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NEURAL NETWORKS APPLICATION IN SHORT-TERM 

LOAD FORECASTING 

Andrei TUDOSE1, Irina PICIOROAGA2, Dorian SIDEA3, Constantin BULAC4 

Short-term load forecasting (STLF) is a fundamental procedure in power 

systems operation that underlies the most important decision-making processes, 

such as economic dispatch or equipment maintenance planning. Due to the high 

degree of uncertainties in demand variations, advanced techniques based on 

artificial intelligence are needed in order to obtain an accurate electrical load 

forecasting. In this paper, multiple forecasting methods based on neural networks, 

including the multilayer perceptron (MLP), convolutional neural networks (CNN), 

long short-term memory (LSTM) and gated recurrent unit (GRU), are applied to 

solve the STLF problem, using a real dataset provided by the Romanian TSO. In this 

regard, the Mean Squared Error (MSE), the Root Mean Squared Error (RMSE), the 

Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) are 

used as evaluation metrics for the day-ahead load forecasting results.  
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1. Introduction 

The modern society development heavily relies on an appropriate power 

supply. Providing this service at the lowest possible cost involves the accurate 

covering of demand fluctuations and system losses by generating the appropriate 

amount of energy. The principle by which utility companies provide the energy 

needs to their users consists in estimating the electrical load in advance, through 

already known consumption patterns and various factors that may influence them 

(weather conditions, economic growth, social events etc.). This analysis is known 

as the "electricity consumption forecasting". Therefore, the proper power systems 

operation is centered around the power demanded by their various consumers, as 

generation is scheduled to follow the load, while both transmission and 

distribution grids need to provide a reliable connection between consumption and 

supply. In this context, load forecasting represents one of the most important 
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inputs in power system planning to correctly define all the scenarios under study 

[1]. From a technical point of view, load forecasting is essential for security 

assessments in power systems, as their behavior can be simulated in this manner 

at some future time in order to verify if a secure operation can be achieved in a 

variety of operating conditions. Furthermore, load forecasting is of high economic 

importance, since it facilitates decision-making in various activities of power 

systems operation, such as the allocation of certain equipment, scheduling of 

different maintenance operations or the economic dispatch of power between 

generation units [2].  

The prediction interval for load forecasting studies can vary from a few 

minutes (for stability assessment) to a few decades (for investment planning). 

Among these analyses, the short-term load forecast plays a critical role in 

ensuring the safety, stability and efficiency in power systems operation. 

Many approaches have been proposed over the years to solve the short-

term load forecasting. The early load forecasting models were mostly based on 

statistical methods, such as the similar day approach, Box-Jenkins basic models 

(ARMA [3], ARIMA [4] or ARIMAX [5]) or exponential smoothing [6]. 

However, these traditional methods fail in adapting to the continuously changing 

profile of the electrical load. Therefore, recent studies focus on modern techniques 

using artificial intelligence, such as fuzzy logic [7] and support vector regression 

[8]. In this paper, several artificial intelligence techniques, including the multi-

layer perceptron (MLP), convolutional neural networks (CNN), long short-term 

memory (LSTM) and gated recurrent unit (GRU), are applied for solving the 

short-term load forecasting problem.  

The main contribution of the authors is the development of a general 

neural network-based framework capable of employing the mentioned neural 

network models (MLP, CNN, LSTM and GRU) to solve the STLF problem for 

the aggregated consumption in the Romanian power system. A comparison study 

is performed in order to identify the most efficient model, using the mean absolute 

error (MAE), the mean absolute percentage error (MAPE), the mean squared error 

(MSE) and the root mean square error (RMSE) as assessment indexes.   

2. Neural Networks 

The artificial intelligence domain has become a topic of high interest for 

the research community, primarily due to recent advancements of hardware 

components, such as graphical processing units (GPU), which allow the design of 

neural networks models with increased number of layers, while also ensuring 

faster convergence time compared to central processing units (CPU). Among 

these, neural networks (NN) are capable to learn complex features from the input 

data and attain good accuracy for various applications.  
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For regression problems, such as the load forecasting, many applications 

employ the classical MLP, as it is easier to implement, since it involves less 

parameters to set. More complex techniques, such as CNN, LSTM and GRU, are 

used as well, since they are specialized in sequence modelling. Further in this 

section, a brief overview of the mentioned neural networks is presented. 

A. Multi-layer perceptron 

The multi-layer perceptron (or feed-forward neural network) represents a 

fundamental class of neural networks, being able to generate good results on both 

classification and regression problems. 

Full connectivity between consecutive layers provides MLP the capability 

to solve complex problems, but with the cost of a high computational effort 

required in the training process [9]. This leads to a slower learning process, which 

represents a major disadvantage of MLP, as the fine-tuning of neural networks, 

which implies refitting of the model several times with different parameters, is a 

necessary step in improving the performance of the model. 

. . .

Input layer Output layerHidden layers

. . . . . . . . .

. . .

 
Fig. 1 General structure of the MLP 

B. Convolutional Neural Networks 

CNNs represent one of the main topics in the Deep Learning paradigm, 

mostly due to their applications in object recognition problems [10]. The main 

requirement of a CNN is the input defining as an array (i.e. an array of pixel 

intensities or a sequence of values in a time-series). Thus, CNNs can be easily 

adapted to solve load forecasting problems [11]. 

CNNs have the capability to detect and extract features from neighbouring 

values. Thus, in a time-series problem, the convolutional layers of a CNN 
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emphasize the relationship between the values at consecutive timesteps. The 

pooling layers are used to attain a dimensionality reduction of the features, 

improving the training speed, while also keeping the most vital information. 
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Fig. 2 General structure of a convolutional neural network 

C. Recurrent Neural Networks 

The capability of learning time-dependent features from a sequence makes 

the RNN a suitable model for time-series forecasting. Simple RNNs present the 

drawback of the vanishing gradient during training, issue that is overcome by the 

more complex units, the long short-term memory (LSTM) [12] and gated 

recurrent unit (GRU) [13], which are depicted in Fig. 3. LSTM and GRU cells 

consist in various gates, that perform multiple operations in order to establish the 

cell output.  LSTM contains three gates: the forget gate (ft), the input gate (it) and 

the output gate (ot), while a GRU cell, although accomplishes a similar purpose, 

consists in only two gates: the reset gate (rt) and the update gate (zt). 

  
a) b) 

Fig.3 Illustration of: a. LSTM cell, b. GRU cell 
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Fig. 4 General structure of the LSTM/GRU network 

Most applications in the field of natural language processing, a topic of 

high importance in the era of digitalization, are based on RNN and its’ variations, 

as they achieve great performances [14]. Results presented in [15] show that the 

efficiency in solving the STLF problem obtained by LSTM and GRU is similar, 

making them a reliable tool to use. Despite showing better results than the simple 

RNN, LSTM and GRU have more weights to update, which leads to a longer 

training time. In general, GRU trains faster than LSTM, as a GRU has only 3 

trainable parameters for each unit, while a LSTM unit has 4. Accuracy may vary 

depending on the problem and the structure and size of the dataset, thus an 

analysis of both is required. 

3. The NN model for solving the STLF problem 

Good accuracy of the load forecasting model heavily relies on external 

variables, such as weather factors or the time of the year/week. Most of the neural 

networks will not work properly if these external variables are fed directly into 

them, as they require the input to be a sequence of values from the analyzed time-

series. In this section, the general framework used for solving the STLF problem 

based on artificial intelligence is described. 

A way to incorporate the external variables is to firstly feed the sequence 

of the previous load into a neural network, such as a CNN, GRU or LSTM, and 

secondly, concatenate the output of this neural network with the external variables 

and feed them into a fully-connected layer. The output layer consists in 24 

neurons, representing the day-ahead hourly energy consumption forecasting. This 

technique is frequently used to include external variables in time-series 
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forecasting [16], [17]. The general architecture of the implemented model is 

depicted in Fig. 5. 
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Fig. 5. The architecture of the implemented model  

The ReLU (rectified linear unit) activation function, described by equation 

(1), is used for the MLP and CNN implementation. The fully connected layers 

also employ ReLU. For the LSTM and GRU networks, the sigmoid and 

hyperbolic tangent activation functions are used, according to the cells’ structure 

previously presented in Fig. 3. 

ReLU

,   x>0

0,  if x 0

x if
y


= 


                (1) 

Data normalization is mandatory for some neural network types, such as 

the recurrent types (LSTM and GRU), as they are using tanh and sigmoid 

activation functions, which are prone to the saturation effect. Also, neural 

networks’ performance generally improves when the input data are scaled to the 

same range of values. In the developed model, the min-max normalization method 

is employed, which is described by the following equation: 

min( )

max( ) min( )
norm

x X
x

X X

−
=

−
      (2) 

where x is the value to be normalized from the array X. 

Hourly energy consumption values, as well as temperature values, are 

normalized using the min-max method. The day of week and the season are 
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extracted from the calendar date and are processed using one-hot encoding 

technique, while the holiday influence is quantified using a binary variable. The 

assessment of the forecasting results is done by applying the following four 

frequently used evaluation metrics: mean absolute percentage error (MAPE), 

mean absolute error (MAE), mean squared error (MSE) and root mean squared 

error (RMSE), described by equations (3)-(6) [18]: 
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where n is the number of samples, y and ŷ are the real load and the predicted load, 

respectively. 

4. Case study 

A. Dataset 

In this paper, the model previously described is applied to solve the day-

ahead load forecasting for the Romanian power system, with a resolution of one 

hour. The dataset consists in hourly aggregated energy consumption at national 

level, available at [19], daily minimum, average and maximum temperatures 

measured in Bucharest, obtained from [20] and data derived from the calendar 

date, collected for a period of 7 years, from 2012 to 2019.  

 

Fig. 6 Training and testing split of the dataset 
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As it can be observed in Fig. 6, the dataset is split into a training dataset 

and a testing dataset. The last 511 days from the 7-year period, which represent 

20% of the dataset, are used to test the model’s performance. From the remaining 

dataset, 30% of data are randomly selected and used for the validation process, 

while the other 70% of data are used for training. 

B. Model performance analysis 

This study focuses on evaluating the model described in Section III, by 

comparing four different architectures of neural networks (MLP, CNN, LSTM 

and GRU). The influence of number of layers that process the load data (included 

in the grey block in Fig. 5) is also assessed, as presented in Table 1. The output of 

these layers is concatenated with the external variables and fed into fully-

connected layers. For each type of NN studied, two fully-connected layers are 

used after concatenating the first part of the model with the external variables. The 

model implementation was done in Python using TensorFlow and Keras libraries. 

For training, Nadam optimizer was applied. 
Table 1 

Evaluation metrics for the studied models 

NN type No. of layers 
MAE 

[MWh] 

MAPE 

[%] 

MSE 

[ - ] 

RMSE 

[MWh] 

MLP 

1 128.5 1.85 29384 179.6 

2 114.8 1.66 23945 161.8 

3 117.5 1.7 24259 166.1 

CNN 

1 123.6 1.78 27124 173 

2 112.5 1.63 23025 159.9 

3 122.5 1.77 26423 170.9 

LSTM 

1 134.3 1.94 30570 188.8 

2 132.7 1.92 33167 192.5 

3 164.2 2.35 68705 251.8 

GRU 

1 135.2 1.94 36118 187.3 

2 128.8 1.86 33654 181.6 

3 153.6 2.2 51992 218.6 

As it can be observed, the CNN architecture with 2 convolutional and 

pooling layers obtained the best performance by means of all evaluation metrics 

considered in this study, achieving a MAPE value of 1.63% and a MAE value of 

112.5 MWh, which indicate a great potential of the model. The MLP also shows 

good accuracy, with a MAPE of 1.66% when two layers are used.  
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For the analyzed dataset, it can be observed that GRU showed better 

results than LSTM networks. The lowest MAPE values are 1.86% for GRU and 

1.92% for LSTM, respectively.  

 

Fig. 7 The NN techniques assessment results 

As depicted in Fig. 7, for every type on neural network, the best 

performance is achieved when two layers are used. When only one layer is used, 

the neural network is too simple and cannot extract the complex features from the 

input data. Using too many layers generally leads to overfitting, the neural 

network obtaining good accuracy for the training set, but with poor performance 

in the testing phase. 

5. Conclusions 

In this paper multiple neural networks-based methods were investigated in 

solving the short-term load forecasting for the Romanian power system. Four 

types of neural networks, namely the MLP, CNN, LSTM and GRU, are used 

within the proposed model and are evaluated based on MAPE, MAE, MSE and 

RMSE metrics. Among the tested architectures, the convolutional neural network 

obtained the best results by means of all evaluation indexes. The proposed model 

is able to integrate each of the discussed neural networks without additional 

processing, thus providing the necessary framework for comparison studies 

regarding the performance of the different neural networks in the load forecasting 

problem.  

Future developments of forecasting methodologies may involve model’s 

hybridization by combining multiple neural network architectures. Also, ensemble 

learning techniques are considered, as aggregating results produced by different 

models may reduce large errors and lead to a more consistent performance.  
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