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AN ACCELERATED MANN-TYPE METHOD FOR SPLIT COMMON
FIXED POINT PROBLEM IN HILBERT SPACES

Lan Yang®, Li-jun Zhu?, Mihai Postolache®

In this paper, we introduce a new method to solve split common fized point
problem of demicontractive operators in Hilbert spaces, which is based on the Wang
method, inertial method and Mann method. Strong convergence result of the suggested
algorithm is proved, and our results are utilized to study split feasibility problem and split
variational inequality problem in Hilbert spaces. Finally, we compare the convergence
speed of our algorithm with the Wang algorithm by a numerical example.
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1. Introduction

In 2009, Censor and Segal [1] first introduced the split common fixed point problem
(SCFP), motivated by its applications to signal processing and image restoration. In time,
this idea stimulated many authors to consider this direction (see [2-6]). More specific, let
H; and Hs be two real Hilbert spaces. Then SCFP is to find a point w? satisfying:

w € Fix(S) such that Aw! € Fix(T). (1)

where Fix(S) and Fix(T) denote the fixed point sets of S: H; — H; and T: Hy — Hy,
respectively, A: H; — Hy be a linear bounded operator. We use I'; to denote the solution
set of problem (1) , i.e.,

I = {w* € H, : w* € Fix(S) and Aw? € Fix(T)}.

The problem (1) reduces to the split feasibility problem (SFP) if S and T are both
metric projection operators. The SFP was introduced by Censor and Elfving [7] in 1994,
and has been received a lot of attention (see [8-12]) because it has been used successfully
in signal processing [13]. We underline that SFP can be expressed as: find a point w! such
that

wt € C and Aw* € Q. (2)
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where A: C — Q be a linear bounded operator, C C H; and Q C H, are two nonempty
closed convex subsets. We use 'y to denote the solution set of problem (2), i.e.,

Iy := {w € C and Awt € Q}.

Byrne [8] proposed the well-known CQ-algorithm to solve the problem (2), which is
formulated as follows:
pFt = Pe(u — yA* (I — Po)Ap®. (3)
where Pc and Py are the metric projection, v € (0, %) and A denote the spectral radius of
the operator A*A.
In order to solve problem (1), Censor and Segal [1] inspired by the algorithms (3)
proposed the following iterative method:

pE = S(uF + ~A*(T — I)Ap*, k € N. (4)

where v is a correctly selected step size and A* denote the adjoint of A, S and T are two
directed operators. It is well-known that a sequence generated by (4) weak convergences
to the solution of problem (1) if « is chosen in (0, W) and solution exists. This iterative
method also can be generalized to the quasi-nonexpansive mapping [14], demicontractive
operators [15] and finite many directed operators [16].

But in algorithm (4), it is difficult to calculate the norm of A and the step size ~y
depends on ||A||, that is why Cui and Wang [17] proposed the following variable step size in
order to avoid calculating ||A||:

e _ U= S)aut?
[A=(I — S)Apk|>”

It is easy to see that the above step selection do not need prior information about the

|A|. In 2017, Wang [18] proposed a new iterative algorithm to solve problem (1) of directed
operators as follows:

P = b — R[] - )+ AT(I - T)ARM], ke, (5)
where the step size is set as

kI =S)p¥|? + I — T)Au*|
(I —S)pk + A*(I — T)Auk|2”

where {7%} is an iterative sequence with self-adaptive step size. Further, this iteration

(6)

scheme converges weakly.

The inertial method has been successfully used to solve various optimization problems
from applied sciences [20, 21], which was first introduced in [19] and also be applied to solve
the split feasibility problem [22; 23]. Extending the inertial method to the split common fixed
point problem is natural because inertial method is really speed up the original algorithm’s
convergence. Following this research direction, Cui et al. [24] improved algorithm (4) as
following form:

Pt =S(p* + TFAT(T — I)Ap*
where 0 < 0% < § < 1, 7% is defined as in (6). Note that 0¥ and 6% (u* — p*=1) are called
inertial parameter and inertial term, respectively.

{p'“ = pF 0 (=

On the basis of the above work, we introduce an accelerated iterative algorithm to
solve problem (1) on demicontractive operators in Hilbert spaces. Our algorithm replaces
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self-adaptive step size {7¥} with a positive real numbers sequence {6*} in algorithms (5),
and then combining (5) with inertial iterative method and Mann type methods [25, 26, 27].

This article is organized as following: we review some basic knowledge for further use
in Section 2. Section 3 introduces an accelerated iterative algorithm and obtained the strong
convergence theorem, then we generalize our algorithm to solve split feasibility problem in
Corollary 3.1. In Section 4, we utilize our results to study the split variational inequality
problem in Hilbert spaces, and compare the convergence speed of our algorithm with the
algorithm of Wang by a numerical example in section 5.

2. Preliminaries

We introduce some definitions and lemmas for further use in this section. In this
article, let H is a Hilbert space, (-,-) denotes the inner product and || - || stands for the
induced norm and C be a nonempty closed convex subset of H, I denotes the identity
operator on H. The sequence u* weak convergence to wt is denoted by u* — w* and strong
convergence to w' is denoted by u* — w*, and denote the fixed point sets of S and T by
Fix(S) and Fix(T), respectively.

Definition 2.1. Let T: H — H be an operator and Fix(T) # @, then
1. The operator T is said nonexpansive if
[Tw? — Tw|| < |t — wl|, Vw!, W' € H.
2. The operator T is said quasi-nonexpansive if
[Twt — Wl < |Jwt — W], Yw* € C, w € Fix(T).
3. The operator T is said strictly pseudo-contractive if 38 € [0, 1) satisfy
[Tw? — Twh||? < |lwt — w||? + Bllwt — Twt — (W — Tw?)|?, Y, wl € H.
4. The operator T is said demicontractive if 38 € (0, 1) satisfy
| Twt — wh|? < |lwt — wl||? + Bljwt — Twt||?, Vw! € H, w' € Fix(T).
or

1—
(W — Twh, wt —wl) > Tﬁﬂwi — TuwH||2. (7)

Definition 2.2. Let inner product {(¢1, ¢2) = ¢p1¢2, and norm || - ||, for all ¢1,¢ps € H and
¢ €(0,1), we have

L |l¢1 + d2lI* = |1 ]1* + [|p2ll® + 2(¢1, d2) < [|@1]|* + 2(2, b1 + P2);
2. Jlsgr + (1 = 9)gal® =<llorll® + (1 = o) llpall* = s(1 = ) llp1 — pal|>.

Definition 2.3. For each point w* € H, Pcw! denotes a unique nearest point in C, such
that

|w — Pew?|| = inf{|jw? — ' : w'eC}.
Pc is a metric projection from H to C and Pg is nonexpansive.

Lemma 2.1 ([28]). For all w# € H and w' € C, we have

wl = Pewt & (Wt —wh wl v >0, Wi ecC
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Lemma 2.2 ([28]). Let T : H — H be a nonlinear operator. For every sequence {z*} in H,
I — T is demiclosed at zero if following expression holds:

pF — ot and (I —T)p* = 0= ot € Fix(T).

Lemma 2.3 ([29]). Let {g*} be a sequence of nonnegative real numbers such that
gL < (1= BR)gE + BRbE.

for all k > 0, where {3*} C (0,1) and {b*} is a sequence such that

1. Y02, BF = oo
2. limsup,,_, ., b* <0.

Then limg_, g’C =0.

3. Main results

We design the following iterative scheme to solve the approximate solution of problem

Algorithm 3.1 For p° € Hy, the sequence {u*} is defined as follows:

pk _ Mk 4 ek('uk _ Mk_l)
uf = pP = *[(I = 8)p* + A*(I - T)Ap"| (®)
PR = (1= ok = Rk kb,

where {#¥} C (0,1),v* C (c¢,d) C (0,1 — *) and {B*} C (0,1), {6*} is a positive real
numbers sequence, satisfying the following conditions:

kll)rgoﬁk = 07I§:16k = o0, i(sk = 00, i((sk)Q < 00.

k=0 k=0

Theorem 3.1. Let H; and Hy be two real Hilbert spaces with its inner product (-,-) and
norm ||-||, linear bounded operator is denoted by A: H; — Hy, S: H; — H; and T: Hy — Hy
are two demicontractive mappings and demiclosed at zero, limy_, o g—i | —pk=1|| =0, #
0.

Then the sequence {u*} converges strongly to a point w* € I'y, which is generated by
Algorithm 3.1, where ||w¥|| = min{||w'|| : 0T € T';}.

Proof. We will prove the statement in three steps.
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Step 1. We prove that {u*}, {u*},{p*} are bounded. Let w* € I';. From (7) and (8),
we have

[u* = wH|* = (" —wt = 6*[(T = S)p* + A*(I — T)Ap"]|?

= [lp" = P+ (8°)?)I(1 = S)p" + A* (I = T)AP"||?

—20((1 = S)p* + A*(I = T)Ap", p* — )

= [lp" = wH® + (6%)2)1(1 = S)p* + A (I — T)Ap"|?

— 268 (I —S)p*, p* — wh) — 267 ((I — T)Ap*, ApF — Aw?)
<" = 12+ ()T = S)p* + A* (1 = T)Ap"|1?

—2h LY b — 82 — 24 (T - A

< lp* = 12+ 208")2(II(T = S)p*|I? + A (T — T)Ap"|?]
= 8" [(1 = a)[lp* = Sp™|I> + (1 = w | (T = T)AP"|I?].

Since Y pe 0% =00, S-pe1(0%)? < oo, if wt solves problem (1), then w = Swt, (I —

T)Aw? = 0, it is obvious that [|w? — Sw + A*(I — T)Aw*|| = 0 and a, u € [0,1). Hence, we
have

2(6%)°[I1Z = S)p"|I* + |A*(I — T)AP"[?] = 0
and
(L = a)llp® = Sp™[I* + (1 = Wl — T)AP"|*] = 0.
Hence, we deduce that
lu® = wH|* < flo" - wH2.
Next, by applying the triangle inequality and the definition of p¥, we have
19" = @l = |u* + 0% (1" — 1) — |
ok
< [ln* = w| + 5'“@\“/“ —

Since 0% € (0,1), for all k > 1, it follows from limg_, g—’;Huk — =Y = 0 that exists My >0
such that & | — P~ < My, and we have

&
lu? = wH| < [lp" — | < |li® — wi| + B*M. 9)
Therefore, we have
I =Wl = [[(1 = v = BP)ut + vk — o
=11 = v* = B (" — o) + P (Ut —wh) = BR (10)

< = = B (= wh) + 08 (W — wh)| + Bl



8 Lan Yang, Li-jun Zhu, Mihai Postolache

Now, we analyse (1 —v* — 8%)(u* — w¥) + ¥ (u* — w?). Note that
1L =% = B5)(® = w¥) + vF (" = )|
= (1= = B2|Iu® — wH* + ()|l — wi?
+2(1 — vk — YRk — Wt U — W)
< (1 —=vF = B2 — w4 ()2 — W)

(11)
+2(1 = vF = BNt = wH||uf — W
< (1 =07 = B2l — w2+ (F)?lu — wh?
+ (=" = (| = )P+t - )
< (=P =851 = B * = wH? + (1= BF)P = w2,

According to (9) and (11), we obtain

(1= vF = B5) (" = wh) + 08 (W* = wh)|?

< (1 =vF =851 = BY)* = P+ (1= B (It = | + B M)
(1= v* =M1 =85 " = + (1= 5" |p” - wh)?

2(1 = BE B I® — WMy + (8%)° ME
(1-
[

IN

IN +

B2t — w4+ 2(1 — B)B* |l — wi| My + (8%)2 M3
(1= BY)[lu* = wt|l + 852 ).

Therefore, we have

11— % = B (" = w¥) + 08 (W = wh)| < (1= B)|Ip* — wi| + " M. (12)
Combining (10) and (12), we get
4 = < (1= B5)Iu* — Wil + B M+ B*|lwt|

= (1= BM)Ie* = | + B (My + [|wi])
< max{||u* — W], My + [|w?]|}

IA

< max{||u” — wi|, My + [lw*]}

Thus {¢*} is bounded, {p*} and {u*} are also bounded.
Step 2. Prove the following inequality holds:

gt < (1= 859"+ BhvE,

where we define ¢* := ||u* — w*|? and

ok _
= @Iluk — gl = B) My
2| — ot — 4 20t ot ),
Indeed, we have

PEHL = (1= Rk g Rk gk,
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Let t¥ = (1 — v®)u* 4+ v*u* then we have

18* = wH® = [|(1 = ") + it — W
= [[(1 =) (" = ) + 07 (" = b))
= (1=t = WP+ (5l — Wt
VR = ) (uF — Wt ub — wh)
1= )2l = wH? + (F)?Ju® = wt|f?

(
+2
<(
28 (1 —vF)|| " — whf[|lu® — W
(
(
(

(13)

L= 05| — w2 + (F)? [l — wt?
=) (IR” = WPl - wF)?)
L e e

< (1= vM)lp® = W + ¥l p* — wh?

On the other hand, we have

0" — wH|? = |k + 6% (u* — 1) — w2
= ||u* — WH|? 4+ (0%)2|uF — 1B 4 208 (uF — W b — k)
<l — WP (08| = P 205 | — W]t — ) (14)
<k = HIP 4 0%k — BRI — T+ 20k = W)
<k = WP 4 0%k — kM

for some My > 0, combining (13) and (14), we have

65 = 2 < (1= F) = WF 2 o — P+ RO — 0y

_ (15)
< [l = WHIP 4 0% p” — T My

Since th = (1 — v*)p® + vFuk, we have p* — t* = v*(u* — u¥). Therefore, it follows that

Pkt = ¢k gk
= (1= g9t = Mt 1Y)
= (L= A — Rk —u®)

This implies that

A — Wt = 11— B4)EE — BE (= ) — et
— (1 = B5)(tF — wh) — [BH (= ) + Bt
< (1= BE2#% — Wt — 2(8R A (b — k) + Brut T 0ty (16)
< (1-BH)¢* -t
28 — [t — Y 4 280 o wf — A
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Thus, from (15) and (16), it follows that
I+ = P < (1= B8)Ii® = wHI? + (1= B5)8% || — u* | M2

+ 25ka||Mk _ ukHHwi _ uk+1” + 2/8k<wj;7w1‘ _ Mk+1

k
= (1 Bk — | +ﬂ’“[%llu’“ I B4 My

+ 208 |p? — aF|fflwt — P+ 200f, o - )

Step 3. Prove {1} converges strongly to w?.

Since {u*} and {p*} are bounded. According to Lemma 2.3, we next show that

lim supy,_, o, b¥ < 0.

Let 2% = pF — SpF + A*(I — T)Ap*, Vo, u € [0,1), w € Ty, from (7), we have

(2%, pF —wh) = (0" —Sp* + A* (I = T)Ap*, p* — w¥)
= (0" = Sp*, " — W) + (I = T)Ap*, Ap* — Awh)

l1-a 1—1p
> ——llo" = Sp"[* + =T = T)AL"|?
l-—a (1= Al k|2
= 0" = Sp*|I” + 11 — T)Ap"|
2 2/|A |12
I—a g ez, (=) s k2
> -S A*(I —TA
> 50 S e AT - Tt
min{l — o, 1 —p} k2 k| 2
-S A*(I —TA
el T (I~ SoH I+ 147 = TR )
min{l —a,1—pu} . & k * k(2
—Sp”* A*(I —TA
e T e = S + 17 (= T )
min{l —a,1—pu}, 4 & X k(2
-S A*(I —-TA
~ min{l — o, 1 —pu} e
~ 4max{1, [|A]2}
= r ¥

where xk = 7112;;{_1@”@; f .
According to (8) and (17),we have
lu* — ) = |p* — wt — 6%2F)?

= [|p* = wH|? = 207", pF —wh) + (6%)%127)1?

< lp% = w1 = 207|257 + (6%)% 12712
From (18) and (9), since {¢*} is bounded, we obtain

207 k||2"]17 < [l — wH]? = flut — wH|? + (67)2)|2F 2
<l = wH® = flu* = wH|? + (6%)2 M.

where M3z = sup{||2*||?}.

An induction induces that

26 36K < 1 — W) + My 3 (%)% < oc,
k=0 k=0

(17)

(18)
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which implies that

lim inf ||2¥]| = 0
k—o00
due to Y57, 6F = 00. So
lim 2% = lim [p* —Sp* + A*(I - T)Ap"|| = 0. (19)
k— o0 k— o0
Observe that
1—

«a 1—p
lo" = Sp"(1* + —= (I = T)A"|?

2
< (pF = SpF, pF —wh) + (A*(I - T)Ap", p* — oF) (20)
= (" = Sp* + A*(I - T)Ap", p* — )
< |lp* = Sp* + A*(I = T)Ap"||[|* — |
According to (19) and (20),we have
lim [|p* —Sp"*|| =0, lim ||(I = T)Ap"(| =0 (21)
k—o0 k—o0
From limg_ 0 g—iﬂuk — pF=1|| = 0 and (8), we have
k_ ok ki, k _ k=1 RO e ke
" = p"l = 0" [|n" — " =5 @H# - =0 (22)
and according to (8), (21) and (22), we get
lu® — ) = 1p" — = 8F[(1 = S)p* + A*(1 = T)APM]]. (23)
< lp* = 11+ 8 I = S)p™ || + 1L = T)AL"(l) — 0
Therefore,we have
e e [ e T N e |
(24)

= [[vF(u? = p*) = BE | < VRt = i)+ BRI = 0
There exists a subsequence {z*7} of {u*} such that p* — w' and

lim sup(w#,wt — %) = lim (W wt — pM) = (WF Wt — W)

k—oo Jj—o0
Further, from (22), we have {p*} — wf. Since A be a linear bounded operator, we have
Ap" — Aw', and S and T are demiclosed at zero. Combine (21), we have w' € Fix(S) and
Aw' € Fix(T), which implies that wf € T';.

In addition, it follows from Theorem 3.1 that w € I'y, where ||w#|| = min{[jwT| :
wh ey}, ie., |0 - w| = min{]|0 — w'|| : w" € T1}. So according to Definition 2.3, we have
w¥ = Pr,0, from characterization of Pr, that

lim sup(wh, wt — p¥) = (W wt —wl) <0

k—o0

FHL i) — 0, we get

Since ||p
lim sup(w?,w! — p**1) <0 (25)

k—o0

Therefore, combine (23) and (24) with (25), we have limsup,,_, ., b* < 0. According

k+1

to Lemma 2.3, we get limy_, oo ||p* ' —w?||2 = 0,4.e., u¥ — w. This completes the proof. [
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Now, we solve the problem (2) with the above result.
Algorithm 3.2 For p° € Hy, the sequence {u*} is defined as follows:
pk _ #k +0k(uk _Mkfl)
uP = pF —6M[(I — Pe)p® + A*(I — Po)Ap"]
PFFE = (1 — ok — BEYuE 4 Ry,
where {6%} C (0,1),v* C (c,d) C (0,1 — B*) and {B¥} C (0,1), {6*} is a positive real
numbers sequence, they satisfying the following conditions:
(o) oo o0
i k_ k_ k_ kN2 .
Jim 5 0,;6 ”’,;f o0, ;Ow )? < o0

Corollary 3.1. Let H; and Hs be real Hilbert spaces with inner product (-,-) and norm
|| - ||, linear bounded operator is denoted by A: Hy — Hy, C C H; and Q C H, are
two closed convex subsets, limg_, s Z—Zﬂuk — pu*=1| = 0, and T'; # (. Then the sequence
{u*} converges strongly to a point w* € 'y, which is generated by Algorithm 3.2, where
J || = min{|lw! | s wi € T},

4. Application to split variational inequality problem

We apply Algorithm 3.1 to solve split variational inequality problem in this section.
Let C C H; and Q C Hy be two nonempty closed convex subsets, H; and Hy be two Hilbert
spaces, A : H; — Hy is a linear bounded operator.
Then the variational inequality problem (VIP) is to find a point w* such that
(Awr, Wl —wh) >0,Ww' € C.
We use VI(C, A) to denote the solution set of VIP.

Definition 4.1. Given nonlinear operators f : H; — H; and g : Hy — Hs. In 2012, Censor
[30] studied the split variational inequality problem (SVIP), which is to find a point w* such
that
(fwh,wh —wh) >0,Vwl e C.
and
(g(Awh), vt — Awh) > 0,V € Q.
The solution set of SVIP is denoted by I's, i.e.,

I's = {w! e VI(C, f), Awt € VI(Q,9)}

Next, we introduce following iterative algorithm to solve SVIP:
Algorithm 4.1 For p° € Hy, the sequence {u*} is defined as follows:
pk _ ’uk + ok('uk _ ‘ukfl)
uf = pb = 6*[(I = S)p* + A*(I — T)Ap"|
PFFE = (1= ok — RV 4 Rk
where S = Pc(I — \f),T = Po(I — \g),{0%} € (0,1),v* C (c,d) C (0,1 — B*) and {B*} C

(0,1),{6*} is a positive real numbers sequence, they satisfying the following conditions:

oo

kli_)m gk =0, iﬁk = 00, iék = 00, Z(ék)2 < 00.
k=1 k=0

k=0
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Theorem 4.1. Let S: H; — H; and T: Hy; — H; be two demicontractive mappings,
limg o0 & [|i* — pF Y| = 0,5 # 0.

Then the sequence {u*} converges strongly to a point w* € I', which is generated by
Algorithm 4.1, where ||w¥|| = min{||w'|| : w! € T'5}.

5. Numerical Example

Now, we compare the convergence speed of our Algorithm 3.1 with the algorithm of
Wang [18] by a numerical example. All the codes were written in Matlab (R2021b) and
run on PC-202310311101 with 11th Gen Intel(R) Core(TM) i5-11400 @ 2.60GHz 2.59 GHz,
RAM 8.00GB.

Theorem 5.1. [18]If limy_,oc % = 0 and > po, B¥ = oo, the sequence {u*} is generated
by following algorithm:

Pt = BRu+ (1= %) [k = 6" (" — Spk) + A*(1 = T)Au")],

where

st - I = S)ub|? + (1 = TYApH|
(I —S)uk + A*(I — T)Ap*|2”

Then {u*} converges strongly to an element w € T'y,where w! = Pr, (u).

Example 5.1. [31]Let H = R, inner product {(u, p) = pp, and norm |- |. Let u € C,C =
[0,400) and Sy = p + ﬁ — 1. Then Fiz(S) = 3, and
— S —Sp) = (n—p,p+ —p- <l = oll?
(= p,Su—Sp) = (u—p,p i erl> [ = pll
for all u,p € C,S is a demicontractive operator, so Ty = pu + ﬁ - 1.

Let p € R,Ap = %u,k > 1,0k = %,ﬂk = %,9’“ = %, Obviously, A* = A, Fix(S) = 3
and Fix(T) = 1. Next, we rewrite our Algorithm 3.1 and Wang Algorithm as follows:

7 1 1 1
k+1 ol ANk Ak Lk k-1
P =g 1) +8[u gt —ut)
1 By Lk — ph=1) =3 1 pk 4 Lk — gkl =3 (26)
_lgk I 3\ — 1 1lp s\ — 1
8 \mF+ gk —ph= ) +1 3 pk + 3 (uh — ph1) +6
. 1, + 7 (Mk 3 6 -3) 3P+t -3) >
8 8 (Apk +19)(pF +1)  (4pk +19)(uF +6)
We show our calculation results in Table 1 and Figure 1.
TABLE 1. The numerical results of Example 5.1
Cases Initial values our Iter CPU(s) Wang Iter CPU(s)
1 xo = 0.1567, 21 = 4.8530 6 0.0004 13 0.0006

2 o = 4.5054, 1 = 0.8382 4 0.0001 13 0.0004
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5 T T T T T T
—0— Our algorithm

45} b
/ —%— Wang algorithm
4r 1

The number of iter

(A) Casel

8 T T T T T T

f —0— Our algorithm
7r —— Wang algorithm |

Error
N
T
1

The number of iter

(B) Case2

FIGURE 1. The calculation results of Example 5.1

We can see from Table 1 and Figures 1 that the convergence speed of our Algorithm
3.1 may be faster than the algorithm of Wang by comparing the iteration steps and CPU
times.
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