α|=p

∥∥∥f[α]p
(z)− aα (z)

∥∥∥+ sup
|α|=p

∥∥∥f[α]p
(0Z)− aα (0Z)

∥∥∥
≤ 2 sup

|α|=p
sup

x∈B∪{0Z}

∥∥∥f[α]p
(x)− aα (x)

∥∥∥ ≤ 2ϕp (diam (O (B ∪ {0Z})))

for every p ∈ N∗. Hence,

sup
x∈B

sup
|α|=p

∥∥∥B[α]p
x
∥∥∥ ≤ 2ϕp (diam (O (B ∪ {0Z})))

for every p ∈ N∗. We have

h
(
F p
S̃Z

(B) , {0Z}
)

= h

(
∪
|α|=p

gα (B) , {0Z}
)
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≤ sup
|α|=p

h (gα (B) , {0Z}) ≤ sup
x∈B

sup
|α|=p

‖gα (x)‖

= sup
x∈B

sup
|α|=p

‖Bαx‖ ≤ 2ϕp (diam (O (B ∪ {0Z})))

for every p ∈ N∗.
By taking into consideration the above relation, we obtain that lim

p→∞
h
(
F p
S̃Z

(B) , {0Z}
)

=

0 for every B ∈ Pcp (Z). As F
S̃Z

({0Z}) = {0Z}, we infer that {0Z} is an attractor of SZ .

Using Theorem 2.2, we deduce that there exists a norm ‖·‖Z on Z such that max
i∈I
‖Bi‖Z < 1.

Hence,
(
(Z, ‖·‖Z) , (gi)i∈I

)
is a C-contractive IFS.

�

Theorem 3.2. Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an oAIFS. Let Y and Z be the linear subspaces

of Rn which result from Theorem 3.1 and let ‖·‖Y be a norm defined on Y . Let µ =

max
i∈I
‖Bi‖Z , β = max

i∈I
‖Ci‖Y,Z and θ ∈

(
0, 1−µ

β

)
. We consider the norm ‖·‖θ :Rn → [0,∞)

defined by ∥∥∥∥[ y
z

]∥∥∥∥
θ

= max {‖y‖Y , θ ‖z‖Z}

for all y ∈ Y and z ∈ Z and the norm ||| · |||:Z → [0,∞) given by |||z||| = θ||z||Z for all

z ∈ Z. Then,
∥∥∥Ãi∥∥∥

θ
≤ 1 and |||Bi||| = ‖Bi‖Z < 1 for all i ∈ I.

Proof. Let i ∈ I, θ ∈
(

0, 1−µ
β

)
, y ∈ Y and z ∈ Z.

Case 1.
θ ‖z‖Z ≤ ‖y‖Y . (7)

We have∥∥∥∥Ãi [ y
z

]∥∥∥∥
θ

=

∥∥∥∥[ y
Ciy +Biz

]∥∥∥∥
θ

= max {‖y‖Y , θ ‖Ciy +Biz‖Z}

≤ max
{
‖y‖Y , θ

(
‖Ci‖Y,Z ‖y‖Y + ‖Bi‖Z ‖z‖Z

)}
≤ max {‖y‖Y , θ (β ‖y‖Y + µ ‖z‖Z)} .

Applying (7), we have

θ (β ‖y‖Y + µ ‖z‖Z) ≤ βθ ‖y‖Y + µ ‖y‖Y = (βθ + µ) ‖y‖Y .

Using the fact that θ < 1−µ
β , we deduce that θβ + µ < 1, so

θ (β ‖y‖Y + µ ‖z‖Z) ≤ ‖y‖Y .

Thus, ∥∥∥∥Ãi [ y
z

]∥∥∥∥
θ

≤ ‖y‖Y =

∥∥∥∥[ y
z

]∥∥∥∥
θ

and we obtain the conclusion.
Case 2.

‖y‖Y ≤ θ ‖z‖Z . (8)

Similarly with the first case, we have∥∥∥∥Ãi [ y
z

]∥∥∥∥
θ

=

∥∥∥∥[ y
Ciy +Biz

]∥∥∥∥
θ

≤ max {‖y‖Y , θ (β ‖y‖Y + µ ‖z‖Z)} .

Applying (8), we have∥∥∥∥Ãi [ y
z

]∥∥∥∥
θ

≤ max {θ ‖z‖Z , θ (βθ ‖z‖Z + µ ‖z‖Z)}
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= θmax {‖z‖Z , (βθ + µ) ‖z‖Z} .
As θ < 1−µ

β , it results

(βθ + µ) ‖z‖Z ≤ ‖z‖Z ,
so ∥∥∥∥Ãi [ y

z

]∥∥∥∥
θ

≤ θ ‖z‖Z =

∥∥∥∥[ y
z

]∥∥∥∥
θ

.

Again, we obtained the conclusion. �

Remark 3.2. Let S be an oAIFS as in Theorem 3.2. Then, for any norm on Rn, it doesn’t

exist, in general, a constant γ < 1 such that
∥∥∥Ãi∥∥∥ < γ for all i ∈ I. For example, we

consider S = ((R, | · |) , f) with f :R → R given by f (x) = x for all x ∈ R. It can be seen

that S is an oAIFS with Ã = 1 and ã = 0. In this case, |Ã| = 1.

4. Remarks and examples

Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an oAIFS. Applying Theorem 3.1, we obtain that there

exist two linear subspaces Y,Z ⊂ Rn such that
1) Y + Z = Rn and Y ∩ Z = {0Rn};
2) for every i ∈ I, there exist Bi ∈ L (Z,Z), Ci ∈ L (Y, Z) and bi ∈ Z such that

Ãi =

[
IY OZ,Y
Ci Bi

]
and ãi =

[
0Y
bi

]
;

3) there exist c ∈ (0, 1) and a norm ‖·‖Z on Z such that ‖Bi‖Z < c for all i ∈ I.
By mathematical induction, one can prove

Ãi1···im =

[
IY OZ,Y

Ci1···im Bi1 · · ·Bim

]
,

where

Ci1···im = Ci1 +

m∑
k=2

Bi1···ik−1
Cik

for all m ∈ N, m ≥ 2 and ij ∈ I, with j ∈ {1, · · · ,m}.

Let m ∈ N∗ and α ∈ Λ (I). Let y ∈ Y and z ∈ Z such that x =

[
y
z

]
. It results

Ã[α]m
x =

[
y

Cα1···αmy +Bα1···αmz

]
and

Ã[α]k−1
ãαk =

[
IY OZ,Y

Cα1···αk−1 Bα1···αk−1

] [
0Y
bαk

]
=

[
0Y

Bα1···αk−1
bαk

]
for all α ∈ Λ (I), k ∈ {2, · · · ,m} and m ∈ N, m ≥ 2. Using Proposition 3.1, we have

f[α]m
(x) = Ã[α]m

x+ ãα1
+

m∑
k=2

Ã[α]k−1
ãαk

for all x ∈ Rn.
As ‖Bi‖Z < c < 1 for all i ∈ I, we deduce

aα (x) = lim
m→∞

f[α]m
(x)

= lim
m→∞


 y(

Ci1 +

m∑
k=2

B[α]k−1
Cαk

)
y +B[α]m

z

+

[
0Y
ãα1

]
+

m∑
k=2

[
0Y

B[α]k−1
bαk

]



22 Alexandru Mihail, Irina Savu

=


yCi1 +

∑
k≥2

B[α]k−1
Cαk

 y + ãα1 +
∑
k≥2

B[α]k−1
bαk


for all α ∈ Λ (I). Therefore,

aα

([
y
z

])
=

[
y

ãα1
+ Ci1 +

∑
k≥2

B[α]k−1
(Cαky + bαk)

]
(9)

for all α ∈ Λ (I), y ∈ Y and z ∈ Z.

Example A. Let us consider the normed space
(
R4, ‖·‖

)
, where ‖·‖ is the Euclidean

norm. Let (ei)i∈1,3 be the canonical basis in R3. We consider I = {1, 2, 3} and the family

of functions (fi)i∈I where fi:R4 → R4 is given by

fi (x) =


1 0 0 0
1
3

1
2 0 0

1
3 0 1

2 0
1
3 0 0 1

2

x+

(
0

ei

)

for all x ∈ R4 and i ∈ I. Thus, we obtained the system S =
((
R4, ‖·‖

)
, (fi)i∈I

)
. One can

easily prove that S is an oAIFS. From the proof of the Theorem 3.1, one can easily see that

Z =




0
a
b
c

 | a, b, c ∈ R

. We consider Y =




y0

0
0
0

 | y0 ∈ R

. Let x ∈ R4. Then,

there exist y ∈ Y and z ∈ Z such that x =

[
y
z

]
. Since y ∈ Y , there exists y0 ∈ Y such

that y =


y0

0
0
0

. Using relation (9), we deduce that

aα

([
y
z

])
=


y

∑
k≥1

(
1
2

)k−1

y0
3


0
1
1
1

+

(
0
eαk

)


for all y ∈ R, z ∈ R3 and α ∈ Λ (I).
If y0 = 0, we obtain that Ay is the Sierpinski triangle (denoted by T ) with ver-

tices in

(
0
e1

)
,

(
0
e2

)
and

(
0
e3

)
. For y0 6= 0, we obtain that Ay is T translated by

y

∑
k≥1

(
1

2

)k−1
y0

3


0
1
1
1


 =


y

2y0
3


0
1
1
1


 =


y0
2y0
3

2y0
3

2y0
3

.

For a set K ∈ Pcp (X) , if we want to find AK , we use the fact that AK = ∪
x∈K

Ax.

Example B. Let us consider the normed space
(
R3, ‖·‖

)
, where ‖·‖ is the Euclidean

norm. Let (ei)i∈1,2 be the canonical basis in R2. We consider I = {1, 2} and the family of

functions (gi)i∈I where gi:R3 → R3 is given by gi (x) = Bx + bi for all x ∈ R3 and i ∈ I,
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where B =

 23
6

7
4

7
4

−14 −10 −7
25
3

25
6

9
2

, b1 =

 −2
9
−5

 and b2 =

 1
−5
3

. Thus, we obtained the

system S =
((
R3, ‖·‖

)
, (gi)i∈I

)
. One can easily prove that S is an oAIFS. In order to find

the spaces Y and Z from the Theorem 3.1, we change the basis in R3, by considering the

matrix D =

 2 1 1
1 2 3
−3 1 3

. Its inverse is D−1 =

 3 −2 1
−12 9 −5

7 −5 3

. In this case, we obtain

the functions

fi (x) =

1 0 0
1
4

1
3 0

1
4 0 1

3

x+

(
0
ei

)
for all x ∈ R3 and i ∈ I. If we apply Theorem 3.1 for the system

((
R3, ‖·‖

)
, (fi)i∈I

)
, we

have that Y is the space generated by the vector

 3
−12

7

 and Z is the space generated by

the vectors

−2
9
−5

 and

 1
−5
3

.

5. Conclusions

In this paper we introduce the notion of ϕ-contractive orbital affine iterated function
system (oAIFS), which represents a type of IFS for which the component functions are affine
and they are endowed with weaker contractivity conditions. We present two results which
give a description of the functions of an oAIFS and establish sufficient conditions to exist a
norm with specific properties on the linear spaces where the functions are defined. Also, we
provide two examples for such type of systems.
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