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WORKSPACE COMPUTATION OF A TENSEGRITY-BASED 
PARALLEL MECHANISM 

Zhifei JI1, Min LIN2, Chahua CHEN3 

Tensegrity systems have advantages of light-weight, deployable and low 
inertia. They thus have been widely used in several disciplines such as architecture, 
aerospace, and mechanisms. In this work, a novel tensegrity-based parallel 
mechanism was proposed. Afterwards, the determination of the workspace of the 
mechanism was investigated. On the basis of the solutions to the inverse kinematic 
problem, a numerical method considering link length limitations, link interferences, 
joint angle limitations and energy constraints is presented to compute the workspace 
of the mechanism. This work lays the foundation for the design and application of 
tensegrity-based parallel mechanisms. 
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List of symbols 
Aai: Coordinates of nodes Ai in the fixed reference frame A(X, Y, Z) 
Abi: Coordinates of nodes Bi in the fixed reference frame A(X, Y, Z) 
Ki: Spring constant, Li: Length of rod AiBi; U: Potential energy of the system 
θAmax: The maximal allowable rotational angle of the spherical joints i 
θBmax: The maximal allowable rotational angle of the spherical joints j 

1. Introduction 

Tensegrity systems are formed by a combination of rigid elements (struts) 
under compression and elastic elements (cables or springs) under tension. The use 
of cables or springs as tensile components leads to an important reduction in the 
weight of the systems. Due to this attractive nature, tensegrity systems have been 
proposed to be used in many disciplines. Moreover, a detailed description of the 
history of tensegrity systems is provided in [1-2]. 

The first research work that deals with tensegrity systems was completed 
by Calladine [3]. Since then, tensegrity systems have been rapidly applied as 
structures in the architectural context. A tensegrity dome was proposed by 
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Pellegrino [4]. Some design methods for tensegrity domes are proposed by Fu [5]. 
Afterwards, tensegrity structures have been also proposed to be served as bridges 
[6-9]. The use of cables or springs in tensegrities allows them to be deployable 
[10-11]. Due to this nature, some research works are found towards their use as 
antennas [12-13]. For static applications, the subject of form-finding of 
tensegrities has attracted the attention of several researchers [14-15]. Moreover, a 
review of form-finding methods was provided by Tibert and Pellegrino [16]. The 
basic issues about the statics of tensegrity structures were reviewed by Juan and 
Tur [17].  

From an engineering point of view, tensegrities are a special class of 
structures whose components may simultaneously perform the purposes of 
structural force, actuation, sense and feedback control. For such kind of structures, 
pulleys or other kinds of actuators may stretch/shorten some of the constituting 
components in order to substantially change their forms with a little variation of 
the structure’s energy. Therefore, tensegrity systems can be applied as 
mechanisms. Oppenheim and Williams [18] were the first to consider the 
actuation of tensegrity systems by modifying the lengths of their components in 
order to obtain tensegrity mechanisms. Afterwards, several mechanisms based on 
tensegrity systems were proposed, such as a flight simulator [19], a space 
telescope [20] and a tensegrity walking robot [21-23]. For tensegrity mechanisms, 
an interesting topic named tensegrity-based parallel mechanism has been 
proposed recently. The concept of tensegrity-based parallel mechanism was 
introduced by Marshall [24]. Then, Shekarforoush, Eghtesad and Farid [25] 
presented the statics of a 3-3 tensegrity-based parallel mechanism. Afterwards, 
Crane III, Bayat and Vikas [26] proposed a planar tensegirty-based parallel 
mechanism and completed its equilibrium analysis. Tensegrity systems have been 
identified as one of three main research trends in mechanisms and robotics for the 
second decade of the 21st century [27]. To the best of our knowledge, few 
researchers studied the workspace of special tensegrity-based parallel mechanisms 
considering the geometric and energy constraints.  

In this paper, we studied the workspace of a 4-SPS tensegrity-based 
parallel mechanism. The main contribution of this article is twofold. First, on the 
basis of the solutions to the inverse kinematic problems, we proposed a method 
considering link length limitations, link interferences, joint angle limitations and 
energy constraints to compute the mechanism’s workspace. Second, the volume of 
the workspace along with the mechanism’s geometric parameters is researched. 

This paper is organized as follows. First, the architecture of the 4-SPS 
tensegrity parallel mechanism are presented in section 2. Secondly, the proposed 
discretization approach for computing the equilibrium workspace is illustrated in 
detail in section 3. Third, based on an equilibrium workspace criterion, effects of 
different geometric parameters and constraints on the equilibrium workspace are 
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examined in section 4. The numerical example is simulated in section 5. Finally, 
conclusion and the future work are reported in section 6. 

2. Mechanism description 

A diagram of the 4-SPS tensegrity parallel mechanism is shown in Fig. 1. 
It consists of a square top platform B1B2B3B4, a square base platform A1A2A3A4, 
four springs and four struts. The struts are joining node pairs AiBi (i=1, 2, 3, 4) 
while the springs are joining node pairs AiBi+1 (i=1, 2, 3, 4 with i+1=1 if i = 4). 
From Fig. 1, it can be seen that the sides of the square platform formed by nodes 
A1A2A3A4 and B1B2B3B4 have the length 2a and 2b, respectively. Moreover, the 
length of the prismatic actuators joining node pairs AiBi is denoted by Li. It is 
assumed that the springs are linear with stiffness Kj and lengths lj (j = 1, 2, 3, 4). 
These springs are also assumed to have the same free length L0. The stiffnesses of 
the struts are considered to be infinite relative to those of the springs.  

As illustrated in Fig. 1, a fixed reference frame A(X, Y, Z) is located at the 
center of the square A1A2A3A4 with its X axis parallel to the line joining nodes A3 
and A4 and its Z axis perpendicular to the base platform A1A2A3A4, while a moving 
reference frame B(X1, Y1, Z1) is located at the center of the top platform B1B2B3B4 
with its X axis parallel to the line joining nodes B3 and B4 and its Z1 axis 
perpendicular to the top platform B1B2B3B4. Moreover, the vectors specifying the 
positions of nodes Ai and Bi in the fixed reference frame are defined as Aai and Abi , 
respectively. Also, the vectors specifying the positions of nodes Bi in the moving 
reference frame are defined as Bbi. 
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Fig. 1. 4-SPS tensegrity parallel mechanism 

 
In Fig. 1, the vectors specifying the positions of nodes Ai in the fixed 

reference frame can be easily derived. 
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Similarly, the vectors specifying the positions of nodes Bi in the moving 
reference frame can be easily derived. 

1 2 3 4, , ,
0 0 0 0

B B B B

b b b b
b b b b

− −       
       = = = − = −       
              

b b b b                      (2) 

Furthermore, the position and orientation of the top platform B1B2B3B4 are 
described by the position vector P = [x, y, z]T and the rotation matrix T with 
respect to the fixed reference frame. From Fig. 1, it can be seen that the rotation 
matrix T can be defined by rotating the moving reference frame γ about Z1 axis 
and followed β about Y1 axis, α about X1 axis. T thus takes the following form. 

c c s s c c s s s c s c
c s c c s s c s s s c

s s c c c

β γ α β γ α γ α γ α β γ
β γ α γ α γ α β γ β γ
β α β α β

− + 
 = + − 
 − 

T                     (3) 

where s and c are used to represent the sine and cosine function, respectively. The 
position vectors of points Bi (i=1, 2, 3, 4) with respect to the fixed reference frame 
can be obtained: 

,  1,  2,  3,  4A B
i i i= ⋅ =b P + T b                                  (4) 

Considering the conditions that the potential energy will reach its 
minimum when the mechanism is in equilibrium, the position and orientation of 
the top platform can be determined by fixing the actuator lengths Li. For this 
reason, it is appropriate to say that the mechanism has four degrees of freedom 
when it is in equilibrium.  

Therefore, the system’s output vector can be chosen as O = [x, y, z, α]T 
while its input vector is chosen as I = [L1, L2, L3, L4]T. With the position vectors of 
points Ai and Bi now known, the vector of the ith link can be written as 

,  1,  2,  3,  4A A
i i iL i= − =b a                                         (5) 

Similarly, the length of the ith spring can be given as 

1 ,  ( 1,  2,  3,  4;  1 1 when 4)A A
i i i i i i+= − = + = =l b a          (6) 

Then the potential energy of the mechanism can be obtained. 
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3. Workspace computation 

The workspace of a mechanism is defined as the region that its end-
effector can reach and is generally considered to be an important performance 
indicator. For the mechanism shown in Fig. 1, its workspace can be considered as 
the range of the output variables x, y, z and a. Unlike in conventional mechanisms, 
the workspace of the 4-SPS tensegrity-based parallel mechanism depends not only 
on the geometric constraints but also on the energy constraints.  

The geometric constraints of the mechanism include link length 
limitations, link interferences and joint angle constraints. 

3.1 Link length limitations 

The link length limitations corresponds to the ranges that the prismatic 
actuators can operate, which are given by 

min maxi i iL L L≤ ≤                                                      (8) 

where Limin and Limax are the minimal and maximal allowable length of link 
i, respectively. 

It is noted that if one of link length is at its extreme value, the workspace 
will reach its boundaries. 

3.2 Link interference 

Bars’ interference might occur in the real world due to the fact that bars 
have physical dimensions. It is supposed that the bars are cylindrical with a 
diameter D. Then, the shortest distance between the center lines of two adjacent 
bars is denoted by Di (i = 1, 2, 3). When two bars do not interfere, the following 
conditions should be satisfied.  

iD D≥                                                                      (9) 

In a previous work [28], the computation of Di have been discussed 
explicitly. The method for computing Di is employed in this paper to establish the 
equations corresponding to bars’ interference. Due to space limitation, this 
procedure will not be detailed here. 
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3.3 Joint angle constraints 

The links are typically attached to the top and base platforms by spherical 
joints. Generally, a spherical joint is free to rotate about all three axes. However, 
in practice, its motion is restricted by the physical construction of the joints. As 
shown in Fig. 2, the rotational angle of a ball joint, θ, defined as the angle 
between the Z-axis of a coordinate system attached to its socket, and u, a vector 
along the leg connected to the joint, is physically constrained. It can be observed 
that every practical joint has its maximal rotational angle value θmax. 

It is assumed that the socket of a spherical joint i connecting the base and 
the link is installed so that a unit vector nAi describes its orientation with respect to 
the base coordinate system. As shown in Fig. 3, the rotational angle of the ball 
joint and its constraint can be computed by:  

maxarccos i Ai
Ai A

i

θ θ
 ⋅

= ≤  
 

l n
l

                                      (10) 
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Fig. 2 Ball joint rotational angle  Fig. 3 Joint rotational constraints 

 
Similarly, for the rotational angle of the spherical joint j connecting the top 

platform and the joint angle constraint can be expressed by: 

maxarccos j Bj
Bj B

j

θ θ
 ⋅
 = ≤
 
 

l Tn
l

                                    (11) 

where nBi is the unit vector which describes the spherical joint orientation 
with respect the moving coordinate system, and θAmax  and θBmax  are the maximal 
allowable rotational angles of the spherical joints i and j, respectively. 

3.4 Energy constraints 

For tensegrity-based parallel mechanisms, the workspace should consider 
the mechanism’s energy constraints introduced by the conditions that the potential 
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energy is always at its minimum when the mechanism is in equilibrium. From Eq. 
(7), the energy constraints equations can be expressed by 

0

0

U

U
β

γ

∂
=

∂
∂

=
∂

                                                       (12)

 

3.5 Determination of the workspace 

In this section, an algorithm is proposed for determining the equilibrium 
workspace regions of the tensegrity-based parallel mechanism. For a given output 
variables O0 = [x0, y0, z0, α0]T, the variables β0 and γ0 can be computed by Eq. (12). 
With the variables x0, y0, z0, α0, β0 and γ0 known, the coordinates of nodes Ai0 and 
Bi0 can be determined using Eqs. (1) and (4). Afterwards, the length li0(see section 
3.1), minimal distances between links Di0 (see section 3.2) and the rotational angle 
variables θAi0 and θBj0 (see section 3.3) can be computed. It is noted that if the 
point corresponding to O0 = [x0, y0, z0, α0]T belongs to the mechanism’s 
workspace, the following equation should be satisfied. 

min 0 max
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0 max

0 max
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Bi B

L l L
D D
θ θ
θ θ

≤ ≤
≥
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                                                  (13) 

The procedure for computing the workspace for a given orientation of the 
tensegrity mechanism is given in Fig. 4. 

The volume of the workspace can be used as a criterion for workspace 
evaluation and optimization. The equilibrium workspace volume is a function of 
the geometric parameters as well as the constraints of the system. Therefore, the 
volume criterion can also be used to evaluate the effect of different geometric 
parameters and constraints on the workspace. 

In this paper, the volume of the equilibrium workspace of 4-SPS can be 
computed as 

( )V x y z length x= ∆ ⋅∆ ⋅∆ ⋅                                      (14) 
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Fig. 4 Procedure for determination the equilibrium workspace of tensegrity mechanism 

4 Numerical simulations 

In order to validate the approach to computing the equilibrium workspace 
of tensegrity-based parallel mechanism in the previous section, a numerical 
example is provided. 
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The mechanism’s parameters are given in the following. 
 a = 1, b = 0.5, Lmin = 0.5, Lmax = 3, θmax =70°, D = 0.015, 
 Δx = Δy = Δz = Δα = Δβ = Δγ = 0.05,  
 x∈[ -1.5, 1.5 ], y∈ [ -1.5, 1.5 ], z∈ [ 0.5, 2.5 ], β∈ [ -π/2, π/2 ], γ∈ [ -

π/2, π/2 ],  
 α = -0.1708, ε = 0.05. 
The workspace of the tensegrity-based parallel mechanism is shown in 

Fig. 5. From Fig. 5, it can be seen that the workspace is symmetrical with the x-
axis and y-axis, respectively. 
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         Fig. 5. Workspace of the mechanism          Fig.6. The evolution of the volume V along                                                                              

with the maximal rotational angle θmax 

 
The evolution of the volume of the mechanism’s workspace along with the 

maximal rotational angle θmax is shown in Fig. 6. From Fig.6, it can be seen that 
the workspace volume increase with θmax. 

Let k be the ratio of a and b, the evolution of the volume of the 
mechanism’s workspace along with the parameter k can be obtained, which is 
shown in Fig. 7. From Fig. 7, it can be seen that the workspace volume reach the 
maximum when k=0.3, and the workspace volume increase with k when k < 0.3, 
and the workspace volume decrease with an increase in k when k > 0.3. This law 
need to be considered when the mechanism is put to use. 
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Fig. 7. The evolution of the volume V along with the parameter k 

5 Conclusion 

A numerical approach for determining the workspace of a 4-SPS 
tensegrity-based parallel mechanism has been proposed based on the inverse 
kinematics of the mechanism. Then, the workspace volume has been computed. 
The evolutions of the workspace volume along with the maximal rotational angle 
and the parameter k have been investigated respectively. The results indicates that 
the workspace volume reach the maximum when k = 0.3, and it increases with k 
when k < 0.3. Moreover, the workspace volume decreases with an increase in the 
parameter k when k > 0.3. The obtained laws can be used for optimizing 
workspace and designing the parameters of such mechanisms. While the 
numerical method for computing the workspace proposed in this paper can be 
extended in a straightforward manner to other tensegrity-based mechanisms. 
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