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INTEGRATION OF WIRELESS SENSOR NETWORKS WITH 
VIRTUAL INSTRUMENTATION IN A RESIDENTIAL 

ENVIRONMENT 

Grigore STAMATESCU1, Valentin SGÂRCIU2 

This paper presents an approach to integrate wireless sensor networks 
(WSN) with the LabVIEW graphical development environment through a dedicated 
software driver. As personal constribution, a system architecture and concept 
implementation are described, in the context of a smart house monitoring scenario. 
Data acquisition is performed via the deployed wireless sensor network with focus 
on three main parameters: temperature, humidity and light. The data logging, 
monitoring and control functions are realized through a virtual instrumentation 
project. This also enables an easy-to-use user interface and the accesibility of data 
through standards-based web server technologies. The potential of remote 
monitoring and control through mobile terminals is opened up. 
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1. Introduction 

Recent advances in computer science, telecommunications and electrical 
engineering have converged into the field of wireless sensor networks (WSN) [1]. 
These tiny embedded networked devices, which consist of processing units, low-
power radios, various sensors and a power supply, usually in the form of batteries, 
can be deployed in an interest area and relay important data back to a base station. 
There, data is stored, processed and analyzed and can be made available to the 
user. In a broader view, wireless sensor networks can be seen as essential 
components of the Internet of Things concept [2]. 

LabVIEW – the graphical programming environment, offers an intuitive 
way for engineers and scientists to quickly deploy applications for testing, data 
acquisition and control in the form of virtual instruments (VIs). A VI consists of 
two parts. The block diagram implements the program logic by wiring together 
standardized library functions and control structures or user-defined routines. The 
front panel is the user interface which consists of standard elements such as: 
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buttons, graphs, indicators assembled to provide an intuitive view of the program 
scope. 

Two of the most important potential applications of wireless sensor 
networks are environmental monitoring and home and building automation 
systems. In the first case, sensor nodes are spread over a certain area (e.g. urban 
landscape, fields, forest etc.) for monitoring a range of parameters. Various 
research and commercial WSN platforms have been developed which offer 
integrated sensors for temperature, atmospheric pressure, humidity and ambient 
light intensity as well as more specialized systems for air pollutants detection [3], 
ambient sound or others. Environmental data collection over large areas poses 
specific issues which have to be dealt with, such as random node placement, 
battery life and network topology.  

On the other hand, in home and building automation systems, nodes can be 
placed in predefined positions in order to optimize the system efficiency and can 
be battery but also mains powered. The network topology is usually static. In 
existing buildings the main benefit of using wireless sensor networks for 
monitoring the environment is that of low installation and maintenance costs with 
good performance and scalability. Also, low-power wireless mesh networking has 
the potential to mitigate coverage issues which usually appear in such situations 
by relaying data to the base station through multi-hop communication. 

In this paper we present the integration of a Memsic wireless sensor 
network composed of IRIS nodes and MIB520 USB interface with LabVIEW and 
related technologies with the goal of narrowing the gap between the electrical 
engineering and computer science research and specialized domain users in 
designing and operating real WSN applications. This builds upon the work in [2] 
and [3] but with a more detailed view of the intricacies of the software driver for 
serial communication with the base station, a more extensive evaluation of the 
system deployment and the enabling technology behind the distance monitoring 
component. 

Literature offers various approaches to integrating specific wireless sensor 
networks platforms with the LabVIEW environment. In [4] a technical solution 
for sensor network monitoring based on virtual instrumentation is presented. The 
authors describe the sensors as distributed measuring points for physical variables 
in distributed parameter systems. A generic data aquisition application is 
described which employs the dedicated LabVIEW driver for Crossbow WSN [5]. 

The authors of [6] present a more specific application which focuses on 
the in-depth study of the use of wireless sensor networks to monitor and control a 
swiftlet habitat. The application handles communication with the sensor network, 
the program logic and the graphical user interface but implements other functions 
such as remote access and a database system for record and management 



Integration of WSN with virtual instrumentation in a residential environment               43 

purposes. We build on top of these two approaches and devise a system which 
offers both a variety of functions and scalability and development possibilities. 

The paper is structured as follows: Chapter 2 describes the general 
architecture of the system, highlighting the benefits of using wireless sensor 
networks in building environment and home automation tasks. Chapter 3 presents 
the hardware structure configuration considerations and details of the software 
driver used. Chapter 4 is dedicated to the development and implementation of the 
virtual instrumentation project along with the challenges encountered and 
experimental evaluation along with the shared variable engine that enables the 
distance monitoring. Chapter 5 ends the paper with conclusions and future work. 

2. System Overview 

The starting point in our scenario is that, by leveraging unique wireless 
sensor networks characteristics, like low-power wireless communication and 
battery operation, we can obtain high temporal and spatial resolution monitoring 
of the indoor environment. This would enable us to have fine-grained control over 
actions such as heating, cooling and lighting with a considerable impact on the 
energy consumption and utility bills. Our study is applied to a common 1-2 
dormitory residential flat. We assign a sensor node equipped with temperature, 
humidity and light sensors to each room. After the nodes are powered on, they 
self-organize in a mesh network, start sampling the sensors and transmit data 
packets over the wireless link. Due to the difficult nature of the indoor 
environment, phenomena such as fading, multipath reflection and interference 
caused by walls, large metal objects or high powered devices operating in the 2.4 
GHz ISM (Industrial, Scientific and Medical) band may appear. These reduce the 
radio coverage of the nodes and so, the nodes which fall outside the range of the 
base station have to rely on neighbors to forward their packages to the root of the 
newtork. Subsequently, the base station starts receiving two types radio packets: 
data packets contain the raw sensor values and health packets contain information 
about the network status. Data is then forwared via serial communication to the 
gateway which, in a conventional wireless sensor network, has the essential task 
of storing and forwarding it to interested third parties and, in specific cases, to 
process, analyze and display it. In our case, the gateway is a personal computer 
with a USB connection, running a custom designed virtual instrumentation project 
which uses a dedicated software driver to parse the serial messages and extract 
useful data from the byte stream. For our scenario we consider a data rate of 10-60 
seconds of sampling and transmission to be reasonable whilst expecting a node 
lifetime before battery replacement of several months.  

The overview of the proposed system architecture is shown in Fig. 1. It is 
to be noticed that we have also included the possibiliy of actuation in our scenario 
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i.e. the gateway is equipped with a data acquisition board hard-wired to actuators 
for the heating, A/C and lighting systems of each of the rooms. In this work the 
feedback control based on simple bipositional control algorithms has been 
implemented only in simulation and we describe the control logic in Chapter 4. 
The approach is scalable to larger area indoor monitoring applications at the floor 
or building level. 

 

 
Fig. 1. System Overview 

3. Hardware and Software Implementation Considerations 

Hardware used is commercially available from Memsic Inc. and consists 
of IRIS sensor nodes and an USB radio base station. The IRIS node has a modular 
structure, comprised of a radio/processing board, a sensor board, compact plastic 
enclosure and 2 AA batteries. The XM2110 [7] is the main radio/processing 
board, which hosts an  ATMega 1281 8 bit MCU and a IEEE 802.15.4 compliant 
RF230 radio transceiver operating in the 2.4GHz ISM band. This is the newest 
module in the line of the original Berkeley motes and is supported by the open-
source community under TinyOS 1.x and 2.1 – an event-based, low footprint 
operating system for resource constrained devices. Compared to the previous 
iteration – MicaZ, the producer mentions better performance in terms of radio 
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coverage and improved energy efficiency. The MTS400 sensor board [8] connects 
to the main board through the 51-pin connector and offers the following sensors:  

- humidity and temperature sensor (Sensirion SHT11); 
- barometric pressure and temperature sensor (Intersema MS55ER); 
- light sensor (TAOS TLS2550); 
- 2-axis accelerometer (Analog Devices ADXL202JE). 

The radio base station is made up of a IRIS radio/processor board connected to a 
MIB520 USB interface board via the 51-pin expansion connector. The interface 
board uses a FTDI chip and provides two virtual COM ports to the host system. 
COMx is used for programming the connected mote and COMx+1 is used by 
middleware applications to read serial data. 

Fig. 2 displays the hardware used to carry out the experimental part of this 
paper, in a laboratory setting. Throughout the experiments, three nodes are 
programmed with IDs 101, 102 and 103 while the base station has ID 0. Radio 
communication is set to channel 26 (2480 MHz center frequency) of the IEEE 
802.15.4 defined spectrum allocation, in order to minimize interference by high-
powered radio devices such as WiFi access points. Motes can be configured in 
either HP – High Power mode or in LP – Low Power. In HP, the node MCU and 
radio are always powered on while LP uses aggressive duty-cycling strategies, 
that keep radio activity to a minimum and maximize battery life with the 
drawback of longer network set-up times and higher end-to-end latency. For the 
experiments described in this paper, nodes are programmed with a HP firmware 
version that enables faster debugging and accelerated data analysis for our virtual 
instrumentation project. While this would be unfeasible in a real-world 
deployment due to the expected days to weeks lifetime of the batteries compared 
to the months to years lifetime in the low-power version, the framework for WSN 
integration with virtual instrumentation described below works with both 
approaches. Table 1 presents, as a reference, the current draw for the IRIS mote 
under various modes of operation: 

 
Table 1 

Current Requirements for the IRIS Board in Different Operating Modes 
[mA] Pr. full Pr. slp Rad. rcv Rad. tr Rad. slp Flsh wr Flsh rd Flsh slp 
IRIS 8 0.008 16 17 0.001 15 4 0.002 

 
 

Nodes run a custom low-power networking layer called XMesh, 
implemented as module firmware in TinyOS 1.x. This enables the motes to self-
organize in a wireless mesh network and relay sensor values in a reliable fashion 
to the base station. 
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Fig. 2. Memsic IRIS WSN Nodes and USB Radio Base Station 

 
In our particular case, for the MTS400 sensor board, the radio data packet 

has the structure depicted in Fig. 3.  
 

 
Fig. 3. XMesh Message Structure for the MTS400 Sensor Board [11] 

 
The message starts with a compulsory TinyOS header of 5 bytes. A 0-7 

bytes XMesh header follows with routing layer data such as: source address, 
origina address, sequence number and application ID. The XSensor header 
includes information about the sensor board ID, packet ID and parent node. The 
last 2 bytes of the message contain the the Cyclic Redundancy Check (CRC) 
error-detecting code. Within the scope of our application, the “MTS400 Payload” 
consists of 26 bytes containing the data from the sensors. This data has to be 
extracted from the message structure and raw numeric values have to be converted 
to engineering units. As an example, computing the temperature in degrees 
Celsius from the reading of the SHT11 humidity and temperature sensor [12], 
involves the folowing computation: 
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T = d1 + d2 ⋅SOT                                            (1) 
 

where T is the temperature in Celsius or Fahrenheit degrees and SOT is the raw 
numeric value. The temperature conversion coefficients d1 and d2 to obtain a 
temperature in Celsius degrees, for a supply voltage of 2.5V and a 14bit resolution 
are -39.6 and 0.01 respectively. Therefore, the final equation becomes: 
 

 T = −39.4+ 0.01⋅SOT                                            (2) 
 

The LabVIEW software driver for the chosen suite of hardware modules 
consists of a LLB library which includes a collection of VIs and subVIs. Each one 
implements specific routines to enable the serial connection to the interface board, 
start listening for data on the serial bus, reading the serial buffer, 
interpreting/parsing the data and converting the values to an useful format. 
 

 
Fig. 4. Block Diagram Fragment of MTS400 Message Parser VI 

 
The message parser subVI in particular processes the input string from 

serial buffer read function output. The result of the message parsing 
corresponding to data from the array of sensors installed on the sensor board. Fig. 
4 contains a screenshot of the block diagram for the message parsing subVI in the 
case of the MTS400 sensor board. The logic follows an iterative process inside a 
series of for loops. The data stream is split into useful chunks of bytes according 
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to the message structure and the values are converted to engineering units using 
their characteristic equations inside MathScript nodes. 

 Having defined the system architecture and introducing hardware and 
software components as building blocks of our Smart House monitoring scenario, 
we go further to describe and evaluate the developed application. 

4. SmartVI – a Virtual Instrumentation Application to Showcase 
Wireless Sensor Networks Integration 

The goals we have proposed ourselves for the monitoring application 
reflect in the following tasks that it performs: 

- aquires data from the wireless sensor network inside the LabVIEW 
environment by using specific functions of the Crossbow XMesh driver; 

- presents data in an intuitive fashion to a non-specialized end-user; 
- displays historical graphs of the monitored parameters (temperature, 

humitidy, light); 
- logs data to specific LVM measurement files for further analysis and 

processing; 
- implements control logic simulation for heating, cooling and lighting 

devices; 
- publishes data, making it available for remote monitoring using shared 

variables. 
The main view of the application is shown in Fig. 5. The user interface is 

divided into three parts, each one corresponding to a room of our Smart House. 
Intuitive display elements are placed into each of these frames and display the 
temperature (degrees Celsius), humidity (%) and light (lux). To observe the 
historical evolution of the three parameters, we have placed graphs into dedicated 
tabs which offer the user a global view. The last tab functions as a control panel 
where the user has the possibility of setting the desired room temperatures and the 
light activation thresholds. 

For running the application, the user has to either have a copy of the 
LabVIEW environment, it can be built as an executable program and run on client 
machines through a downloaded runtime or it can be published as a remote panel 
and be operated through the Internet via a web browser. The cross-platform 
characteristics of the graphical development system enable it to be run on 
different host operating systems or in virtualized environments. 
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Fig. 5. Front Panel of the SmartVI – Main View 

 
The control logic is as follows: heating/cooling and lighting are treated 

separately. The system parameters can be tuned in the dedicated tab of the virtual 
instrument front panel. The heating and cooling bipositional control logic relies on 
a temperature set-point. If temperature in one of the rooms drops by more than 1 
degree, the heating ON signal is activate. When the temperature increases by more 
than 1 degree, the cooling ON signal is activated. The light control logic checks if 
the light in one of the rooms drops below a certain threshold (e.g. 200 lux) and if 
movement has been detected in that room, the light ON signal is activated for that 
room. The light threshold is user-defined. The control logic panel is depicted in 
Fig. 6. 

To enable the real-world application of this control logic, a suitable data 
acquisition board has to be installed in the server computer, an the control signals 
wired to the appropiate actuators. This can be done either through National 
Instruments hardware which offer good support and deep integration with 
LabVIEW or through third-party suppliers which offer their own drivers. 
Conventional, wired actuation is considered the safe way to approach such a 
control application although researchers have experimented and there are working 
deployments of wireless low-power actuation systems. 
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Fig. 6. Front Panel of the SmartVI – Control Panel Tab 

 
The system publishes the room parameters as shared variables to be 

accesed locally or remotely, through the internet. The shared variable engine 
abstracts network communication from the LabVIEW block diagram and makes it 
easy to share data between networked systems [3]. The type of shared variables 
we are using for our particular scenario consist of networked-published shared 
variables of of double type. After being added to the project library of a certain 
LabVIEW application, the shared variables take the form of a terminal which can 
be dropped onto the block diagram to be written or read from. They also offer 
error input and output terminals to notify the user of communication errors and a 
timestamp output that informs about when the value read was written. A specific 
UDP protocol is impelemented under this abstraction layer to send data to a server 
called the shared variable engine, which then publishes the data to all clients on 
the network reading the shared variable. 

A block diagram fragment, highlighting the data aquisiton flow from the 
USB radio base station and the publishing of light information to local and shared 
variable appears in Fig. 7. Graphical programming differs from standard text-
based programming languages in that a block executes whenever data is available 
to all its compulsory input terminals. This concept is called dataflow. In the main 
loop data from the serial port is parsed by the dedicated function described in the 
previous section and data is wired to the corresponding local indicators and shared 
variables. Upon terminating the application through the Stop button on the main 
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panel, the data acquisition is halted and the serial connection is closed to be made 
available for other applications or system services. 

 
Fig. 7. Block Diagram Fragment of the Main Application Virtual Instrument 

 

5. Conclusions 

The main contribution of this paper lays in the proof-of-concept for 
wireless sensor networks integration with virtual instrumentation (LabVIEW) 
through dedicated software drivers. Therefore, we have developed an application 
which applies this to a Smart House monitoring and control scenario. Our 
approach is easily applicable to other WSN application domains such as generic 
environmental monitoring, energy monitoring and infrastucture and asset tracking. 
Experimental results have shown that, by using the XMesh networking protocol 
the system supplies data in a reliable manner to the base station and our virtual 
instrumentation project works as designed. The virtual instrumentation project we 
have developed has the potential to operate as a centralized framework to gather 
data from a variety of sources. 

Envisioned future work includes the implementing a MDA300 data 
acquisition board driver in the LabVIEW XMesh WSN suite which is currently 
lacking. The MDA300 is a generic data acquisition expansion board for the IRIS 
platform. It offers analog input channels, digital input and output channels, relays 
and external sensor excitation. This opens up a whole range of new applications 
such as remote process control. Also, we are investigating the idea to develop a 
custom hardware design for the integration of specific sensors to the 51-pin 
connector on the IRIS radio/processing module. Our idea is to build an embedded 
networked platform using low-cost gas sensors for air monitoring such as: carbon 
dioxide (CO2), carbon monoxide (CO), ozone (O3) and particulate matter (PM). 
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