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UNVEILING THE WAVE CONCEPT IN
ELECTROMAGNETIC THEORY: APPLICATION TO THE
TRANSVERSE WAVE APPROACH FOR MICROWAVE
SYSTEMS ANALYSIS

Zeineb KLAIY, Mohamed Ali HAMMAMI|?

Numerical methods have established their efficacy in diverse domains,
including electric machines, telecommunications, radar systems, and digital
computing. Within this paradigm, the Wave Concept emerges as a pivotal tool for
accelerating these methods. By transforming integral formulations of the
electromagnetic (EM) field into algebraic problems within the framework of Hilbert
space methods, the Wave Concept facilitates enhanced computational efficiency.

This paper delves into the development of the Wave Concept and its
application within the Transverse Wave Approach, shedding light on its utility in
addressing EM field challenges. The Transverse Wave Approach is explored as a
method to convert integral formulations into algebraic problems, offering a novel
perspective on problem-solving within the electromagnetic domain. To gauge its
computational effectiveness, a comprehensive evaluation is conducted in the specific
context of microwave systems. The outcomes of this investigation contribute to a
deeper understanding of the Transverse Wave Approach's potential impact on
advancing numerical methods in electromagnetics.

Keywords: Wave Concept, Numerical EM methods, Computational Effort,
Microwave Systems

1. Introduction

Numerical methods play an indispensable role in electromagnetic (EM)
simulations, offering a comprehensive toolkit for tackling complex challenges
across various domains. These methods, encompassing finite element methods [1],
finite difference methods [2], boundary element methods [3], the Discontinuous
Galerkin method [4-6], and the Method of Moments (MoM) [7], enable the detailed
modeling and analysis of EM phenomena. By converting complex EM problems
into manageable mathematical formulations, they facilitate in-depth exploration of
wave propagation, radiation, and material interactions.
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The efficiency of these numerical methods is critical, as it directly affects
their feasibility and scalability. This efficiency hinges on the computational effort
required to solve the vast systems of equations that arise from discretizing EM
governing equations. The criteria for assessing method efficiency include accuracy,
convergence speed, and computational time, with ongoing advancements in
computational resources and algorithms playing a key role in enhancing these
aspects.

Numerical EM methods are employed in a wide range of applications, from
electric machines [8] and telecommunications [9] to radar systems [10] and
microwave devices [11]. They equip engineers and researchers with the means to
design and optimize devices, forecast performance, and tackle EM field-related
challenges, serving as a foundational toolkit for understanding and leveraging
electromagnetic phenomena. The continuous enhancement of computational
efficiency not only expands their application scope but also makes substantial
contributions across technologically essential sectors.

This paper introduces the wave concept technique as a novel contribution to
numerical EM methods, aiming to streamline the analysis process. By transforming
integral formulations or differential equations into algebraic ones, the wave concept
technique significantly reduces computational complexities. This innovative
approach, which we justify and detail in the subsequent sections, particularly
emphasizes the transverse wave approach for implementing EM solutions. Our
work seeks to push the boundaries of numerical EM methods, offering a powerful
tool for rapid simulations and enhanced problem-solving capabilities in
electromagnetic studies.

The organization of this paper is as follows: Section 2 presents the
theoretical background and the mathematical foundations of the wave concept
technique. Section 3 discusses the implementation of this technique within the
framework of the transverse wave approach, while Section 4 is dedicated to
validating and discussing the outcomes of various simulations. Finally, Section 5
concludes our work, summarizing the key findings and contribution.

2. Wave Concept: Theory
2.1. Adopted Mathematical Formalism

In this investigation, Q represents a bounded, open, and connected set in R,
serving as the designated measure space (definition domain) for the exploration of
electromagnetic (EM) fields within the realm of radiofrequency (RF) integrated
circuits applications. The functions introduced in subsequent sections conform to
the L2-norm, allowing for the manipulation of magnitudes possessing finite energy.
The space L?(12) signifies the standard Lebesgue square-integrable or square-
summable C-valued functions.
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By introducing an inner product structure on L? with respect to a measure
u, we establish this vectorial space as the unique Hilbert space within the broader
class of L? spaces (1 <p < ) [12]. Using Dirac notation, the functions within this
Hilbert space adhere to the following expressions:

Vo, € L2(D) (plp) = [[, ¢ Pdu 1)
Ve € LX)  ligllz = V{gle) ()

Here, the symbol * denotes the complex conjugate. Additional properties of
Hilbert space are elaborated in Appendix A.

2.2. Maxwell’s Equations and the Propagation Wave Equation

Analyzing electromagnetic fields in distinct spatial regions is paramount for
understanding the propagation and interaction of EM waves. These regions can be
categorized based on their geometric uniformity: uniform regions possess
consistent cross-sectional areas, whereas non-uniform regions exhibit varied
geometrical features. This distinction is crucial in the study of electromagnetic
fields within cylindrical waveguides, which present uniform cross sections, and
more complex structures like non-cylindrical waveguides, each demanding a
tailored analytical approach. The electromagnetic field behavior in these settings is
often modeled as a superposition of standard wave functions, facilitating a bridge
between theoretical predictions and practical engineering applications, particularly
at ultrahigh frequencies.

Central to this analysis are Maxwell's equations, which describe the
dynamics of electric (E) and magnetic (H) fields, serving as the cornerstone for the
theoretical underpinnings of electromagnetic signal propagation [13]. The
empirical validation of these equations by Hertz in 1886 ushered in the era of
practical radio wave applications, highlighting their integral role in modern
communications. These equations can be represented in both differential and
integral forms, accommodating analyses in the time domain and emphasizing the
behavior of time-varying electromagnetic fields.

In the realm of electromagnetic theory, the application of sinusoidal or time-
harmonic sources is predominant, owing to their relevance in frequency-specific
applications. The employment of phasor solutions in this context, analogous to the
concept of rotating phasors in circuit theory, significantly simplifies the analysis of
electromagnetic fields, particularly for single or narrow-band frequencies. This
simplification is essential for elucidating the phasor domain representations of
electric and magnetic fields, as detailed in Appendix B-1, offering a foundational
understanding of EM wave behavior across various mediums.

Maxwell's equations delineate key vectors such as electric field intensity (E)
and magnetic field intensity (H), further expanded upon by constitutive relations
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that incorporate electric and magnetic polarizations, permeability (x), and
permittivity (e), tailored for linear, non-dispersive media. These relationships are
encapsulated in equations (3) to (6), providing a mathematical framework for the
interaction between electric and magnetic fields within specified materials.

D=£,6+F =&, (1+ 1, )6 = £,6,6 = €6 )
D=1 X+P = o (14 2y ) I = 1o 8,50 = X (4)
g =¢—je"=¢'(1-jtans,), tang, :a)ga)—;ae ®)

pe =4 —ju" =4/ (1-jtang,), tan g, =Ww—;,0m (6)

In our analysis, particularly in the context of vacuum or hollow waveguides,
the inclusion of a fictitious magnetic charge in Table 2 serves as a theoretical tool
to symmetrize Maxwell's equations [22][23]. This strategic incorporation enhances
analytical clarity while acknowledging that both the electric charge density and the
magnetic charge density are zero, in accordance with established principles
[22][23]. It's important to emphasize that this utilization does not imply the physical
existence of magnetic monopoles. Rather, it aligns with well-established
methodologies [24][25], facilitating a deeper understanding of electromagnetic
wave propagation in structurally complex environments such as waveguides.

Our recognition of the theoretical nature of magnetic monopoles is
consistent with broader scientific consensus [24][25], underscoring the utility of
employing non-physical constructs to elucidate complex electromagnetic
phenomena.

The synergy between electric and magnetic fields gives rise to the
generation of electromagnetic waves, a phenomenon that surpasses the constraints
of lumped-element models. Central to the propagation of these waves is the
complex propagation constant (y), which encompasses both the attenuation and
phase progression of electromagnetic waves within a medium. Equation (7),
outlined in Appendix B-2, provides a comprehensive expression for v,
accommodating a wide range of material properties.

V’F+7°F =0 (7)
where F refers to E or H
O0°F
azgx _72FX =0 (8)
Fy (Z,ja)):F+(ja))e_jyz+ F_(ja))e”Z 9)

Positive—going wave Negative—going wave
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V(z)=Ve’" + Ve’ (10)
Incident wave  Reflected wave
(2)=2*(V.e”*-V.e?) (11)

The wave equation (8) and its solution (9) demonstrate the positive and
negative propagation of waves, providing insights into incident and reflected
waves. The wave equation's analogy with distributed circuits is expressed in
equations (10) and (11), incorporating characteristic impedance (Zc). The figure
presented below depicts a case of a uniform transmission line.

-L z z+dz
! | ] 0 Ly
O meeesee—————
V,=V(z=-L) —r1:|(zz_|_) I,=1(z=0) «— V, =V (z=0)
:]/Zc (V+ _V—) =V+ +V7
O —
I, =I(z=0)

Fig. 1. Example of uniform transmission line

The Poynting vector delineates the density of power flux or instantaneous
power. In the context of time-harmonic fields, equations (12) and (13) introduce the
phasor Poynting vector and average power density, respectively. The direction of
power flow, as determined by the right-hand rule, is consistently perpendicular to
both the electric and magnetic fields. Equation (14) quantifies the total average
power traversing a surface (S).

P=EXH" (12)
Pay =5 Re(E x H") (13)
Pr,, =5 Re [[.(E x H) - dS (14)

2.3. Wave Concept

The significance of the Wave Concept becomes apparent through the
exploration of waveguide principles. Waveguides, diverse in forms like conducting
or dielectric cylinders, twisted wire pairs, coaxial conductors, or single wires, play
a crucial role in directing energy along a specific path without radiating into the
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surroundings. Hollow waveguides [14], particularly vital in microwave technology
for low attenuation and high-power applications, serve as fundamental elements in
microwave circuits.

The behavior of propagating waves in waveguides is intricately tied to the
concept of modes, solutions to Maxwell's equations that adhere to necessary
boundary conditions. Each mode within a waveguide exhibits a unique pattern for
electric and magnetic fields, contributing to the overall characteristics of the guided
energy. Waveguides typically feature a countable set of modes, each with a cutoff
frequency dictating its propagation range. Hollow conducting cylinders, including
rectangular and circular waveguides, constitute a significant waveguide class.
Propagation of modes in such waveguides is contingent on the wavelength being
smaller than the largest cross-sectional dimension. Even configurations with non-
separable geometries or bends can be effectively analyzed using numerical
electromagnetic methods.

The classification of waveguide modes encompasses TEM (Transverse
Electromagnetic), TE (Transverse Electric), TM (Transverse Magnetic), and
Hybrid modes, each characterized by specific field patterns. The expressions for
field intensities are deconstructed based on translational invariance along the
waveguide as follows:

E = E;(x,y)etr? (15)
H = Hy(x,y)et"? (16)
where
Evanescent  Propagating
modes modes

Modes within waveguides can be further categorized into propagating and
evanescent modes, distinguished by the nature of their propagating coefficients.
Subdividing an electromagnetic structure into substructures allows for complete
sets of modal field solutions, forming a basis for expanding field solutions and
ensuring alignment with boundary conditions.

The utilization of modal basis functions within a function space is a key
aspect of numerical electromagnetic methods, notably the Method of Moments
(MoM)[7]. This approach provides precise solutions, enabling expansions in TEmn
and TMmn modes and contributing to a comprehensive understanding of
waveguide behavior.

Let k serve as a concise notation representing the double index mn for TEmn
and TMmn modes. Summation over k implies a sum over all TEmn and TMmn
modes. The total transverse field is expressed as a superposition of transverse
modes:
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Er(z) = Zk(Vk(+)e‘VkZ + Vk(_)e”kz) e, (u,v) (18)
_ 1 ) - =)
HT(Z) = ka(llk_l- e Yz I/k e)/kz) . hk(u, v) (19)
The electric and magnetic structure vectors are orthogonal at any point and
the structure forms e, (u, v) and Ay (u, v) fulfill:
ex(u,v) = —(dz A by (w, 1)) (20)

hi(u,v) = (dz A e (u, v))* (21)

Here (u,v,z) represents a general cylindrical coordinate system, where z is a
linear coordinate, and u,v are orthogonal curvilinear coordinates transverse to z.
The structures forms e, (u, v) and 4, (u, v)constitute an orthogonal basis:

(exlhi)s = —(hiler)s = bk (22)
where &,; denotes the Kronecker symbol.

With the equation (21), we can represent the fields by Hilbert space vectors as:

1Br () = (U Pe 74 + Oere2) - ey (23)

[Hr (@) = Sz (W ere —yOenez) - iy (24)

where the |e,)and |4, ) constitute a bi-orthogonal set of basis vectors. The
electric and magnetic field expressions can be determined by calculating them from
their respective Hilbert space vectors through:

Er(z) = Xk ex(u, v)(hi | Er) (25)

M@=mﬁymwmmm (26)

We define the wave impedance operator by:
ZW = Z?f:lZW,k(lhn)(enl - |en>(hn|) (27)
Its inverse termed wave admittance operator is given by:

i7W = 2;';:1 YW,k(lhn)<en| - Ien)<hn|) = Zﬁzlza/,lk(lhnxenl - |en><hn|) (28)

With this we introduce the wave amplitude vectors |4) and |B) as



258 Zeineb Klai, Mohamed Ali Hammami

|A) = = [|E7) + Zy|Hr)] (29)

N |-

|B) = [IEr) — Zw|Hp)] (30)

We compute the transverse electric and magnetic fields form the wave
amplitudes via

|Er) = |A) + |B) (31)

|Hr) = Zyw " '(|4) - |B)) (32)
We introduce the operator T'(z) and its inverse as

T(Z) = Zﬁ:le_ykz(lhnxenl - |en>(hn|) (33)

T1(2) = X1 eV (|h)Xen| = len){hnl) (34)

Consequently, and referring to (28), the equation (33) can be expressed as:

— ~ — _1 ~ —
Tz = (1 + ZWYW(Z)) (1 - ZWYW(Z)) (35)
where T is the identity operator.

3. Application of Wave Concept in Transverse wave approach

Drawing from the wave concept introduced in the preceding section, solving
electromagnetic (EM) problems becomes feasible without resorting to intensive
computations required for resolving integral formulations or differential equations.
Within this framework, the wave concept is founded on the linear combination of
the transverse electric field (Et) and the transverse magnetic field (Hr). This
combination facilitates the derivation of incident and reflected at the discontinuity

interface. The combinations between both incident /Tr and reflected §r waves can
be expressed in matrix form by:

- -

A o |En _ |Ex
T=m|T _|=m|.T (36)
B, H™p X 7, Jr
M ensures the transition between integral EM field and algebraic EM wave:
1 1
72 g2
- 1
M=% 5 (37)

Zy -7,
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Here Z,, denotes the real wave impedance from region r defined by:
_ Ho
Zor = woer, (38)

Also, Equation (39) defines the average power density (Pav) in a region (r)
as the difference between the power of the incident wave (|ﬁr|2) and the power of

the reflected wave (|§r|2).
—_ - X - 2 - 2
Pw =3Re(Ep xJi) = |4&,| - |B;| (39)

This mathematical representation, rooted in the conservation of energy,
suggests that the power generated within the region is balanced by subtracting the
power dissipated and the rate of stored energy increase. While the physical
interpretation of this equation poses challenges, it can be understood as the incident
wave contributing to energy generation in the region, while the reflected wave
encapsulates the combined effects of dissipated power and the rate of stored energy
increase within that region.

Leveraging the principles of the wave concept, the Transverse Wave
Approach (TWA) [15-20] is introduced into numerical electromagnetic methods.
In contrast to traditional approaches that rely solely on electric fields or current
density, TWA operates through their linear combination. This methodology yields
highly precise simulation results while minimizing computational complexity,
eliminating the necessity for matrix inversion. Importantly, TWA guarantees
convergence irrespective of the structure's interfaces and imposes no constraints on
component shapes. It proficiently handles bounded operators, avoiding the
inversion of integral operators. By iteratively addressing integral relations in the
spectral domain and continuity conditions in the spatial domain, TWA adeptly
distinguishes the topological characteristics of circuits from their embedding
environment.

The TWA iterative process hinges on interconnected equations repeated
until a solution is reached. The spatial domain initially formulates incident waves
to meet electromagnetic field boundary conditions based on the excitation source.
In contrast, reflected waves are expressed in the modal domain, considering
electromagnetic wave properties in homogeneous media.

Assuming an excited structure, like a bilateral source polarized in the x-
direction, generating waves on both sides of the discontinuity surface Q, the
iterative process unfolds. Each iteration sees incident waves (A1, Az) diffracted by
the obstacle, creating new reflected waves (Bi, B2). These reflected waves
contribute to subsequent incident waves in successive iterations until system
convergence.
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The interaction between incident (A) and reflected (B) waves is represented

by the equations:
{A =TB
B =SA+B,

Here, T is the reflection operator connecting incident and reflected waves
in the modal domain, while S is the diffraction operator linking incident and
reflected waves in the spatial domain.

Bo represents the global excitation wave on the source.

The time efficiency comparison between the direct method, involving the
resolution of integral and differential equations, and the numerical method,
specifically the Transverse Wave Approach (TWA) based on the wave concept, is
unequivocal. The computational effort for the direct method exhibits a complexity
of 0(n3) [7], indicating a cubic relationship with the problem size. In contrast, the
TWA falls into the linearithmic class (O(nlog n)), showcasing a remarkable
reduction in the number of operations required for computation.

(40)

4. Results & Discussion

To validate the Transverse Wave Approach (TWA) utilizing the wave
concept, a comprehensive analysis was conducted on a printed rectangular spiral
antenna with significant applications, particularly in the field of biomedicine [21].
The simulation employed specific modeling and geometric parameters detailed in
Table 1. The simulations were conducted utilizing our proprietary EM tool
developed in C++, which is based on the Transverse Wave Approach (TWA)
derived from the wave concept.

Table 1

Modeling and geometric parameters of the rectangular spiral antenna
Geometric Parameters Description Modeling Parameters Description
Initial Length 0.19487mm Resonance Frequency 60Ghz
Initial Height 0.12991mm Type of polarization Bilateral in x-direction
Number of Arms 2 Number of iterations Njter = 100
Number of turns 1.53
Conductor Copper Waveband Frin = 30GHz
Conductivity 5.96e+4 (S/mm) Fmax = 70GHz
Thickness 0.03556 mm Stepprq = 0.5GHz

The critical parameter, impedance (Zin) or admittance (Yin), as perceived
by the excitation source, was meticulously calculated for each iteration based on
electromagnetic quantities. This parameter plays a pivotal role in determining the
convergence of the system.
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Fig. 2. Convergence Analysis of Admittance (Yin) Observed by the Excitation Source Over
Iterations

Fig.2 serves as a compelling visual confirmation of the Transverse Wave
Approach's (TWA) convergence, showcasing remarkable stability achieved in
fewer than 100 iterations. This convergence assessment is conducted at a
representative frequency of 60 GHz, emphasizing the efficiency of the TWA in
swiftly reaching a solution.

Delving into Fig.3-(a), a more nuanced analysis of the admittance (Yin) is
presented. Specifically, the real part, representing conductance, manifests peaks at
resonance frequencies, signifying maximum values. Simultaneously, the imaginary
part, indicative of susceptance, adeptly identifies sign changes at these resonant
frequencies. These observed behaviors align seamlessly with electromagnetic
theory, offering a robust and theoretically consistent representation.

The distinctive peaks in the conductance reveal the antenna's heightened
responsiveness at resonance frequencies, emphasizing its optimal performance
during these specific conditions. Meanwhile, the sign changes in susceptance
underscore dynamic shifts in the antenna's reactive components, providing valuable
insights into the intricate interplay of electric fields.

This comprehensive frequency-dependent profile of admittance,
encompassing both conductance and susceptance, enhances our understanding of
the antenna's response across varying frequencies. Such insights are instrumental in
tailoring antenna designs to specific frequency requirements, ensuring optimal
performance in resonance conditions. Overall, the detailed analysis presented in
Fig.3-(a) not only validates the TWA's convergence but also offers a deeper
understanding of the antenna's behavior through its admittance characteristics.
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The resonance phenomenon at 60 GHz takes center stage in our analysis,
accentuated through the insightful depiction of the reflection coefficient S11 (dB)
evolution in Fig.3- (b). Here, a conspicuous peak in the reflection coefficient
underlines the antenna's resonance at this specific frequency. Fig.4-(a) extends this
exploration by spotlighting the antenna's directivity, illustrating its peak
performance precisely at 60 GHz.

Fig.4-(b) delves into the intricacies of the antenna’s current distribution after
100 iterations, offering a granular understanding of the electric field distribution.
This visualization goes beyond a surface-level examination, providing a detailed
insight into how electric fields are distributed both along the transverse and normal
directions relative to the excitation source. The comprehensive depiction of the
current distribution enhances our comprehension of the antenna's behavior,

shedding light on the spatial orientation and intensity of electric fields at this critical
stage of iteration.
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In essence, the combined analysis of Figures Fig.3 and Fig.4 not only
reaffirms the resonance characteristics at 60 GHz but also delves deeper into the
antenna's performance metrics. The distinct peak in the reflection coefficient,
optimal directivity, and nuanced current distribution collectively contribute to a
holistic understanding of the antenna's behavior, crucial for informed design
decisions and applications.

In summation, the obtained simulation results affirm the stability and
efficacy of the numerical approach based on the wave concept. The convergence
within a limited number of iterations, resonance behavior, and the consistent
agreement with electromagnetic theory collectively validate the reliability and
efficiency of the Transverse Wave Approach in addressing the complexities of the
printed rectangular spiral antenna.

5. Conclusions

This paper has successfully developed and presented the theoretical
groundwork and mathematical underpinnings of the wave concept in the context of
numerical electromagnetic methods. The integration of this concept into the
transverse wave approach has demonstrated its effectiveness and prowess in
electromagnetic investigation and the comprehensive analysis of planar microwave
structures across various disciplines.

The diverse simulation results obtained from the examination of a chosen
printed rectangular spiral antenna consistently align with electromagnetic theory.
These results robustly affirm the validity, stability, and efficiency of the numerical
approach anchored in the wave concept. This validation not only contributes
significantly to the current understanding but also sets the stage for future
developments. It provides a gateway to exploring new trends, including the
regeneration or formulation of innovative numerical electromagnetic approaches
rooted in the wave concept. These advancements hold the potential to address
numerous electromagnetic challenges that traditionally require substantial
computational efforts. Moving forward, one promising avenue for future work
involves exploring the incorporation of the concept of fictitious magnetic charges
into the numerical electromagnetic methods. By considering the theoretical
framework of magnetic charges, it may be possible to extend the analysis to a wider
range of applications in electrodynamics. This contribution not only advances the
existing body of knowledge but also lays the foundation for pioneering
methodologies in the dynamic field of electromagnetic research.



264 Zeineb Klai, Mohamed Ali Hammami

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research
at Northern Border University, Arar, KSA for funding this research work through
the project number “NBU-FFR-2024-2942-01".

We also thank the reviewers for their constructive comments, which greatly
improved the manuscript.

REFERENCES

[1]. Meunier, Gérard, ed. "The finite element method for electromagnetic modeling.” (2010).

[2]. Morgan, Michael A., ed. Finite element and finite difference methods in electromagnetic
scattering. Elsevier, 2013.

[3]. Yashiro, K., and S. Ohkawa. "Boundary element method for electromagnetic scattering from
cylinders." IEEE Transactions on Antennas and Propagation 33.4 (1985): 383-389.

[4]. Temimi, Helmi, Slimane Adjerid, and Mohamed Ayari. "Implementation of the discontinuous
Galerkin method on a multi-story seismically excited building model.” Engineering
Letters 18.1 (2010): 18.

[5]. Temimi, Helmi, A Discontinuous Galerkin Method for Higher-Order Differential Equations
Applied to the Wave Equation. Diss. Virginia Tech, 2008.

[6]. Temimi, Helmi. "Error analysis of a novel discontinuous Galerkin method for the two-
dimensional Poisson's equation.” Applied Numerical Mathematics 189 (2023): 130-150.

[7]. Ayari, Mohamed, Yamen El Touati, and Saleh Altowaijri. "Method of moments versus advanced
transverse wave approach for EM validation of complex microwave and RF
applications." Journal of Electromagnetic Engineering and Science 20.1 (2020): 31-38.

[8]. Yarymbash, Dmytro, et al. "A new simulation approach of the electromagnetic fields in electrical
machines.” 2017 International Conference on Information and Digital Technologies (IDT).
IEEE, 2017.

[9]. Almajanu Florin, et al. "Radio coverage analysis for mobile communication networks using ics
telecom.” UPB Sci. Bull., Series C 78.2 (2016): 177-190.

[10]. DEEP, Ramez EIZDASHIRE ALI, and Radwan KASTANTIN. " Adaptive design of Costas radar
signal with improved narrowband ambiguity function." UPB Sci. Bull. C 82.2 (2020): 127-
142.

[11]. Coman, Cosmin, Ana Barar, and Doina Manaila-Maximean. "Controlling Electromagnetic
Fields in The Terahertz Window with Metal-Dielectric Frequency-Selective Ring
Resonators.” University POLITEHNICA of Bucharest Scientific Bulletin-Series A-Applied
Mathematics and Physics 84.3 (2022): 201-208.

[12]. Cheng, Raymond, Javad Mashreghi, and William T. Ross. Function Theory and {p Spaces.
Vol. 75. American Mathematical Soc., 2020.

[13]. Huray, Paul G., Maxwell's equations. John Wiley & Sons, 2009.

[14]. Harrington, James A. "A review of IR transmitting, hollow waveguides." Fiber and Integrated
Optics 19.3 (2000): 211-227.



Unveiling the wave concept in electromagnetic theory: application to the transverse wave... 265

[15]. Ayari, Mohamed, et al. "An extended version of Transverse Wave Approach (TWA) for full-
wave investigation of planar structures.” Journal of Microwaves and Optoelectronics 7.2
(2008): 123-138.

[16]. Ayari, Mohamed. "On the Efficiency of the Advanced TWA Approach to the 60-GHz
Microstrip Antenna Analysis for 5G Wireless Communication Systems." Engineering,
Technology & Applied Science Research 13.1 (2023): 10151-10157.

[17]. Ayari, Mohamed, Taoufik Aguili, and Henri Baudrand. "New version of TWA using two-
dimensional non-uniform fast Fourier mode transform (2D-NUFFMT) for full-wave
investigation of microwave integrated circuits.” Progress In Electromagnetics Research B 15
(2009): 375-400.

[18]. Ayari, M., & Altowaijri, S. (2024). The Efficiency of Surface Impedance Technique in the
Transverse Wave Approach for the EM-Modeling of Fractal-Like Tree Structure used in 5G
Applications. Engineering, Technology & Applied Science Research, 14(2), 13216-13221.

[19]. Ayari, M., Aguili, T., & Baudrand, H. (2009). More efficiency of Transverse Wave Approach
(TWA) by applying Anisotropic Mesh Technique (AMT) for full-wave analysis of microwave
planar structures. Progress In Electromagnetics Research B, 14, 383-405.

[20]. Ayari, M., Touati, Y. E., & Altowaijri, S. (2022). Advanced Transverse Wave Approach for
MM-Wave Analysis of Planar Antennas applied in 5G-Technology. International Journal of
Computer Science and Network Security, 22(1), 295-299.

[21]. Malik, Nabeel Ahmed, et al. "Implantable antennas for bio-medical applications.” IEEE Journal

of Electromagnetics, RF and Microwaves in Medicine and Biology 5.1 (2020): 84-96.

[22]. Steinberg, B. Z., & Engheta, N. (2023). Rest-frame quasistatic theory for rotating
electromagnetic systems and circuits. Physical Review B, 107(19).

[23]. Li, X., Han, B., Zhang, K., Liu, Z., Wang, S., Yan, Y., & Lu, J. (2024). All-optical dual-axis
zero-field atomic magnetometer using light-shift modulation. Physical Review Applied,
21(1), 014023.

[24]. Wautischer, G., Selyshchev, P., & Schrefl, T. (2018). Solving the inverse magnetostatic
problem using fictitious magnetic charges. AIP Advances.

[25]. Yan, H. (2010). Three-dimensional magnetic trap lattice on an atom chip with an optically
induced fictitious magnetic field. Physical Review A, 81(5), 055401.

APPENDICES

Appendix A

If a unitarity vector space of countable infinite dimension is complete, it is
called a Hilbert space. Operators of the Hilbert space define mappings of Hilbert
space vectors.

Dirac introduced a compact notation of states and operators by interpreting
the expression (i |¢)as the inner product of the vectors (yy|and|¢). Since formally
the bracket expression has been subdivided, Dirac has divided the word “braket”
also in two parts and introduced the denomination bra-vector for the expression (|
and ket-vector for the vector |¢). In another word, (y|represents matrix of
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type(1 x N)i.e., row vector and |¢) matrix of type(1 x N)i.e., column vector as
shown in figure A.1.

1 N “ -~ _
- J D
Y
U )
(‘// 1 ¥, o Wy ) ¢‘2
2y
(a) Bra-vector (b) Ket-vector

Fig. 5- Representation of bra and ket-vectors

To any vectors of a Hilbert space is assigned a complex number as a scalar
product. In a vector space with a positive definite metric (which we are assuming
in the following), a scalar of a vector with itself is positive and real unless the vector
is a null vector. The sum of two vectors |y) and |¢@) of Hilbert space again is a
vector of Hilbert space.

For this vector we can use the notation | + ¢)and obtain

[Y) + lo) = Y + @) (41)

The sum of vectors of Hilbert space is commutative and associative.
Appendix B

1. Table 2 meticulously presents Maxwell's equations in integral and differential
forms, encompassing various aspects of electromagnetic theory. These equations
are fundamental principles governing the behavior of electric and magnetic fields
in both spatial and temporal domains. Notably, the table includes formulations of
Maxwell's equations that incorporate theoretical considerations of magnetic
charges, serving as hypothetical entities representing sources or sinks of magnetic
fields. While our research acknowledges the presence of these theoretical constructs
within electromagnetic theory, it is essential to clarify that our specific investigation
does not directly involve the use or reliance on magnetic charges.
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Table2.
Time and phasor domain forms of Maxwell’s equations in both integral and differential
forms
Integral Form Differential Form
, OB
Tt mg-dlz—ﬂ =2 o |-ds vx6=-28 _op
aw S ot ot
, 0D 0D
Maxwell’s AmLperes [ﬂ%dl =ﬂ(5’+—j-ds VXSC=3+_
) ) aw ot ot
Time-domain S
Equations Electric _
a Gauss' D]'@'ds_Qe V-D=p,
Law S
Magnetic _
Gauss' Iﬂ-%'ds_Qm V-%=p,
Law S
FarLa:;y’s mE-d| =—”(ij+|\/|)~(15 VxE=—jwB
S
Ampere’s [ﬂ H-dl=||(J+ jowD)-ds _ ;
Maxwell’s Law Isj( ) ) VxH=J+ JowD
Phasor Domain .
Electric
Equations. Gauss’ [t[ D-ds=Q, V-D=p,
Law S
Magnetic _
Gauss' D']-B'ds_Qm V-B=p,
Law s

where & (V/m) is the electric field intensity, 3C (A/m) is the magnetic field
intensity, @ (C/m2) is the electric flux density, % (W/m2) is the magnetic flux
density, o9 (V/m2) is the (fictitious) magnetic current density, § (A/m2) is the

electric current density, Q, (C/m3) is the electric charge density, and Q, (C/m3) is

the (fictitious) magnetic charge density.

Our primary focus is on analyzing the transmission of electromagnetic
waves in specific environments, such as vacuum or hollow waveguides, where the
influence of magnetic charges may not be pertinent. Therefore, while the inclusion
of magnetic charges in Table 2 provides a comprehensive overview of Maxwell's
equations, it is not the central emphasis or premise of our research. Instead, our
objective is to investigate the behavior of electromagnetic waves under particular
conditions.

2. Table 3 presents the complex propagation constant across several materials. This
parameter is essential for defining the propagation of electromagnetic waves
through different substances, including both attenuation and phase progression. The
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table functions as a concise guide for comprehending the variations in wave
behavior across various materials, assisting in the development and enhancement
of electromagnetic systems.

Table 3
The complex propagation constant for different types of materials
4
General form Vjou(o + jwe)
Perfect dielectric (¢ = 0) jw\ue
R q o U o i

Low-loss dielectric (E « 1) \E S + jwfue

o wuo | [wuoc
Good conductor (E > 1) /T +j /T




