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AN ACCELERATED MANN-TYPE METHOD FOR SPLIT COMMON

FIXED POINT PROBLEM IN HILBERT SPACES

Lan Yang1, Li-jun Zhu2, Mihai Postolache3

In this paper, we introduce a new method to solve split common fixed point

problem of demicontractive operators in Hilbert spaces, which is based on the Wang

method, inertial method and Mann method. Strong convergence result of the suggested

algorithm is proved, and our results are utilized to study split feasibility problem and split

variational inequality problem in Hilbert spaces. Finally, we compare the convergence

speed of our algorithm with the Wang algorithm by a numerical example.
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1. Introduction

In 2009, Censor and Segal [1] first introduced the split common fixed point problem

(SCFP), motivated by its applications to signal processing and image restoration. In time,

this idea stimulated many authors to consider this direction (see [2–6]). More specific, let

H1 and H2 be two real Hilbert spaces. Then SCFP is to find a point ω‡ satisfying:

ω‡ ∈ Fix(S) such that Aω‡ ∈ Fix(T). (1)

where Fix(S) and Fix(T) denote the fixed point sets of S : H1 → H1 and T : H2 → H2,

respectively, A : H1 → H2 be a linear bounded operator. We use Γ1 to denote the solution

set of problem (1) , i.e.,

Γ1 := {ω‡ ∈ H1 : ω‡ ∈ Fix(S) and Aω‡ ∈ Fix(T)}.

The problem (1) reduces to the split feasibility problem (SFP) if S and T are both

metric projection operators. The SFP was introduced by Censor and Elfving [7] in 1994,

and has been received a lot of attention (see [8–12]) because it has been used successfully

in signal processing [13]. We underline that SFP can be expressed as: find a point ω‡ such

that

ω‡ ∈ C and Aω‡ ∈ Q. (2)
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where A : C → Q be a linear bounded operator, C ⊂ H1 and Q ⊂ H2 are two nonempty

closed convex subsets. We use Γ2 to denote the solution set of problem (2), i.e.,

Γ2 := {ω‡ ∈ C and Aω‡ ∈ Q}.

Byrne [8] proposed the well-known CQ-algorithm to solve the problem (2), which is

formulated as follows:

µk+1 = PC(µ
k − γA∗(I − PQ)Aµk. (3)

where PC and PQ are the metric projection, γ ∈ (0, 2
λ ) and λ denote the spectral radius of

the operator A∗A.
In order to solve problem (1), Censor and Segal [1] inspired by the algorithms (3)

proposed the following iterative method:

µk+1 = S(µk + γA∗(T− I)Aµk, k ∈ N. (4)

where γ is a correctly selected step size and A∗ denote the adjoint of A, S and T are two

directed operators. It is well-known that a sequence generated by (4) weak convergences

to the solution of problem (1) if γ is chosen in (0, 2
∥A∥2 ) and solution exists. This iterative

method also can be generalized to the quasi-nonexpansive mapping [14], demicontractive

operators [15] and finite many directed operators [16].

But in algorithm (4), it is difficult to calculate the norm of A and the step size γ

depends on ∥A∥, that is why Cui and Wang [17] proposed the following variable step size in

order to avoid calculating ∥A∥:

τk =
∥(I − S)Aµk∥2

∥A∗(I − S)Aµk∥2
.

It is easy to see that the above step selection do not need prior information about the

∥A∥. In 2017, Wang [18] proposed a new iterative algorithm to solve problem (1) of directed

operators as follows:

µk+1 = µk − τk[(I − S)µk + A∗(I − T)Aµk], k ∈ N. (5)

where the step size is set as

τk =
∥(I − S)µk∥2 + ∥(I − T)Aµk∥2

∥(I − S)µk + A∗(I − T)Aµk∥2
. (6)

where {τk} is an iterative sequence with self-adaptive step size. Further, this iteration

scheme converges weakly.

The inertial method has been successfully used to solve various optimization problems

from applied sciences [20, 21], which was first introduced in [19] and also be applied to solve

the split feasibility problem [22, 23]. Extending the inertial method to the split common fixed

point problem is natural because inertial method is really speed up the original algorithm’s

convergence. Following this research direction, Cui et al. [24] improved algorithm (4) as

following form: {
ρk = µk + θk(µk − µk−1)

µk+1 = S(ρk + τkA∗(T− I)Aρk

where 0 ≤ θk < θ < 1, τk is defined as in (6). Note that θk and θk(µk − µk−1) are called

inertial parameter and inertial term, respectively.

On the basis of the above work, we introduce an accelerated iterative algorithm to

solve problem (1) on demicontractive operators in Hilbert spaces. Our algorithm replaces
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self-adaptive step size {τk} with a positive real numbers sequence {δk} in algorithms (5),

and then combining (5) with inertial iterative method and Mann type methods [25, 26, 27].

This article is organized as following: we review some basic knowledge for further use

in Section 2. Section 3 introduces an accelerated iterative algorithm and obtained the strong

convergence theorem, then we generalize our algorithm to solve split feasibility problem in

Corollary 3.1. In Section 4, we utilize our results to study the split variational inequality

problem in Hilbert spaces, and compare the convergence speed of our algorithm with the

algorithm of Wang by a numerical example in section 5.

2. Preliminaries

We introduce some definitions and lemmas for further use in this section. In this

article, let H is a Hilbert space, ⟨·, ·⟩ denotes the inner product and ∥ · ∥ stands for the

induced norm and C be a nonempty closed convex subset of H, I denotes the identity

operator on H. The sequence µk weak convergence to ω‡ is denoted by µk ⇀ ω‡ and strong

convergence to ω‡ is denoted by µk → ω‡, and denote the fixed point sets of S and T by

Fix(S) and Fix(T), respectively.

Definition 2.1. Let T : H → H be an operator and Fix(T) ̸= ∅, then
1. The operator T is said nonexpansive if

∥Tω‡ − Tω†∥ ≤ ∥ω‡ − ω†∥, ∀ω‡, ω† ∈ H.

2. The operator T is said quasi-nonexpansive if

∥Tω‡ − ω†∥ ≤ ∥ω‡ − ω†∥, ∀ω‡ ∈ C, ω† ∈ Fix(T).

3. The operator T is said strictly pseudo-contractive if ∃β ∈ [0, 1) satisfy

∥Tω‡ − Tω†∥2 ≤ ∥ω‡ − ω†∥2 + β∥ω‡ − Tω‡ − (ω† − Tω†)∥2, ∀ω‡, ω† ∈ H.

4. The operator T is said demicontractive if ∃β ∈ (0, 1) satisfy

∥Tω‡ − ω†∥2 ≤ ∥ω‡ − ω†∥2 + β∥ω‡ − Tω‡∥2, ∀ω‡ ∈ H, ω† ∈ Fix(T).

or

⟨ω‡ − Tω‡, ω‡ − ω†⟩ ≥ 1− β

2
∥ω‡ − Tω‡∥2. (7)

Definition 2.2. Let inner product ⟨ϕ1, ϕ2⟩ = ϕ1ϕ2, and norm ∥ · ∥, for all ϕ1, ϕ2 ∈ H and

ς ∈ (0, 1), we have

1. ∥ϕ1 + ϕ2∥2 = ∥ϕ1∥2 + ∥ϕ2∥2 + 2⟨ϕ1, ϕ2⟩ ≤ ∥ϕ1∥2 + 2⟨ϕ2, ϕ1 + ϕ2⟩;
2. ∥ςϕ1 + (1− ς)ϕ2∥2 = ς∥ϕ1∥2 + (1− ς)∥ϕ2∥2 − ς(1− ς)∥ϕ1 − ϕ2∥2.

Definition 2.3. For each point ω‡ ∈ H, PCω
‡ denotes a unique nearest point in C, such

that

∥ω‡ − PCω
‡∥ = inf{∥ω‡ − ω†∥ : ω† ∈ C}.

PC is a metric projection from H to C and PC is nonexpansive.

Lemma 2.1 ([28]). For all ω‡ ∈ H and ω† ∈ C, we have

ω† = PCω
‡ ⇔ ⟨ω‡ − ω†, ω† − ν†⟩ ≥ 0, ∀ν† ∈ C
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Lemma 2.2 ([28]). Let T : H → H be a nonlinear operator. For every sequence {µk} in H,

I − T is demiclosed at zero if following expression holds:

µk ⇀ ω‡ and (I − T)µk → 0 ⇒ ω‡ ∈ Fix(T).

Lemma 2.3 ([29]). Let {gk} be a sequence of nonnegative real numbers such that

gk+1 ≤ (1− βk)gk + βkbk.

for all k ≥ 0, where {βk} ⊂ (0, 1) and {bk} is a sequence such that

1.
∑∞

k=0 β
k = ∞;

2. lim supk→∞ bk ≤ 0.

Then limk→∞ gk = 0.

3. Main results

We design the following iterative scheme to solve the approximate solution of problem

(1).

Algorithm 3.1 For µ0 ∈ H1, the sequence {µk} is defined as follows:


ρk = µk + θk(µk − µk−1)

uk = ρk − δk[(I − S)ρk + A∗(I − T)Aρk]

µk+1 = (1− νk − βk)µk + νkuk,

(8)

where {θk} ⊂ (0, 1), νk ⊂ (c, d) ⊂ (0, 1 − βk) and {βk} ⊂ (0, 1), {δk} is a positive real

numbers sequence, satisfying the following conditions:

lim
k→∞

βk = 0,

∞∑
k=1

βk = ∞,

∞∑
k=0

δk = ∞,

∞∑
k=0

(δk)2 < ∞.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces with its inner product ⟨·, ·⟩ and
norm ∥·∥, linear bounded operator is denoted by A : H1 → H2, S : H1 → H1 and T : H2 → H2

are two demicontractive mappings and demiclosed at zero, limk→∞
θk

βk ∥µk−µk−1∥ = 0,Γ1 ̸=
0.

Then the sequence {µk} converges strongly to a point ω‡ ∈ Γ1, which is generated by

Algorithm 3.1, where ∥ω‡∥ = min{∥ω†∥ : ω† ∈ Γ1}.

Proof. We will prove the statement in three steps.
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Step 1. We prove that {µk}, {uk}, {ρk} are bounded. Let ω‡ ∈ Γ1. From (7) and (8),

we have

∥uk − ω‡∥2 = ∥ρk − ω‡ − δk[(I − S)ρk + A∗(I − T)Aρk]∥2

= ∥ρk − ω‡∥2 + (δk)2∥(I − S)ρk + A∗(I − T)Aρk∥2

− 2δk⟨(I − S)ρk + A∗(I − T)Aρk, ρk − ω‡⟩

= ∥ρk − ω‡∥2 + (δk)2∥(I − S)ρk + A∗(I − T)Aρk∥2

− 2δk⟨(I − S)ρk, ρk − ω‡⟩ − 2δk⟨(I − T)Aρk,Aρk − Aω‡⟩

≤ ∥ρk − ω‡∥2 + (δk)2∥(I − S)ρk + A∗(I − T)Aρk∥2

− 2δk
1− α

2
∥ρk − Sρk∥2 − 2δk

1− µ

2
∥(I − T)Aρk∥2

≤ ∥ρk − ω‡∥2 + 2(δk)2[∥(I − S)ρk∥2 + ∥A∗(I − T)Aρk∥2]

− δk[(1− α)∥ρk − Sρk∥2 + (1− µ)∥(I − T)Aρk∥2].

Since
∑∞

k=0 δ
k = ∞,

∑∞
k=0(δ

k)2 < ∞, if ω‡ solves problem (1), then ω‡ = Sω‡, (I −
T)Aω‡ = 0, it is obvious that ∥ω‡ − Sω‡ + A∗(I − T)Aω‡∥ = 0 and α, µ ∈ [0, 1). Hence, we

have

2(δk)2[∥(I − S)ρk∥2 + ∥A∗(I − T)Aρk∥2] → 0

and

δk[(1− α)∥ρk − Sρk∥2 + (1− µ)∥(I − T)Aρk∥2] ≥ 0.

Hence, we deduce that

∥uk − ω‡∥2 ≤ ∥ρk − ω‡∥2.

Next, by applying the triangle inequality and the definition of ρk, we have

∥ρk − ω‡∥ = ∥µk + θk(µk − µk−1)− ω‡∥

≤ ∥µk − ω‡∥+ βk θ
k

βk
∥µk − µk−1∥.

Since θk ∈ (0, 1), for all k ≥ 1, it follows from limk→∞
θk

βk ∥µk−µk−1∥ = 0 that exists M1 ≥ 0

such that θk

βk ∥µk − µk−1∥ ≤ M1, and we have

∥uk − ω‡∥ ≤ ∥ρk − ω‡∥ ≤ ∥µk − ω‡∥+ βkM1. (9)

Therefore, we have

∥µk+1 − ω‡∥ = ∥(1− νk − βk)µk + νkuk − ω‡∥

= ∥(1− νk − βk)(µk − ω‡) + νk(uk − ω‡)− βkω‡∥

≤ ∥(1− νk − βk)(µk − ω‡) + νk(uk − ω‡)∥+ βk∥ω‡∥.

(10)
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Now, we analyse (1− νk − βk)(µk − ω‡) + νk(uk − ω‡). Note that

∥(1− νk − βk)(µk − ω‡) + νk(uk − ω‡)∥2

= (1− νk − βk)2∥µk − ω‡∥2 + (νk)2∥uk − ω‡∥2

+ 2(1− νk − βk)νk⟨µk − ω‡, uk − ω‡⟩

≤ (1− νk − βk)2∥µk − ω‡∥2 + (νk)2∥uk − ω‡∥2

+ 2(1− νk − βk)νk∥µk − ω‡∥∥uk − ω‡∥

≤ (1− νk − βk)2∥µk − ω‡∥2 + (νk)2∥uk − ω‡∥2

+ (1− νk − βk)νk(∥µk − ω‡∥2 + ∥uk − ω‡∥2)

≤ (1− νk − βk)(1− βk)∥µk − ω‡∥2 + (1− βk)νk∥uk − ω‡∥2.

(11)

According to (9) and (11), we obtain

∥(1− νk − βk)(µk − ω‡) + νk(uk − ω‡)∥2

≤ (1− νk − βk)(1− βk)∥µk − ω‡∥2 + (1− βk)νk(∥µk − ω‡∥+ βkM1)
2

≤ (1− νk − βk)(1− βk)∥µk − ω‡∥2 + (1− βk)νk∥µk − ω‡∥2

+ 2(1− βk)νkβk∥µk − ω‡∥M1 + (βk)2M2
1

≤ (1− βk)2∥µk − ω‡∥2 + 2(1− βk)βk∥µk − ω‡∥M1 + (βk)2M2
1

= [(1− βk)∥µk − ω‡∥+ βkM1]
2.

Therefore, we have

∥(1− νk − βk)(µk − ω‡) + νk(uk − ω‡)∥ ≤ (1− βk)∥µk − ω‡∥+ βkM1. (12)

Combining (10) and (12), we get

∥µk+1 − ω‡∥ ≤ (1− βk)∥µk − ω‡∥+ βkM1 + βk∥ω‡∥

= (1− βk)∥µk − ω‡∥+ βk(M1 + ∥ω‡∥)

≤ max{∥µk − ω‡∥,M1 + ∥ω‡∥}
≤ · · ·

≤ max{∥µ0 − ω‡∥,M1 + ∥ω‡∥}

Thus {µk} is bounded, {ρk} and {uk} are also bounded.

Step 2. Prove the following inequality holds:

gk+1 ≤ (1− βk)gk + βkbk,

where we define gk := ∥µk − ω‡∥2 and

bk : =
θk

βk
∥µk − µk−1∥(1− βk)M2

+ 2νk∥µk − uk∥∥ω‡ − µk+1∥+ 2⟨ω‡, ω‡ − µk+1⟩.

Indeed, we have

µk+1 = (1− νk)µk + νkuk − βkµk.
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Let tk = (1− νk)µk + νkuk, then we have

∥tk − ω‡∥2 = ∥(1− νk)µk + νkuk − ω‡∥2

= ∥(1− νk)(µk − ω‡) + νk(uk − ω‡)∥2

= (1− νk)2∥µk − ω‡∥2 + (νk)2∥uk − ω‡∥2

+ 2νk(1− νk)⟨µk − ω‡, uk − ω‡⟩

≤ (1− νk)2∥µk − ω‡∥2 + (νk)2∥uk − ω‡∥2

+ 2νk(1− νk)∥µk − ω‡∥∥uk − ω‡∥

≤ (1− νk)2∥µk − ω‡∥2 + (νk)2∥uk − ω‡∥2

+ νk(1− νk)(∥µk − ω‡∥2 + ∥uk − ω‡∥2)

= (1− νk)∥µk − ω‡∥2 + νk∥uk − ω‡∥2

≤ (1− νk)∥µk − ω‡∥2 + νk∥ρk − ω‡∥2

(13)

On the other hand, we have

∥ρk − ω‡∥2 = ∥µk + θk(µk − µk−1)− ω‡∥2

= ∥µk − ω‡∥2 + (θk)2∥µk − µk−1∥2 + 2θk⟨µk − ω‡, µk − µk−1⟩

≤ ∥µk − ω‡∥2 + (θk)2∥µk − µk−1∥2 + 2θk∥µk − ω‡∥∥µk − µk−1∥

≤ ∥µk − ω‡∥2 + θk∥µk − µk−1∥[θk∥µk − µk−1∥+ 2∥µk − ω‡∥]

≤ ∥µk − ω‡∥2 + θk∥µk − µk−1∥M2

(14)

for some M2 > 0, combining (13) and (14), we have

∥tk − ω‡∥2 ≤ (1− νk)∥µk − ω‡∥2 + νk∥µk − ω‡∥2 + νkθk∥µk − µk−1∥M2

≤ ∥µk − ω‡∥2 + θk∥µk − µk−1∥M2

(15)

Since tk = (1− νk)µk + νkuk, we have µk − tk = νk(µk − uk). Therefore, it follows that

µk+1 = tk − βkµk

= (1− βk)tk − βk(µk − tk)

= (1− βk)tk − βkνk(µk − uk)

This implies that

∥µk+1 − ω‡∥2 = ∥(1− βk)tk − βkνk(µk − uk)− ω‡∥2

= ∥(1− βk)(tk − ω‡)− [βkνk(µk − uk) + βkω‡]∥2

≤ (1− βk)2∥tk − ω‡∥2 − 2⟨βkνk(µk − uk) + βkω‡, µk+1 − ω‡⟩

≤ (1− βk)∥tk − ω‡∥2

+ 2βkνk∥µk − uk∥∥ω‡ − µk+1∥+ 2βk⟨ω‡, ω‡ − µk+1⟩

(16)
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Thus, from (15) and (16), it follows that

∥µk+1 − ω‡∥2 ≤ (1− βk)∥µk − ω‡∥2 + (1− βk)θk∥µk − µk−1∥M2

+ 2βkνk∥µk − uk∥∥ω‡ − µk+1∥+ 2βk⟨ω‡, ω‡ − µk+1⟩

= (1− βk)∥µk − ω‡∥2 + βk[
θk

βk
∥µk − µk−1∥(1− βk)M2

+ 2νk∥µk − uk∥∥ω‡ − µk+1∥+ 2⟨ω‡, ω‡ − µk+1⟩]

Step 3. Prove {µk} converges strongly to ω‡.

Since {µk} and {ρk} are bounded. According to Lemma 2.3, we next show that

lim supk→∞ bk ≤ 0.

Let zk = ρk − Sρk + A∗(I − T)Aρk, ∀α, µ ∈ [0, 1), ω‡ ∈ Γ1, from (7), we have

⟨zk, ρk − ω‡⟩ = ⟨ρk − Sρk + A∗(I − T)Aρk, ρk − ω‡⟩

= ⟨ρk − Sρk, ρk − ω‡⟩+ ⟨(I − T)Aρk,Aρk − Aω‡⟩

≥ 1− α

2
∥ρk − Sρk∥2 + 1− µ

2
∥(I − T)Aρk∥2

=
1− α

2
∥ρk − Sρk∥2 + (1− µ)∥A∥2

2∥A∥2
∥(I − T)Aρk∥2

≥ 1− α

2
∥ρk − Sρk∥2 + (1− µ)

2∥A∥2
∥A∗(I − T)Aρk∥2

≥ min{1− α, 1− µ}
2max{1, ∥A∥2}

(∥ρk − Sρk∥2 + ∥A∗(I − T)Aρk∥2)

≥ min{1− α, 1− µ}
4max{1, ∥A∥2}

(∥ρk − Sρk∥+ ∥A∗(I − T)Aρk∥)2

≥ min{1− α, 1− µ}
4max{1, ∥A∥2}

∥ρk − Sρk + A∗(I − T)Aρk∥2

=
min{1− α, 1− µ}
4max{1, ∥A∥2}

∥zk∥2

= κ∥zk∥2

(17)

where κ = min{1−α,1−µ}
4max{1,∥A∥2} .

According to (8) and (17),we have

∥uk − ω‡∥2 = ∥ρk − ω‡ − δkzk∥2

= ∥ρk − ω‡∥2 − 2δk⟨zk, ρk − ω‡⟩+ (δk)2∥zk∥2

≤ ∥ρk − ω‡∥2 − 2δkκ∥zk∥2 + (δk)2∥zk∥2
(18)

From (18) and (9), since {µk} is bounded, we obtain

2δkκ∥zk∥2 ≤ ∥ρk − ω‡∥2 − ∥uk − ω‡∥2 + (δk)2∥zk∥2

≤ ∥µk − ω‡∥2 − ∥uk − ω‡∥2 + (δk)2M3.

where M3 = sup{∥zk∥2}.
An induction induces that

2κ

∞∑
k=0

δk∥zk∥2 ≤ ∥µ0 − ω‡∥2 +M3

∞∑
k=0

(δk)2 < ∞,
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which implies that

lim
k→∞

inf ∥zk∥ = 0

due to
∑∞

k=0 δ
k = ∞. So

lim
k→∞

∥zk∥ = lim
k→∞

∥ρk − Sρk + A∗(I − T)Aρk∥ = 0. (19)

Observe that
1− α

2
∥ρk − Sρk∥2 + 1− µ

2
∥(I − T)Aρk∥2

≤ ⟨ρk − Sρk, ρk − ω‡⟩+ ⟨A∗(I − T)Aρk, ρk − ω‡⟩

= ⟨ρk − Sρk + A∗(I − T)Aρk, ρk − ω‡⟩

≤ ∥ρk − Sρk + A∗(I − T)Aρk∥∥ρk − ω‡∥

(20)

According to (19) and (20),we have

lim
k→∞

∥ρk − Sρk∥ = 0, lim
k→∞

∥(I − T)Aρk∥ = 0 (21)

From limk→∞
θk

βk ∥µk − µk−1∥ = 0 and (8), we have

∥ρk − µk∥ = θk∥µk − µk−1∥ = βk θ
k

βk
∥µk − µk−1∥ → 0. (22)

and according to (8), (21) and (22), we get

∥uk − µk∥ = ∥ρk − µk − δk[(I − S)ρk + A∗(I − T)Aρk]∥.

≤ ∥ρk − µk∥+ δk[∥(I − S)ρk∥+ ∥(I − T)Aρk∥] → 0
(23)

Therefore,we have

∥µk+1 − µk∥ = ∥(1− νk − βk)µk + νkuk − µk∥

= ∥νk(uk − µk)− βkµk∥ ≤ νk∥uk − µk∥+ βk∥µk∥ → 0
(24)

There exists a subsequence {µkj} of {µk} such that µkj ⇀ ω† and

lim
k→∞

sup⟨ω‡, ω‡ − µk⟩ = lim
j→∞

⟨ω‡, ω‡ − µkj⟩ = ⟨ω‡, ω‡ − ω†⟩

Further, from (22), we have {ρkj} ⇀ ω†. Since A be a linear bounded operator, we have

Aρkj ⇀ Aω†, and S and T are demiclosed at zero. Combine (21), we have ω† ∈ Fix(S) and
Aω† ∈ Fix(T), which implies that ω† ∈ Γ1.

In addition, it follows from Theorem 3.1 that ω‡ ∈ Γ1, where ∥ω‡∥ = min{∥ω†∥ :

ω† ∈ Γ1}, i.e., ∥0− ω‡∥ = min{∥0− ω†∥ : ω† ∈ Γ1}. So according to Definition 2.3, we have

ω‡ = PΓ10, from characterization of PΓ1 that

lim
k→∞

sup⟨ω‡, ω‡ − µk⟩ = ⟨ω‡, ω‡ − ω†⟩ ≤ 0

Since ∥µk+1 − µk∥ → 0, we get

lim
k→∞

sup⟨ω‡, ω‡ − µk+1⟩ ≤ 0 (25)

Therefore, combine (23) and (24) with (25), we have lim supk→∞ bk ≤ 0. According

to Lemma 2.3, we get limk→∞ ∥µk+1−ω‡∥2 = 0, i.e., µk → ω‡. This completes the proof. □
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Now, we solve the problem (2) with the above result.

Algorithm 3.2 For µ0 ∈ H1, the sequence {µk} is defined as follows:
ρk = µk + θk(µk − µk−1)

uk = ρk − δk[(I − PC)ρ
k + A∗(I − PQ)Aρk]

µk+1 = (1− νk − βk)µk + νkuk.

where {θk} ⊂ (0, 1), νk ⊂ (c, d) ⊂ (0, 1 − βk) and {βk} ⊂ (0, 1), {δk} is a positive real

numbers sequence, they satisfying the following conditions:

lim
k→∞

βk = 0,

∞∑
k=1

βk = ∞,

∞∑
k=0

δk = ∞,

∞∑
k=0

(δk)2 < ∞.

Corollary 3.1. Let H1 and H2 be real Hilbert spaces with inner product ⟨·, ·⟩ and norm

∥ · ∥, linear bounded operator is denoted by A : H1 → H2, C ⊂ H1 and Q ⊂ H2 are

two closed convex subsets, limk→∞
θk

βk ∥µk − µk−1∥ = 0, and Γ2 ̸= ∅. Then the sequence

{µk} converges strongly to a point ω‡ ∈ Γ2, which is generated by Algorithm 3.2, where

∥ω‡∥ = min{∥ω†∥ : ω† ∈ Γ2}.

4. Application to split variational inequality problem

We apply Algorithm 3.1 to solve split variational inequality problem in this section.

Let C ⊂ H1 and Q ⊂ H2 be two nonempty closed convex subsets, H1 and H2 be two Hilbert

spaces, A : H1 → H2 is a linear bounded operator.

Then the variational inequality problem (VIP) is to find a point ω‡ such that

⟨Aω‡, ω† − ω‡⟩ ≥ 0,∀ω† ∈ C.

We use V I(C,A) to denote the solution set of VIP.

Definition 4.1. Given nonlinear operators f : H1 → H1 and g : H2 → H2. In 2012, Censor

[30] studied the split variational inequality problem (SVIP), which is to find a point ω‡ such

that

⟨fω‡, ω† − ω‡⟩ ≥ 0,∀ω† ∈ C.
and

⟨g(Aω‡), ν† − Aω‡⟩ ≥ 0,∀ν† ∈ Q.

The solution set of SVIP is denoted by Γ3, i.e.,

Γ3 = {ω‡ ∈ V I(C, f),Aω‡ ∈ V I(Q, g)}

Next, we introduce following iterative algorithm to solve SVIP:

Algorithm 4.1 For µ0 ∈ H1, the sequence {µk} is defined as follows:
ρk = µk + θk(µk − µk−1)

uk = ρk − δk[(I − S)ρk + A∗(I − T)Aρk]

µk+1 = (1− νk − βk)µk + νkuk.

where S = PC(I − λf),T = PQ(I − λg), {θk} ⊂ (0, 1), νk ⊂ (c, d) ⊂ (0, 1 − βk) and {βk} ⊂
(0, 1), {δk} is a positive real numbers sequence, they satisfying the following conditions:

lim
k→∞

βk = 0,

∞∑
k=1

βk = ∞,

∞∑
k=0

δk = ∞,

∞∑
k=0

(δk)2 < ∞.



An accelerated Mann-type method for split common fixed point problem in Hilbert spaces 13

Theorem 4.1. Let S : H1 → H1 and T : H2 → H2 be two demicontractive mappings,

limk→∞
θk

βk ∥µk − µk−1∥ = 0,Γ3 ̸= 0.

Then the sequence {µk} converges strongly to a point ω‡ ∈ Γ3, which is generated by

Algorithm 4.1, where ∥ω‡∥ = min{∥ω†∥ : ω† ∈ Γ3}.

5. Numerical Example

Now, we compare the convergence speed of our Algorithm 3.1 with the algorithm of

Wang [18] by a numerical example. All the codes were written in Matlab (R2021b) and

run on PC-202310311101 with 11th Gen Intel(R) Core(TM) i5-11400 @ 2.60GHz 2.59 GHz,

RAM 8.00GB.

Theorem 5.1. [18]If limk→∞ βk = 0 and
∑∞

k=0 β
k = ∞, the sequence {µk} is generated

by following algorithm:

µk+1 = βku+ (1− βk)[µk − δk((µk − Sµk) + A∗(I − T)Aµk)],

where

δk =
∥(I − S)µk∥2 + ∥(I − T)Aµk∥2

∥(I − S)µk + A∗(I − T)Aµk∥2
.

Then {µk} converges strongly to an element ω‡ ∈ Γ1,where ω‡ = PΓ1(u).

Example 5.1. [31]Let H = R, inner product ⟨µ, ρ⟩ = µρ, and norm | · |. Let µ ∈ C,C =

[0,+∞) and Sµ = µ+ 4
µ+1 − 1. Then Fix(S) = 3, and

⟨µ− ρ, Sµ− Sρ⟩ = ⟨µ− ρ, µ+
4

µ+ 1
− ρ− 4

ρ+ 1
⟩ ≤ ∥µ− ρ∥2

for all µ, ρ ∈ C,S is a demicontractive operator, so Tµ = µ+ 3
µ+2 − 1.

Let µ ∈ R,Aµ = 1
3µ, k ≥ 1, νk = 1

8 , β
k = 1

k , θ
k = 1

3 , Obviously, A∗ = A, Fix(S) = 3

and Fix(T ) = 1. Next, we rewrite our Algorithm 3.1 and Wang Algorithm as follows:

µk+1 = (
7

8
− 1

k
)µk +

1

8

[
µk +

1

3
(µk − µk−1)

]
− 1

8
δk

(
µk + 1

3 (µ
k − µk−1)− 3

µk + 1
3 (µ

k − µk−1) + 1
+

1

3

µk + 1
3 (µ

k − µk−1)− 3

µk + 1
3 (µ

k − µk−1) + 6

) (26)

µk+1 =
1

8
u+

7

8

(
µk − 3(µk + 6)(µk − 3)

(4µk + 19)(µk + 1)
− 3(µk + 1)(µk − 3)

(4µk + 19)(µk + 6)

)
We show our calculation results in Table 1 and Figure 1.

Table 1. The numerical results of Example 5.1

Cases Initial values our Iter CPU(s) Wang Iter CPU(s)

1 x0 = 0.1567, x1 = 4.8530 6 0.0004 13 0.0006

2 x0 = 4.5054, x1 = 0.8382 4 0.0001 13 0.0004
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(a) Case1

(b) Case2

Figure 1. The calculation results of Example 5.1

We can see from Table 1 and Figures 1 that the convergence speed of our Algorithm

3.1 may be faster than the algorithm of Wang by comparing the iteration steps and CPU

times.
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