
U.P.B. Sci. Bull., Series C, Vol. 69, No. 3, 2007 ISSN 1454-234x

A BASH SCRIPT FOR CONVERTING SPICE LIKE, SCHEMA
DESCRIPTION − TEXT FILES, INTO MODIFIED NODAL

ECUATION MATRIX WITH SYMBOLIC ELEMENTS

C. ZORIO1, M. BODEA2, I. RUSU3

Această lucrare prezintă o implementare a algoritmului de generare a
matricei sistemului modificat de ecuaţii al potenţialelor la noduri, aceasta fiind
generată ca matrice cu elemente de forma unor formule simbolice. Datele de ieşire
ale acestui program pot fi stocate intr-un fişier de tip text care poate fi importat
într-un program CAD cu ajutorul căruia se pot face calcule simbolice complexe
pentru analiza de semnal mic a unui circuit, inclusiv extracţie de parametrii.
Avantajul unei metode simbolice pentru extracţia de parametrii de semnal mic, este
faptul că utilizează un algoritm de calcul direct si nu mai este necesara
determinarea unor valori iniţiale de “start” pentru parametrii de extras. Se arată
că, în scopul generării formulelor simbolice ca elemente ale matricei nodale, se
impune modificarea sintaxei formatului de intrare de tip SPICE si este propusa o
sintaxă extinsă reprezentând un format modificat de fişier text tip SPICE.
Programul face posibilă generarea matricei nodale pentru un circuit oarecare,
oricât de complex, funcţionalitatea sa fiind ilustrată utilizând ca exemplu circuitul
“Giacoletto”. Sunt date sursele in “bash”, direct utilizabile in orice mediu “UNIX”.

This paper presents an implementation of the modified nodal algorithm
which can generate the description of the modified nodal matrix with symbolic
formulae as elements. The output data can be stored in a text file which can be
imported in a mathematical CAD environment for further mathematical symbolic
complex calculations for small signal analysis of a circuit, including parameter
extraction. The advantage of a symbolic method for small signal parameter
extraction is that it uses a direct algorithm and initial “start values” for the
parameters to be extracted are not needed anymore. In order to generate symbolic
formulae as the nodal matrix elements, the syntax of the SPICE input format has to
be modified. An extended syntax was proposed resulting in a modified SPICE-like
text file format. The program can generate the nodal matrix of any circuit, no matter
its complexity, its functionality being illustrated using as example the “Giacoletto”
circuit. “Bash” sources, directly usable in any “UNIX” environment, are provided.

Keywords – symbolic analysis, modified nodal analysis, small signal analysis,
parameter extraction, SPICE input format.

1 Eng., Dept. of IT & Computers, Romanian National Television Society, Romania,
cristian.zorio@gmail.com
2 Prof., Dept. of Devices, Circuits and Electronic Apparatus, University POLITEHNICA of
Bucharest, Romania
3 Prof., Dept. of Electronic Technology and Reliability, University POLITEHNICA of Bucharest,
Romania

C. Zorio , M. Bodea , I. Rusu

146

1. Introduction

The state of the art in symbolic computer aided mathematical calculus,
opens the opportunity of taking advantage of the important benefit of
automatically generating and manipulating large symbolic formulae [1], [2],
which can now be used for the analysis of real (bigger) circuits. In the case of
parameter extraction for the small signal circuit’s schema, the use of symbolic
computation can be much more effective than old numerical methods. This is the
consequence of the fact that direct symbolic extraction algorithms eliminates the
problem of finding an initial starting point for an iteration scheme [6]. The
solution for this “initial” problem depends entirely on the circuit designer’s
experience and intuition based on some simplified circuit model.

The purpose of this paper is to evidence the new problems that can arise in
case of using symbolic formulae manipulation with mathematical CAD programs,
for parameter extraction and for the small signal analysis of a given circuit.

The paper presents the implementation of a program which makes a link
between two different representations of a circuit model, using the algorithm
which generates the modified nodal system of equations, to convert the circuit
description into a description of the modified nodal system: a matrix description
having numbers and/or symbolic formulae as elements. The output data can then
be stored in a text file which could be imported in a mathematical CAD
environment [2], for further both mathematical symbolic and/or numeric
computations.

2. Input and Output formats

In order to achieve the goal of generating the system of equations of a

circuit, for use in a mathematical CAD environment, the relevant information
contained in the schema of a circuit (meaning circuit description: topology and
values of the elements) has to be “expressed” and stored (as data structure) as the
content of a file which could be then imported by the mathematical CAD program
[2], or by some other formulae interpreter software [1].

For this purpose, an input format has to be defined, and a SPICE–like
circuit description is proposed in section §1.2.2. This description will be the
content of an input data text file, which is then used as input by the transformation
program described in section §3.

The output format of the data transformation is imposed by the chosen
program which will manipulate the symbolic formulae (in our case Maple [2]) in
order to perform the small signal analysis. This format is defined in section §1.2.1
and section §4 also provides the output file for the example presented in §1.2.2.

A bash script for converting spice like, schema description

147

2.1 Output Format: format of the Modified Nodal Matrix text file

A text file, importable in Maple, which can generate a matrix with
elements which can be numbers, symbols or symbolic formulae, has the format
described in Fig. 1 [2]:

1 1 <character string>

1 2 <character string>

…………..

1 <n+1> <character string>

2 1 <character string>

2 2 <character string>

…………..

2 <n+1> <character string>

…………..

n 1 <character string>

n 2 <character string>

…………..

 n <n+1> <character string>

Fig. 1 - Output format of the modified nodal matrix description

The meaning of <character string> is given next in (1) :

<chatacter string> := <symbolic formula> | <symbol> | <number> (1)

The nodal matrix with the format presented in Fig. 1, has n lines and n+1

columns. These dimensions correspond to a circuit having n+1 nodes (numbered
form node 0 - the current notation for the ground node – to node n). The (n+1)th
column of the nodal matrix corresponds to the free term constants of the equation
system.

A typical output file content is given in Fig. 4, in the “Results section" §3.

C. Zorio , M. Bodea , I. Rusu

148

2.2 Input Data Format: SPICE-like circuit description and modified
SPICE syntax

It is well known that, for most CAD circuit simulation environments,
before any computations are performed, the graphical interfaces of the CAD
system converts the graphic schema representation of the analyzed circuit into a
text file containing the same schema description written in SPICE format [3]. In
the SPICE text description model, the input information coming from the schema
of a circuit does not represent a mathematical formulation, although, like
mathematical formulation models, this type of data also represent an exhaustive
description of the topology of the circuit and also of all the numeric values for the
elements of the schema. The content of the SPICE file always represents the
“starting point” for the basic “core” calculations of the engine of any CAD
program used for circuit analysis or design.

The use of the main rules of the SPICE input format also for symbolic
calculation must come as a natural consequence of the fact that this kind of
representation has imposed itself as an industry standard. Hence, for allowing the
use of symbols inside the conversion algorithm, the common SPICE syntax also
has to be modified and an extension of the SPICE input syntax rules is needed.

For this purpose it will be formally assumed that if there are unstated
(unknown) numeric values for some elements in a particular circuit schema, the
very symbols of these elements must be used inside the algorithm, instead of the
(missing) numerical values. As a consequence, the new SPICE-like format syntax
must allow lines which do not contain the numerical values of the elements. For
these lines only, the reading program must use the text strings representing the
names of the schema elements (considered as, symbols representing the simplest
symbolic formulae), as the numeric values of these schema elements (needed by
the old syntax rules) are not available.

The features of the SPICE-like format are presented using the following
example.

 Example:

Suppose that a symbolic analysis of the simple circuit of Fig. 2 has to be
performed using symbolic formulae. A SPICE-like description of the circuit of
Fig. 2 is given in Fig. 3.

A bash script for converting spice like, schema description

149

V i

rμ

rb c μ

c π

v o= 0

ic= g m v 1=
mr

v1 =
8

1

x
v

rπ

re m i

ro

rc

V 1

io

ic

2
rb

3
rb

4
rb

1
rb

0
rb

5
rb

0
rb

=
rb

Fig. 2 - Circuit Example – The Giacoletto equivalent circuit of a bipolar transistor

Using the example of Fig. 3 the following, most important, general syntax

features of the SPICE-like format can be evidenced:

• comment lines beginning with the “#” character are to be omitted
• all non-comment lines must begin with the name of an element of the

schema. According to the usual SPICE syntax [3], the first letter of the
symbolic name of the element indicates the element type.

• the symbolic name has to be followed by at least two node labels
representing the numbers that indicates the nodes to which it is
connected.

• if the next two node labels that may come after the first two nodes
exist, they determine the nodes which define a signal that determines
the value of the signal corresponding to the first two nodes. (this is the
case of the gm element which is connected between nodes 4 and 3 and
depends of the difference of the electric potentials of nodes 2 and 3).

• in the usual SPICE syntax, every non-commented line normally ends
with the value of the symbolic element the line was written for. In the
(modified) SPICE-like format, the value of the element can be omitted,
the meaning for the “reading program” being as follows: the name of
the circuit element (the first element in the current line), as “symbolic
value”, has to be taken into account instead of the numeric value.

In the example shown in Fig. 3, the values of all the elements are omitted

(starting with line two, all non-commented lines do not end with a corresponding
numerical value), and the result will be a matrix with all its elements being
symbolic formulae, each formula using circuit element symbols inside.

C. Zorio , M. Bodea , I. Rusu

150

<Element> Nodes Values
Rb 1 2
#Rb 1 2 300
Cpi 2 3
#Cpi 2 3 0.00000000002
Rpi 2 3
#Rpi 2 3 5000
Ru 2 4
#Ru 2 4 200000000
Cu 2 4
Cu 2 4 0.0000000000002
gm 4 3 2 3
#gm 4 3 2 3 0.038
Ro 4 3
#Ro 4 3 250000
Rc 4 0
#Rc 4 0 50
Remi 3 0
#Remi 3 0 2
I1 0 1
#I1 0 1 0.1

Fig. 3 - SPICE-like input file content for the circuit in Fig. 2

For the purpose of illustrating the possibility of also using numerical
values (in order to show that the new SPICE-like syntax maintains the rules of the
old SPICE syntax too) each non-comment line representing an element is
followed by a possible replacing line which is commented. These are the same
lines as the above uncommented ones with the difference that a numerical value
was also specified. For this example, all lines containing numerical values for
schema elements are commented but this not necessarily the general case.

The conclusion is that changing the type (numeric with symbolic) of the
algorithms which use information contained in the schema of a circuit in such a
way that, in the conversion process, (at least) a part of the input data, originally
numbers, is replaced with symbols, has raised the following question: do the data
structure for numerical computations (the classic SPICE format) remain
appropriate for describing the schema of some circuit when performing symbolic
computations? Even if the answer is that the original data format had to be
changed, the data structure can be “fixed” in a natural way by extending the
syntax rules of the classic SPICE format for the reading program to also accept
symbols for the values of the elements of the circuit (and not only numbers).

A closer comparison between the classic SPICE format and the extended
one reveals that the new syntax rules did not change in any way the “coding
features” which make possible the description of the topology of the circuit. From
this point of view the data structure remains the same.

A bash script for converting spice like, schema description

151

3. Conversion program

Based on the modified nodal method [4], a conversion program was
implemented. This program generates the matrix of the linear system having as
variables the potentials in the circuit nodes and the currents in the voltages
sources.

3.1. Algorithm implementation

The algorithm was implemented in bash [5]. The resulting scripts are: a
main script, the content of the file named “mkmatrix” and a subroutine script, the
content of the file named “elemt_to_y” [7].

The flowchart for the main program is given in section “Appendix 1”, in
Fig. 5 and Fig. 6. The routine “elemt_to_y”, presented in Fig. 7, is invoked for
each schema element for which admittance can be defined.

3.2. Description of the conversion program

In order to provide a better understanding of the flowchart of the main
program (Fig. 5 and Fig. 6), it was formally divided into more sections delimited
by comment lines of the form: #SECTION <number> begins , # SECTION
<number>ends . The functionality of each section is as follows:

• SECTION 01 - reads the input (SPICE-like) file line by line, determines the
number of (non-commented) lines, nr_lines and declares a vector of
nr_lines elements, memline[nr_lines], which will store the lines of the
input file.

• SECTION 02 - stores each (non-commented) line of the input file in each
component of previously declared memline vector. This section uses the
same control loop to determine variable labelmax. This variable must store
the biggest of the numbers allocated to the set of node labels. If assuming
that the nodes in the SPICE-like input file are numbered in increasing order
starting with 0 (which corresponds to the node representing the ground) and
adding 1 to get the next label value, then the number of nodes is
labelmax + 1 (4)

• SECTION 03 - determines the number of variables/equations by increasing
the node number with the number of independent voltage independent

4 According to Kirchoff I law, the number of independent current equations to be used in the nodal
method will be equal with labelmax = nodenr-1, where nodenr is the number of nodes. In order
to obtain a determined linear system, one of the nodenr current equations K I, has to be
eliminated: the equation corresponding to node 0 (ground).

C. Zorio , M. Bodea , I. Rusu

152

sources. The vector outline that will contain the elements of the matrix of
the linear system of equations generated by the modified nodal method is
then defined. This matrix has labelmax + 1 lines (starting from line 0 to
line labelmax) and labelmax + 2 columns (starting from column 0 to
column labelmax+1).

• SECTION 04 - implements the main rules of the modified nodal algorithm,
[4], as follows :

• SECTION 04-1 : - implements the rule for the contribution to the nodal
matrix of the voltage controlled current sources (VCCS) : a VCCS of
trans-admittance y connected between nodes node1_2 and node2_3 and
commanded by the difference of potentials of nodes word_4 and
node4_5 alters the linear system’s matrix by adding –y and respectively
+y to the system’s matrix elements of both lines node1_2 and node2_3
at columns word_4 and respectively node4_5.

• SECTION 04-2 : - implements the rules for the contribution to the nodal
matrix of the admittances of the resistors, capacitors and inductors
(R,L,C elements). An admittance y connected between nodes node1_2
and node2_3 alters the linear system’s matrix by adding –y and
respectively +y to the system’s matrix elements of both lines node1_2
and node2_3 at columns node1_2 and respectively node2_3.

• SECTION 04-3 : - implements the rule for the contribution to the nodal
matrix of the voltage independent sources E. An independent voltage
source of value E connected between nodes node1_2 and node2_3
alters the equation system by adding a new variable (the current through
E) to the system. This variable will be present in equations with index
number node1_2 and node2_3 which means that the coefficient of the
corresponding column (varnr) of the equation’s system matrix
(outline) will be -1 respectively +1 for lines node1_2 and node2_3
(and zero in the same column for the rest of the lines). A new equation
which defines the difference between potentials of node2_3 and
node1_2 to be E is also introduced. This goal is achieved by setting to
-1 and respectively to +1 the elements of columns node1_2 and
node2_3 in the corresponding line of the system’s matrix (line ecuatnr)
and also the last column in the same line to the value of E.

• SECTION 04-4 : - implements the rule for the contribution to the nodal
matrix of the current independent sources (I). An independent current
source of value I connected between nodes node1_2 and node2_3 alters
the equation system by adding to the last (free) term of equation with

A bash script for converting spice like, schema description

153

index number node1_2 a value of –I respectively and to equation with
index number node2_3 a value of +I

• SECTION 05 - prints out each element of the matrix of the modified nodal
system of equations, each preceded by a pair of two numbers representing
the position of this element in the matrix. Note that the equation obtained
from the corresponding Kirchoff I law, corresponding to the ground node
(labeled 0), was eliminated by starting iteration loops from I = 1 and J = 1
(and not from I=0 and J=0). Also note that the rule for node labeling in the
input file, imposed that the vector outline had to be defined in C-like style
meaning that it’s elements are numbered starting with index 0 (meaning
outline[0,0] is the first element).

The routine of Fig. 7 could be formally divided in sections corresponding
each to the right branches of the decision statements included.

Each affirmative decision branch leads the execution of the program to the
appropriate formulae generators in order to compute the admittance of a schema
element. The type of each element is identified, according to SPICE syntax [3],
using the first letter of the corresponding element symbol.

Each admittance is calculated for the current schema element, either as
numerical value or as symbolic formula. For this choice the routine checks in the
current line of the input file, for the existence (or absence) for a numerical value
of the current schema element.

4. Results

In order to use the program and the subroutine presented in section
“Appendix 1”and explained in section §3, the two script files named mkmatrix
and respectively elemt_to_y have to be used as commands, in any UNIX
environment. The main file must receive the execute attribute:

#chmod +x mkmatrix (2)

The main script has the file containing the SPICE-like description as argument:

#./mkmatrix <input file> (3)

 Example:
Using the content of Fig. 3 as the content of the file “giacoletto” and

running:

#./mkmatrix giacoletto (4)

will print out all the elements of the modified nodal matrix as in Fig. 4.

C. Zorio , M. Bodea , I. Rusu

154

I J <Element>
1 1 -1/Rb
1 2 +1/Rb
1 3 0
1 4 0
1 5 +J1
2 1 +1/Rb
2 2 -1/Rb-I*Omega*Cpi-1/Rpi-1/Ru-I*Omega*Cu
2 3 +I*Omega*Cpi+1/Rpi
2 4 +1/Ru+I*Omega*Cu
2 5 0
3 1 0
3 2 +I*Omega*Cpi+1/Rpi+gm
3 3 -I*Omega*Cpi-1/Rpi-gm-1/Ro-1/Remi
3 4 +1/Ro
3 5 0
4 1 0
4 2 +1/Ru+I*Omega*Cu-gm
4 3 +gm+1/Ro
4 4 -1/Ru-I*Omega*Cu-1/Ro-1/Rc
4 5 0

Fig. 4 – Modified nodal matrix output file content, for the circuit of Fig. 2
(for the SPICE-like input file content described in Fig. 3)

Saving the output in a text file (here named “mat_giacoletto.txt”) is done using the
redirection operator “>”:

#./mkmatrix_11 giacoletto > mat_giacoletto.txt (5)

This type of text file describing a matrix can then be easily imported in the Maple
environment [2] for further symbolic manipulation.

5. Conclusions

The paper presents a program which is an implementation of the algorithm
generating the matrix of the associated modified nodal linear system of equations
of a circuit, with symbolic formulae and/or numbers as elements. Two aspects
were discussed: first the input/output format, second effective implementation
using “bash”.

The output file format of the program was imposed by the mathematical
CAD environment which has to import the file containing the symbolic element
matrix description. The input format had to be chosen in such a way that it will
make the description of the circuit as simple as possible.

A bash script for converting spice like, schema description

155

Knowing that the SPICE input format, is the industry recognized standard
(as data structure to be “understand” by any computer program) for describing the
schema of electronic circuits, a SPICE-like syntax was proposed by extending the
rules of the usual SPICE input format syntax in order to allow the use of symbolic
values inside the algorithm. It has been shown that the proposed extended SPICE
format which allows the use of symbols as “element values” could be easily
interpreted by the transforming program.

The symbolic formulae (as the elements of the “modified nodal matrix”)
could be generated, basically using the same main algorithm as in numeric
computation, but with symbolic features. The new input data structure (with
extended syntax rules) proved to be a very good candidate for a more general
circuit schematic description. The input text file can be easy written even in the
case of large circuit schemas.

The sources of the program are given and the functionality was illustrated
by presenting a process of generating the nodal matrix associated in some
particular case, the “Giacoletto” circuit. The program can to generate this matrix
for any circuit, no matter its complexity. The original ideas of using “bash”
scripting as the implementing language makes possible a direct use on any
“Linux”/“UNIX” machine, by copying and pasting the sources in executable text
files. Thus, anyone which could imagine possible further developments of the
program needs no special compiler or programming environment.

R E F E R E N C E S

[1] D. Cox, J. Little, D. O’Shea, Computer Algebra Systems in: “Ideals, Varieties and Algorithms-
An Introduction to Computational Algebraic Geometry and Commutative Algebra”,
APPENDIX C, pp. 505,-517, –Springer-Verlag New York Berlin–1992–
ISBN 0-387-94680-2, SPIN 10675946.

[2] MAPLE-A Mathematical CAD Program, http://www.maplesoft.com/ .
[3] A. Vladimirescu, The SPICE Book, John Wiley & Sons, Inc., New York, 1994.
[4] Benedykt S. Rodanski and Marwan Hassoun, Symbolic Analysis Methods, chap. 47.2 in: “The

Circuits and Filters Handbook”, Second Edition ISBN 0-8493-0912-3
[5] BASH-Reference Manual, http://www.gnu.org/software/bash/manual/bashref.htm .
[6] C. Zorio, Extragerea parametrilor de semnal mic ai unui circuit liniar utilizând calculul

simbolic automat, - Referat de doctorat, - Universitatea Politehnica Bucureşti, Facultatea
de Electronica Telecomunicaţii şi Tehnologia Informaţiei - Catedra de Dispozitive
Circuite şi Aparate Electronice

 [7] Sources of the conversion program: mkmatrix and elemnt_to_y BASH script files - available
from the authors, via E-Mail request (*)

(*) In order to get the sources of the conversion program please send a blank E-Mail with the
subject MATRIX CONVERSION PROGRAM to cristian.zorio@gmail.com

Appendix 1: Flowcharts for the main conversion program “mkmatrix” and for its subroutine “elemt_to_y”

 A
 SIM

PL
E

 SC
R

IPT
 FO

R
 C

O
N

V
E

R
T

IN
G

 SPIC
E

 L
IK

E
, SC

H
E

M
A

 D
E

SC
R

IPT
O

N

S T AR T

re a d s fro m “in file ” (th e in p u t te xt f ile), c o u n ts th e n u m b er
o f (n o n c o m m e n te d) lin e s a n d s e ts th e va ria b le “n r_ lin e s ”

dec la re m e m lin e [n r_ lin e s]

S E C T IO N 01 - b e g in s

S E C T IO N 0 1 - e n d s

l= 1 ; la b e lm a x = 0
S E C T IO N 0 2 - b e g in s

- re a d s th e l ’th line o f “in file ” in to th e m e m lin e [l]

- sepa ra tes m e m lin e [l] (th e l-th line o f “in file ”)in to a tom s and
- s to re s a to m s in to va ria b le s : e lem n t_ 1 , no d e 1 _ 2 , n o d e 2 _ 3
 (a ls o n o d e 2 _ 3 , n o d e 3 _ 4 in c a s e o f e le m e n ts c o n n e c te d ti 4 n o d es) la b e lm a x < n o d e 1 _ 2

la b e lm a x < n o d e 1 _ 2

la b e lm a x = n o d e1 _ 2

lab e lm a x = n o d e 1_ 2

l < n r_ lin e s

l= l+ 1

e cu a tn r = la b e lm a x

S E C T IO N 0 2 - e n d s

S E C T IO N 0 3 - b e g in s
 l= 1

is e le m n t_ 1 o f m e m lin e [l]
a s trin g be g in n in g w ith E o r e ?

 l= I+ 1

ec u a tn r = e c u a tn r + 1

l < n r_ lin e s

de c la re o u tlin e [I_ m ax ,J _ m ax] S E C T IO N 0 3 - e n d s

I_ m ax = e c u a tn r + 1 J _ m a x = v a rn r + 2

v arn r = e cu a tn r

c μ

Y e s

Y e s

N o

N o

Y e s N o

Y e s

N o

Fig. 5 - First part of “mkmatrix”: the main conversion program

Y e s

S E C T I O N 0 4 - b e g i n s
 l = 1 - s e p a r a t e s m e m l i n e [l] i n t o 6 a t o m s a s s i g n i n g v a l u e s t o :

 e l e m n t _ 1 , n o d e 1 _ 2 , n o d e 2 _ 3 , w o r d _ 4 , n o d e 4 _ 5 , v a l u e _ 6

 l = I + 1 l < n r _ l i n e s

S E C T I O N 0 4 . 0 1 - b e g i n s

s t r i n g s t o r e d i n n o d e 4 _ 5 i s n o t
e m p t y a n d b e g i n s w i t h g o r G

o u t l i n e [n o d e 1 _ 2 , w o r d _ 4] = o u t l i n e [n o d e 1 _ 2 , w o r d _ 4] - y
o u t l i n e [n o d e 1 _ 2 , n o d e 4 _ 5] = o u t l i n e [n o d e 1 _ 2 , n o d e 4 _ 5] + y

o u t l i n e [n o d e 2 _ 3 + w o r d _ 4] = o u t l i n e [n o d e 2 _ 3 , w o r d _ 4] + y
o u t l i n e [n o d e 2 _ 3 + n o d e 4 _ 5] = o u t l i n e [n o d e 2 _ 3 , n o d e 4 _ 5] - y

c a l l p r o c e d u r e e l e m t _ t o _ y a n d c a l c u l a t e t h e a d m i t t a n c e y f o r e l e m t _ 1

S E C T I O N 0 4 . 0 1 - e n d s

S E C T I O N 0 4 . 0 2 - b e g i n s

e m p t y s t r i n g i n n o d e 4 _ 5
 (e l e m n t _ 1 i s o f t y p e R , L C)

c a l l p r o c e d u r e e l e m t _ t o _ y a n d c a l c u l a t e t h e a d m i t t a n c e y f o r e l e m t _ 1

o u t l i n e [n o d e 1 _ 2 , n o d e 1 _ 2] = o u t l i n e [n o d e 1 _ 2 , n o d e 1 _ 2] - y
o u t l i n e [n o d e 1 _ 2 , n o d e 2 _ 3] = o u t l i n e [n o d e 1 _ 2 , n o d e 2 _ 3] + y

o u t l i n e [n o d e 2 _ 3 + n o d e 1 _ 2] = o u t l i n e [n o d e 2 _ 3 , n o d e 1 _ 2] + y
o u t l i n e [n o d e 2 _ 3 + n o d e 2 _ 3] = o u t l i n e [n o d e 2 _ 3 , n o d e 2 _ 3] - y

S E C T I O N 0 4 . 0 2 - e n d s

S E C T I O N 0 4 . 0 3 - b e g i n s o u t l i n e [n o d e 1 _ 2 , v a r n r] = o u t l i n e [n o d e 1 _ 2 , v a r n r] - 1
o u t l i n e [n o d e 2 _ 3 , v a r n r] = o u t l i n e [n o d e 2 _ 3 , v a r n r] + 1

v a r n r = v a r n r + 1
e c u a t n r = e c u a t n r + 1

S E C T I O N 0 4 . 0 3 - e n d s

s t r i n g s t o r e d i n n o d e 4 _ 5 i s n o t
e m p t y a n d b e g i n s w i t h e o r E

S E C T I O N 0 4 . 0 4 - b e g i n s

s t r i n g s t o r e d i n n o d e 4 _ 5 i s n o t
e m p t y a n d b e g i n s w i t h i o r I

o u t l i n e [n o d e 1 _ 2 , J _ m a x - 1] = o u t l i n e [n o d e 1 _ 2 , J _ m a x - 1] - y
o u t l i n e [n o d e 2 _ 3 , J _ m a x - 1] = o u t l i n e [n o d e 2 _ 3 , J _ m a x - 1] + y

s t r i n g s t o r e d i n w o r l d _ 4 i s
e m p t y ?

y = e l e m n t _ 1
y = w o r l d _ 4

S E C T I O N 0 4 . 0 4 - e n d s

S E C T I O N 0 4 - e n d s

S E C T I O N 0 5 - b e g i n s
 J = 1

 J = J + 1 J < J _ m a x

S T O P

p r i n t s I , J , o u t l i n e [I , J] t o “ s t d o u t ”

 I = 1

I < I _ m a x I = I + 1 S E C T I O N 0 5 - e n d s

N o

Y e s

Y e s

N o

N o

Y e s

Y e s

N o

Y e sN o

Y e s

Y e s

N o

N o

Y e s N o

o u t l i n e [e c u a t n r , n o d e 1 _ 2] = - 1
o u t l i n e [e c u a t n r , n o d e 2 _ 3] = + 1
o u t l i n e [e c u a t n r , J _ m a x - 1] = y

s t r i n g s t o r e d i n w o r l d _ 4 i s
e m p t y ?

y = e l e m n t _ 1

y = w o r l d _ 4

N o

e c u a t n r = l a b e l m a x
v a r n r = e c u a t n r

Fig. 6 - Last part of “mkmatrix”: the main conversion program

C
ristian ZO

R
IO

 , M
ircea B

O
D

EA
 , Ioan R

U
SU

g e t C A L L I N G P R O G R A M M c o n t e x t

y = “ 1 / w o r l d _ 4 ”

t h e v a l u e o f e l e m n t _ 1 i s a
s t r i n g b e g i n n i n g w i t h r o r R ?

t h e v a l u e o f w o r l d _ 4
i s a z e r o l e n g t h s t r i n g

y = “ 1 / e l e m n t _ 1 ”

y = “ 1 / (2 * P i * f * w o r l d _ 4) ”

t h e v a l u e o f e l e m n t _ 1 i s a
s t r i n g b e g i n n i n g w i t h l o r L ?

t h e v a l u e o f w o r l d _ 4
i s a z e r o l e n g t h s t r i n g

y = “ 1 / (2 * P i * f * e l e m n t _ 1) ”

y = “ 2 * P i * f * w o r l d _ 4 ”

t h e v a l u e o f e l e m n t _ 1 i s a
s t r i n g b e g i n n i n g w i t h c o r C ?

t h e v a l u e o f w o r l d _ 4
i s a z e r o l e n g t h s t r i n g

y = “ 2 * P i * f * e l e m n t _ 1 ”

y = “ w o r l d _ 4 ”

t h e v a l u e o f e l e m n t _ 1 i s a
s t r i n g b e g i n n i n g w i t h g o r G ?

t h e v a l u e o f w o r l d _ 4
i s a z e r o l e n g t h s t r i n g

y = “ e l e m n t _ 1 ”

t h e v a l u e o f e l e m n t _ 1 i s a
s t r i n g b e g i n n i n g w i t h e o r E ?

t h e v a l u e o f e l e m n t _ 1 i s a
s t r i n g b e g i n n i n g w i t h i o r I ?

t e s t t h e v a l u e o f e l e m n t _ 1 f o r
o t h e r s c h e m a t i c e l e m e n t s

r e t u r n y t o t h e C A L L I N G P R O G R A M M P r i n t : “ E r r o r : B A D E L E M E N T ” , e l e m n t _ 1 S T O P

N o

N o

N o

N o

N o

N o

N o

Y e s

Y e s

Y e s

N o

N o

N oY e s

Y e s

Y e s

Y e s

Y e s

Y e s

N o

Fig. 7 - Subroutine “elemt_to_y”: calculates the admittances of the schema elements

 A
 SIM

PL
E

 SC
R

IPT
 FO

R
 C

O
N

V
E

R
T

IN
G

 SPIC
E

 L
IK

E
, SC

H
E

M
A

 D
E

SC
R

IPT
O

N

