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WORKSPACE COMPUTATION OF A TENSEGRITY-BASED
PARALLEL MECHANISM

Zhifei JI*, Min LIN?, Chahua CHEN?

Tensegrity systems have advantages of light-weight, deployable and low
inertia. They thus have been widely used in several disciplines such as architecture,
aerospace, and mechanisms. In this work, a novel tensegrity-based parallel
mechanism was proposed. Afterwards, the determination of the workspace of the
mechanism was investigated. On the basis of the solutions to the inverse kinematic
problem, a numerical method considering link length limitations, link interferences,
joint angle limitations and energy constraints is presented to compute the workspace
of the mechanism. This work lays the foundation for the design and application of
tensegrity-based parallel mechanisms.
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List of symbols

Aai: Coordinates of nodes A in the fixed reference frame A(X, Y, 2)

Abi: Coordinates of nodes B; in the fixed reference frame A(X, Y, 2)

Ki: Spring constant, Li: Length of rod AiBi. U: Potential energy of the system

Bamax: The maximal allowable rotational angle of the spherical joints i
Bemax: The maximal allowable rotational angle of the spherical joints j

1. Introduction

Tensegrity systems are formed by a combination of rigid elements (struts)
under compression and elastic elements (cables or springs) under tension. The use
of cables or springs as tensile components leads to an important reduction in the
weight of the systems. Due to this attractive nature, tensegrity systems have been
proposed to be used in many disciplines. Moreover, a detailed description of the
history of tensegrity systems is provided in [1-2].

The first research work that deals with tensegrity systems was completed
by Calladine [3]. Since then, tensegrity systems have been rapidly applied as
structures in the architectural context. A tensegrity dome was proposed by
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Pellegrino [4]. Some design methods for tensegrity domes are proposed by Fu [5].
Afterwards, tensegrity structures have been also proposed to be served as bridges
[6-9]. The use of cables or springs in tensegrities allows them to be deployable
[10-11]. Due to this nature, some research works are found towards their use as
antennas [12-13]. For static applications, the subject of form-finding of
tensegrities has attracted the attention of several researchers [14-15]. Moreover, a
review of form-finding methods was provided by Tibert and Pellegrino [16]. The
basic issues about the statics of tensegrity structures were reviewed by Juan and
Tur [17].

From an engineering point of view, tensegrities are a special class of
structures whose components may simultaneously perform the purposes of
structural force, actuation, sense and feedback control. For such kind of structures,
pulleys or other kinds of actuators may stretch/shorten some of the constituting
components in order to substantially change their forms with a little variation of
the structure’s energy. Therefore, tensegrity systems can be applied as
mechanisms. Oppenheim and Williams [18] were the first to consider the
actuation of tensegrity systems by modifying the lengths of their components in
order to obtain tensegrity mechanisms. Afterwards, several mechanisms based on
tensegrity systems were proposed, such as a flight simulator [19], a space
telescope [20] and a tensegrity walking robot [21-23]. For tensegrity mechanisms,
an interesting topic named tensegrity-based parallel mechanism has been
proposed recently. The concept of tensegrity-based parallel mechanism was
introduced by Marshall [24]. Then, Shekarforoush, Eghtesad and Farid [25]
presented the statics of a 3-3 tensegrity-based parallel mechanism. Afterwards,
Crane Ill, Bayat and Vikas [26] proposed a planar tensegirty-based parallel
mechanism and completed its equilibrium analysis. Tensegrity systems have been
identified as one of three main research trends in mechanisms and robotics for the
second decade of the 21st century [27]. To the best of our knowledge, few
researchers studied the workspace of special tensegrity-based parallel mechanisms
considering the geometric and energy constraints.

In this paper, we studied the workspace of a 4-SPS tensegrity-based
parallel mechanism. The main contribution of this article is twofold. First, on the
basis of the solutions to the inverse kinematic problems, we proposed a method
considering link length limitations, link interferences, joint angle limitations and
energy constraints to compute the mechanism’s workspace. Second, the volume of
the workspace along with the mechanism’s geometric parameters is researched.

This paper is organized as follows. First, the architecture of the 4-SPS
tensegrity parallel mechanism are presented in section 2. Secondly, the proposed
discretization approach for computing the equilibrium workspace is illustrated in
detail in section 3. Third, based on an equilibrium workspace criterion, effects of
different geometric parameters and constraints on the equilibrium workspace are
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examined in section 4. The numerical example is simulated in section 5. Finally,
conclusion and the future work are reported in section 6.

2. Mechanism description

A diagram of the 4-SPS tensegrity parallel mechanism is shown in Fig. 1.
It consists of a square top platform Bi1B2B3Ba, a square base platform A1A2AzAs,
four springs and four struts. The struts are joining node pairs AiBi (i=1, 2, 3, 4)
while the springs are joining node pairs AiBi+1 (i=1, 2, 3, 4 with i+1=1 if i = 4).
From Fig. 1, it can be seen that the sides of the square platform formed by nodes
A1A2A3A4 and B1B2B3B4 have the length 2a and 2b, respectively. Moreover, the
length of the prismatic actuators joining node pairs AiBi is denoted by Li. It is
assumed that the springs are linear with stiffness K;j and lengths I; (j = 1, 2, 3, 4).
These springs are also assumed to have the same free length Lo. The stiffnesses of
the struts are considered to be infinite relative to those of the springs.

As illustrated in Fig. 1, a fixed reference frame A(X, Y, Z) is located at the
center of the square A1A2AzA4 with its X axis parallel to the line joining nodes Az
and A4 and its Z axis perpendicular to the base platform A1A2AzA4, while a moving
reference frame B(X1, Y1, Z1) is located at the center of the top platform B1B2B3B4
with its X axis parallel to the line joining nodes Bz and Bs and its Z; axis
perpendicular to the top platform B1B2B3B4. Moreover, the vectors specifying the
positions of nodes Aj and B; in the fixed reference frame are defined as “a;jand b;,
respectively. Also, the vectors specifying the positions of nodes B; in the moving
reference frame are defined as Bbi.

Fig. 1. 4-SPS tensegrity parallel mechanism

In Fig. 1, the vectors specifying the positions of nodes Ai in the fixed
reference frame can be easily derived.
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a -a -a a
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0 0 0 0

Similarly, the vectors specifying the positions of nodes Bi in the moving
reference frame can be easily derived.

b b b b
%, =|b|,%b, =| b |,®,=|-b|,®%,=|-b )
0 0 0 0

Furthermore, the position and orientation of the top platform B1B.B3Bsare
described by the position vector P = [x, y, z]" and the rotation matrix T with
respect to the fixed reference frame. From Fig. 1, it can be seen that the rotation
matrix T can be defined by rotating the moving reference frame y about Z; axis
and followed g about Y1 axis, o about Xy axis. T thus takes the following form.

cpcy saspcy—casy SaSy+caspcy
T=|cfsy cacy+sasy caspsy—spcy (3)
-sp sacpf cacp
where s and c are used to represent the sine and cosine function, respectively. The

position vectors of points Bi (i=1, 2, 3, 4) with respect to the fixed reference frame
can be obtained:

A =P+T-%h, i=1 2 3 4 4)

Considering the conditions that the potential energy will reach its
minimum when the mechanism is in equilibrium, the position and orientation of
the top platform can be determined by fixing the actuator lengths Li. For this
reason, it is appropriate to say that the mechanism has four degrees of freedom
when it is in equilibrium.

Therefore, the system’s output vector can be chosen as O =[x, Y, z, a]"
while its input vector is chosen as | = [L1, L2, Ls, L4]". With the position vectors of
points Ai and Bi now known, the vector of the ith link can be written as

L="0-"a,i=1 2 3 4 (5)
Similarly, the length of the ith spring can be given as
| =|*b,-"al, (=12 3 4 i+l1=1wheni=4)  (6)

Then the potential energy of the mechanism can be obtained.
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3. Workspace computation

The workspace of a mechanism is defined as the region that its end-
effector can reach and is generally considered to be an important performance
indicator. For the mechanism shown in Fig. 1, its workspace can be considered as
the range of the output variables x, y, z and a. Unlike in conventional mechanisms,
the workspace of the 4-SPS tensegrity-based parallel mechanism depends not only
on the geometric constraints but also on the energy constraints.

The geometric constraints of the mechanism include link length
limitations, link interferences and joint angle constraints.

3.1 Link length limitations

The link length limitations corresponds to the ranges that the prismatic
actuators can operate, which are given by

L. <L<L (8)

imin — imax

where Limin and Limax are the minimal and maximal allowable length of link
i, respectively.

It is noted that if one of link length is at its extreme value, the workspace
will reach its boundaries.

3.2 Link interference

Bars’ interference might occur in the real world due to the fact that bars
have physical dimensions. It is supposed that the bars are cylindrical with a
diameter D. Then, the shortest distance between the center lines of two adjacent
bars is denoted by Di (i = 1, 2, 3). When two bars do not interfere, the following
conditions should be satisfied.

D,>D 9)

In a previous work [28], the computation of D; have been discussed
explicitly. The method for computing Di is employed in this paper to establish the
equations corresponding to bars’ interference. Due to space limitation, this
procedure will not be detailed here.
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3.3 Joint angle constraints

The links are typically attached to the top and base platforms by spherical
joints. Generally, a spherical joint is free to rotate about all three axes. However,
in practice, its motion is restricted by the physical construction of the joints. As
shown in Fig. 2, the rotational angle of a ball joint, 8, defined as the angle
between the Z-axis of a coordinate system attached to its socket, and u, a vector
along the leg connected to the joint, is physically constrained. It can be observed
that every practical joint has its maximal rotational angle value Gmax.

It is assumed that the socket of a spherical joint i connecting the base and
the link is installed so that a unit vector na; describes its orientation with respect to
the base coordinate system. As shown in Fig. 3, the rotational angle of the ball
joint and its constraint can be computed by:

0, = arccos (I'“%J <0, max (10)

X [ ]
Fig. 2 Ball joint rotational angle Fig. 3 Joint rotational constraints

Similarly, for the rotational angle of the spherical joint j connecting the top
platform and the joint angle constraint can be expressed by:

I, -Tng
0y = arccos [‘|I—|B‘J <O, (11)
j

where ngj is the unit vector which describes the spherical joint orientation
with respect the moving coordinate system, and famax and fsmax are the maximal
allowable rotational angles of the spherical joints i and j, respectively.

3.4 Energy constraints

For tensegrity-based parallel mechanisms, the workspace should consider
the mechanism’s energy constraints introduced by the conditions that the potential
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energy is always at its minimum when the mechanism is in equilibrium. From Eq.
(7), the energy constraints equations can be expressed by

(12)
oy _,
oy

3.5 Determination of the workspace

In this section, an algorithm is proposed for determining the equilibrium
workspace regions of the tensegrity-based parallel mechanism. For a given output
variables Oo = [Xo, Yo, Zo, a0]", the variables o and yo can be computed by Eq. (12).
With the variables Xo, Yo, Zo, ao, fo and yo known, the coordinates of nodes Aio and
Bio can be determined using Egs. (1) and (4). Afterwards, the length lio(see section
3.1), minimal distances between links Dio (see section 3.2) and the rotational angle
variables faio and Ggjo (see section 3.3) can be computed. It is noted that if the
point corresponding to Oo = [Xo, Yo, 20, @o]" belongs to the mechanism’s
workspace, the following equation should be satisfied.

I‘min < Ii0 < L
D,>D
(13)

9Ai0 < Amax
eBiO < HBmax

max

The procedure for computing the workspace for a given orientation of the
tensegrity mechanism is given in Fig. 4.

The volume of the workspace can be used as a criterion for workspace
evaluation and optimization. The equilibrium workspace volume is a function of
the geometric parameters as well as the constraints of the system. Therefore, the
volume criterion can also be used to evaluate the effect of different geometric
parameters and constraints on the workspace.

In this paper, the volume of the equilibrium workspace of 4-SPS can be
computed as

V = AX- Ay - Az -length(x) (14)
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Input initial geometric
parameters

l
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|

All the constraint
equations satisfied

X = X+A4X

X(K) = x; y(k) =y
z(k) =z; k =k+1

X > Xm

Y
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N
X = Xmin
Y
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X = Xmin, Y = N
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End

Fig. 4 Procedure for determination the equilibrium workspace of tensegrity mechanism

4 Numerical simulations

In order to validate the approach to computing the equilibrium workspace
of tensegrity-based parallel mechanism in the previous section, a numerical
example is provided.
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The mechanism’s parameters are given in the following.

b a= 1, b= 05, Limin = 05, Limax = 3, Gmax :700, D= 0015,

e Ax=Ay=A4z=Ado =4 =4y =0.05,

e xeg[-15,15],ye[-15,15],z¢ [05,25], e [-n/2, w2 ], ye [ -

/2, /2],

e «=-0.1708, ¢ = 0.05.

The workspace of the tensegrity-based parallel mechanism is shown in
Fig. 5. From Fig. 5, it can be seen that the workspace is symmetrical with the x-
axis and y-axis, respectively.
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= Ovax 1°
Fig. 5. Workspace of the mechanism Fig.6. The evolution of the volume V along

with the maximal rotational angle Gmax

The evolution of the volume of the mechanism’s workspace along with the
maximal rotational angle fmax is shown in Fig. 6. From Fig.6, it can be seen that
the workspace volume increase with Gmax.

Let k be the ratio of a and b, the evolution of the volume of the
mechanism’s workspace along with the parameter k can be obtained, which is
shown in Fig. 7. From Fig. 7, it can be seen that the workspace volume reach the
maximum when k=0.3, and the workspace volume increase with k when k < 0.3,
and the workspace volume decrease with an increase in k when k > 0.3. This law
need to be considered when the mechanism is put to use.
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Fig. 7. The evolution of the volume V along with the parameter k
5 Conclusion

A numerical approach for determining the workspace of a 4-SPS
tensegrity-based parallel mechanism has been proposed based on the inverse
kinematics of the mechanism. Then, the workspace volume has been computed.
The evolutions of the workspace volume along with the maximal rotational angle
and the parameter k have been investigated respectively. The results indicates that
the workspace volume reach the maximum when k = 0.3, and it increases with k
when k < 0.3. Moreover, the workspace volume decreases with an increase in the
parameter k when k > 0.3. The obtained laws can be used for optimizing
workspace and designing the parameters of such mechanisms. While the
numerical method for computing the workspace proposed in this paper can be
extended in a straightforward manner to other tensegrity-based mechanisms.
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