U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 3, 2017 ISSN 1223-7027

ENERGY LEVELS OF WEAKLY BOUND NUCLEI WITH
RELATIVISTIC EFFECTS

Fahime REZVANI!, Mohammad Reza SHOJAEI?

Relativistic effects are employed to describe the weakly bound nuclei, e.g.
He, Be, C and O near closed shells. In order to calculate the energy levels of the
ground states and first excited states for these nuclei, we present a description based
on the assumption of a two-body system formed by a neutron added to an inert core.
We adopt the appropriate interaction between neutron and inert core which is a
modified of Yukawa potential. Then we solve the Dirac equation with pseudospin
symmetry in the shell model by using the basic concept of the supersymmetric shape-
invariance method. The results obtained from this approach are compared with
experiments and do not show any inversion in agreement with experiments.
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1. Introduction

A unique feature of nuclear systems along the neutron drip line is the
concentration of strength at excitation energies just above the continuum
threshold. This concentration of strength is directly measured in breakup
reactions. Howevr, it has also strong effects on other processes, such as elastic
scattering or sub-barrier fusion reactions. It was proved that this peculiar feature
was associated with the weakly bound nature of most nuclei at the dripline [1].
Neutron drip-line nuclei and, in particular, those near the neutron driplines and
closed shells play an important role in nuclear astrophysics [2].

In last few decades, the relativistic mean field theory has been successful in
describing the nuclear phenomena associated with unstable nuclei as much as
stable nuclei [3-5]. Thus it is very helpful to use relativistic theories to study
properties of the weakly bound nuclei near the neutron drip line. Compared to the
non-relativistic mean field theory, the relativistic mean field theory can explain
real nuclear saturation features in the nuclear matter and also presents the spin-
orbit coupled potential [6]. The starting point of the relativistic mean field theory
is the Lagrangian which describes the nucleons as Dirac spinors moving in the
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mean field. It includes the interaction between nucleons (protons and neutrons),
mesons (o, ®, p), and also the coulomb field. The main feature of the relativistic
nuclear dynamics is the appearance of the attractive scalar field S, and the
repulsive vector field V. As a result, this feature can lead to simultaneous
integrating attraction and repulsion effects related to long and short distances in
the nucleon-nucleon interaction. Due to the coupling of lower components in the
Dirac equation [7], the observed pseudospin symmetry in the mono-particle levels
of the spherical nuclei is understandable through the relativistic mean field theory.

The Dirac equation is one of the most important equations in different
physics fields [8-14]. The equation is used to solve many nuclear and high energy
problems [15-17]. Recently, remarkable efforts have been made to study
relativistic wave equations as well as their relativistic effects, in which solving the
Dirac equation with spin and pseudospin symmetry was important. Within the
framework of the Dirac equation, the spin symmetry arises if the magnitude of the
attractive scalar potential S(r) and repulsive vector potential are nearly equal, S(r)
~V(r) in the nuclei (i.e., when the potential difference is A(r) = V(r) - S(r) = Cs =
constant). However, the pseudospin symmetry occurs if S(r) ~ -V(r) (i.e., when the
sum potential is as X(r) = V(r) + S(r) = Cps = constant) [18-20]. The cases of A(r)
=0 and Z(r) = 0 correspond to SU(2) symmetries in the Dirac Hamiltonian [21-
23]. The spin symmetry is relevant for mesons [24-25]. The pseudospin symmetry
concept has been applied to many systems in nuclear physics and related areas
[26-29]. It has also been utilized to explain features of deformed nuclei [28] and
super-deformation [29] as well as to establish an effective nuclear shell-model
scheme [26, 30].

The pseudospin symmetry introduced in the nuclear theory refers to a quasi-
degeneracy of the single-nucleon doublets and can be characterized by the non-
relativistic quantum numbers (n, I, j = 1+1/2) and (n-1, 1+2, j = 1+3/2), where n, I,
and j are the single-nucleon radial, orbital and, total angular momentum quantum
numbers, respectively, for a single particle [26, 27]. The total angular momentum
isgiven by j =1+ s where I' =1 +1 is a pseudo-angular momentum and s' = 1/2 is
a pseudospin angular momentum. In real nuclei, the pseudospin symmetry is only
an approximation and the quality of approximation depends on the pseudo-
centrifugal potential and pseudo-spin-orbit potential [31].

Other authors adopted different approaches to solve this equation with different
potentials [32-39]. Many second order differential equations like Legendre,
Hermit, and associated equations have supersymmetry properties and invariance
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form. Hence, we can employ an invariant form and some effective methods in the
supersymmetry quantum mechanics to solve such equations [40].

In this work, we study the relativistic effects in determining energy levels of
weakly bound isotopes of He, Be, C and O near the closed shells. To do so, we
describe a two-body system formed through a neutron added to an inert core. We
employ a proper interaction between the neutron and inert core, which is a
modifed of Yukawa potential [41]

efar e—Zar
V(r)=V, . +V,— (@D)]

Where « is range of the potential, and Vo , V1 are adjustable parameters. Then we
solve the Dirac equation with pseudospin symmetry in the shell model by using
the basic concept of the supersymmetric shape-invariance method.

The organization of this paper is as follows. In Section 2 we review relativistic
approach briefly. In Section 3 Discussion and results are presented. Conclusion is
given in Section 4.

2. Relativistic Approach

The Dirac equation for spin-1/2 particles in an attractive scalar S(r), repulsive
vector V(r) potentials reads as (in atomic units h=c=1) [42]

[a.p+BM +S(N)]y(r)=(E -V (r) w(r) )
Where a and p are the Dirac matrices. For spherical nuclei, the nucleon angular
momentum J and spin-orbit operator K =-4 (o.L +1) commute with the Dirac
Hamiltonian.The eigenvalues of K are x =+ (j+1/2)with minus for the aligned

spin (s12, pai2, etc.) and plus for the unaligned spin (p12, dae, etc.). Then, we use
the quantum number x since it is sufficient to label the orbitals. The wave
functions can be classified according to their angular momentum j, x, and the
radial quantum number n. They can be written in the following form

1FunY, @.0)
o iG, (Y, 6.0

r
Where F,.. (r) and G, (r) are the upper and lower radial functions, and YJ.'m 0,9)

©)

| - - - - -
and Y|, (6,¢) are the spinor spherical harmonic functions, respectively. The

orbital angular-momentum quantum numbers | and I are the labels of upper and
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lower components, respectively. We substitute Eg. (3) into Eq. (2) and obtain two
coupled differential equations for the upper and lower radial wave functions, F.
(r) and G« (r), respectively:

( ) I"IK'( ) ( nx Z(r)) nl((r) ( )
( ) nK(r) ( ng (r)) nl(( ) ( )

By substituting G« (r) (from Eq. (4)) and F.. (r) (from Eqg. (5)) into Eq. (5) and
Eq. (4), respectively, two following second-order differential equations for the
upper and lower components are obtained.

47 k(4D dA/dr

X
[ dr? r E,.+M —A(r)

(3—r+§)] Fre(N)=[E, . +M -A(N)]M -E, +Z(N] F,(r) (6)

_d2+l('(K‘—1)_ dx/dr

X
[ dr? r M -E,_+2(r)
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Considering pseudospin symmetry, X(r) =0, and A(r) as the modified potential
and [18], we can reach Eqg. (8) by substituting Eq. (1) into Eq. (7):

d?  x(x-1)
[—d?‘f-T‘i‘(EnK‘i‘M )X

—-ar -2ar

Wi v, L 16, (1) =[E2 —M *(E,, +M)]G,.(r)
r r? (8)

This equation cannot be solved analytically for k=0 with the standard methods
such as SUSY and NU because from Eq. (9), it is seen that the effective potential
iIs a combination of exponential and inverse square potentials. Therefore,
analytical solutions can be achieved by using an approximation method. We use
an approximation for the pseudo-centrifugal term similar to the one used by Dong
et al. [43]

1 e—Zar
= 4o 2ar\2
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This is a good approximation for small values of parameter a, which is shown in
Fig 1.
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Fig 1: A plot of 1/r? and approximation for various o [44]

Using the approximation given in Eg. (9) and bellow definition,
VNo =-,alE,,-M]

V,=4a’ k(k+1)

V,=&,d’(E, -M)
En=En-M*=(E, +M)

(10)

We can write down the Schrodinger-like Eq. (8) for the lower spinor component
as
[

d 2 B 672ar " 672ar N ef4ar
T 1.2 +V0 —2ar +V1 —2ar\2 +V2 —2ar
dr @-e— ") @-e ") @-e™ ")

71xG,, (1) =E,G,.(r)

(11)
Eg. (11) can be solved by using the basic concept of the supersymmetric
formalism and supersymmetric shape-invariance method [45]. The ground-state
lower spinor component Go,.(r) can be given by

Gy, (1) =exp (-|W (r)dr) (12)

Where W(r) is called superpotential in the supersymmetric quantum mechanics
[46]. Substituting Eq. (12) into Eq. (11) leads to the following equation for W(r)
dw (r)

W) - dr
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Where W(r) is called a superpotential supersymmetric quantum mechanics. Eq.
(13) is a non-linear Riccati equation. By using the proposed supersymmetric
shape-invariance method in ref. [46], the superpotential in Eq. (13) will be
rewritten as

(13)

1 Q
W(r)=——(-Q,+—=2
0= Qg )
Which the coefficients are as bellow in Eq. (14)
1 - - -
Q, = 2M (V,+ 2V, +3V,) -Q,?
1= 5o, [2M (Vo + ,+8V3) -Q/') 5
Q,=—a+(ad’+2M (V,+V, )"

Taking advantage of the basic concept in the six-parameter exponential-type
potential (SPEP) method [47], we can calculate the energy levels as follows

(14)

1 2M (-V, +2V,+3V))

E,. =V,-V, - [ 2°
© 0 BM T ga2na—yfai+2M (V,4V))

nx

—(a+2na—\/a2+ 2M (V,+V)) 1?

. n=012,.. (16)

Finally, the ground states and the first excited states in relativistic
approach (Eq. (16)) are given in Tables 1 and 2 for some light weakly bound
nuclei near closed shells.

3. Result and discussion

The energy levels of the ground states and the first excited states were
calculated for the light weakly bound nuclei (He, Be, C, and O) near the closed
shells with spot relativistic effects. The characteristics of these nuclei, which are
near the closed shells, allowed us to provide a description based on assuming a
two-body system formed by a neutron added to an inert core. Furthermore,
relativistic analyses based on the Dirac equation have shown that they can achieve
better agreement with experimental data than the nonrelativistic analyses based on
the Schrodinger equation. One of the merits of the Dirac approach instead of a
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nonrelativistic method is that the spin-orbit potential appears inherently in the
Dirac approach when the Dirac equation is reduced to a Schrodinger-like second-
order differential equation, whereas the spin-orbit potential should be manually
inserted in the nonrelativistic Schrodinger approach.

3.1 The Ground State Energy

Numerical results for ground state energy of He, Be, C and O isotopes are
given in Table 1. Also, calculated results were compared to the experimental data.
The obtained results are reasonably acceptable because according to the numerical
results calculated from the ground state energy for these isotopes (Table 1), the
difference (AE) between the experimental and calculated binding energies is less
than 1.2 MeV for all nuclei, which is less than 0.5% of the experimental values.
Overall, the relativistic approach using Dirac equation can produce good results
when calculating the ground state energy of light weakly bound nuclei near closed
shells.

Table 1
The ground state energy of the weakly-bound nuclei. The experimental data are from Ref.
[48].
Isotope Parameter of potential Jn Energy (MeV)
o Vo Vl Eour Eexp

He 0021 0431 112113 312 28015 27560
He 0023 0453 -112.455  3/2 29306  28.861
°Be 0027 0525 -112734  3/2 ©5g750 58158
11Be 0.011 0567 -113.022 1/2* 66.147 65.472
5C 0044 0589 -113.089 12  g7788 97097
15C 0.047 0612 -113.253 112* 107.342 106.500
170 0.056 0.654  -113.442 5/2* 132.557 131.750
%0 0.059 0.676 -113.678 5/2°  144.648 143.754

3.2 The First Excited-State Energy

For the first excited energy level of these nuclei (Table 2), calculations show a
good agreement with experimental results. According to the numerical results
calculated from the first excited energy for these isotopes (Table 2), it can is
found that the difference (AE) between experimental and calculated binding
energies is less than 1.3 MeV for all nuclei. This is less than 0.5% of the
experimental values. Since °He isotope doesn’t have any excited state, it was not
considered in the calculations.
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Table 2
The First excited-state energy of the weakly-bound nuclei.The experimental data are from
Isotope Parameter of potenti; . Jn Energy (MeV)
o Vo Vi Eour Eexp
"He 0.023 0.453 -112.455 5/2° 29.448 28.863
°Be 0.027 0525 -112.734 1/2* 60.276 59.842
11Be 0.031 0567 -113.022 1/2 66.413 65.792
3C 0.044 0589 -113.089 1/2* 100.994 100.186
5C 0.047 0612 -113.253 5/2* 108.100 107.240
170 0.056  0.654  -113.442 1/2* 133.681 132.620
0 0.059 0.676 -113.678 3/2* 144.897 143.850

To well analyze and compare the obtained results for given nuclei, Figs 2-3 have
been plotted. On the plot related to isotopes of each element, the ground state and
the first excited level of each isotope can be seen for experimental data and
calculated results.
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Fig 2: Energy levels of ground states and the first excited states for SHe, "He, °Be and 'Be
isotopes. In the (a), the total angular moment (3/2)~ belong to the ground state of >He and "He and
(5/2) belong to the first excited state of "He. In the (b), the total angular moment (3/2) and (1/2)*

are for the ground state of °Be and 'Be, respectively, (1/2)* and (1/2) belong to the first excited
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Fig 3: Energy levels of ground states and the first excited states for **C, 1°C, 7O and °0 isotopes.
In the (a), the total angular moment (1/2) and (1/2)* are for the ground state of *C and *°C,
respectively, (1/2)* and (5/2)* are for the first excited state of 3C and *°C, respectively. In the (b),
the total angular moment (5/2)* is for the ground state of 1’0 and *°0 , (1/2)* and (3/2)* are for the
first excited state of 170 and 1°0O, respectively.

4. Conclusion

In the present work, we calculated energy levels of a series of weakly bound
nuclei, using a relativistic method. For this purpose, Dirac equation with an
appropriate nuclear potential was solved by a supersymmetric shape-invariance
method. Then, the energy levels of the ground states and the first excited states
were calculated for the light weakly bound nuclei (He, Be, C, and O) near the
closed shells. Results exhibited well matched to the experimental data. Finally, it
can be concluded that using relativistic approach can be useful to determine
properties of light weakly bound nuclei near closed shells.
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