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THE UTILIZATION OF ELASTICITY MATRIX SPECTRAL 
DECOMPOSITION IN CALCULATING THE ELASTIC 

PROPERTIES OF A COMPOSITE BAR HAVING 
TRANSVERSE ISOTROPY 

Dumitru BOLCU1, Marcela URSACHE2, Sabin RIZESCU3,  
Sonia DEGERATU4, Nicu George BÎZDOACĂ5, Marius Marinel STĂNESCU6 

Lucrarea prezintă descompunerile spectrale ale matricilor coeficienţilor 
elastici pentru materiale omogene şi izotrope, precum şi pentru materiale omogene 
cu izotropie transversă. O bară compozită armată cu fibre de sticlă lungi poate fi 
considerată ca fiind izotropică transversal, constituenţii săi fiind consideraţi 
omogeni şi izotropi. Sunt determinate valorile proprii ale matricii coeficienţilor 
elastici pentru bara compozită, în funcţie de caracteristicile elastice şi de proporţiile 
volumice ale ambilor constituenţi. Este studiat cazul concret al unei bare compozite, 
armată cu fibre de sticlă lungi, plasate în matrice de răşina epoxidică. 

The paper presents the spectral decomposition of the elasticity matrix for a 
homogeneous and isotropic material and for a material having transversal isotropy. 
A bar made of a composite material (epoxy resin longitudinally reinforced with long 
glass fibers), is assumed as being transverse isotropic. Both its constituents are 
homogeneous and isotropic materials. The paper presents the calculus of the 
eigenvalues corresponding to the elasticity matrix of the composite bar as a whole. 
The paper also presents how these eigenvalues do vary, depending on the 
reinforcing constituent volume ratio. 

Keywords: composite materials, spectral decomposition, elastic properties, 
eigenvalues, matrix constituent, reinforcing constituent 

1. Introduction 

All theories demonstrate that the mechanic and elastic properties of a 
certain composite material depend, largely, on many issues, like following: 

- the mechanical properties of its constituents;  
- the volume ratio of each and every constituent; 
- the geometric form of its constituents; 
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- the inner arrangement of its constituents 
- the adhesion status between whatever two constituents (phases); 
- the technological process to obtain it. 
That is why, some big computation-related difficulties do occur during 

studies concerning the mechanical behavior of composite materials. These studies, 
basically, consist in building methods to determine the elastic coefficients of a 
certain composite material.  

The first micromechanical model used to evaluate the macroscopic 
properties of a fiber-reinforced material was the cylinder assemblage model 
proposed by Haskin [1]. The model was designed to present the analogy between 
the elastic relaxation modulus and the viscoelastic relaxation modulus in case of 
heterogeneous materials having the same geometry of phase distribution. 

Laws and McLaughlin [2] estimated the viscoelastic creep compliances of 
several composites by applying the self-consistent method. They used Stieltjes 
convolution integrals to formulate the problem in the Carson domain and a 
numerical inversion method to obtain the time domain solution. In the same 
respect, Yancey and Pindera [3] estimated the creep response of unidirectional 
linear viscoelastic matrix based composites reinforced with elastic fibers. Also, in 
case of linear viscoelastic matrix based composite materials reinforced with 
periodically distributed elastic inclusions, Luciano and Barbero [4] proposed some 
close-form expressions in the Laplace domain for the elastic coefficients. 

In order to determine the elastic coefficients for composites, the finite 
element-based method was applied, too. Using this method, Huang and Hu [5], 
analyzed the case of bearing spherical inclusions reinforced composites. Also, 
Meguid [6], determined the properties of a long fibers reinforced (twice 
periodically arranged in the transverse section) composite bar. 

In this paper, we present the spectral decomposition of the elasticity matrix 
in case of homogeneous and isotropic materials and in case of materials having 
transversal isotropy. 

The long fibers (periodically arranged in the transverse section) reinforced 
composite bars, can be considered as having transversal isotropy. Usually, both 
constituents of such composite material are kind of homogenous and isotropic. 
Taking into account the existing continuities of deformations and tensions on the 
boundary surfaces between whatever two constituents (phases) is kind of common 
sense. Starting from the mathematical expressions of those continuities, we shall 
establish the dependence between eigenvalues of the matrix of elastic coefficients 
for the composite bar as a whole and the eigenvalues of the matrix of elastic 
coefficients of each constituent. 

For an epoxy resin based composite bar reinforced with glass fibers, we 
present the variations of each and every eigenvalue as dependence on the 
reinforcing constituent volume ratio. For the composite material as a whole, the 
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greatest eigenvalue of the matrix of elastic coefficients depends only on the 
biggest eigenvalues obtained for each constituent. The following three 
eigenvalues depend only on the smallest eigenvalues obtained for each 
constituent. 

If the stress tensor and strain tensor are regarded as vectors in an inner 
product space of suitable dimension, the elasticity tensor can be viewed as a linear 
transformation on that space. This allows a natural representation of the elasticity 
tensor in its spectral form and a simple geometrical interpretation of the 
relationship between stress and strain, regardless the degree of anisotropy. Using 
the elasticity matrices in their spectral form enhances qualitative comparisons 
between whatever two different materials within the same elastic symmetry 
group, and, sometimes, may reveal similarities between materials belonging to 
different elastic symmetry groups. 

In a very comprehensive and substantially founded paper, Mehrabadi and 
Cowin [7], determined the eigenvalues and eigenvectors in case of homogenous 
but anisotropic elastic materials. Then, Sutcliffe [8] developed this method and he 
used it for different types of elastic symmetries. 

After pointing out these significant results, the paper continues with 
original considerations on the spectral decomposition of the elasticity matrix for 
homogenous materials and for transverse isotropic materials (also homogenous). 
Next, based on our theoretical results, we present how the elasticity matrix and its 
corresponding eigenvalues, for a multilayer composite bar, can be obtained. 
Finally, we give an application designed to validate our theoretically-obtained 
results in case of epoxy resin matrix, glass fiber reinforced composite bar.   

2. Spectral decomposition of the elasticity matrix for homogeneous 
materials and for transverse isotropic materials 

 For linear elastic materials, the dependence between the components of 
deformation tensor and the components of stress tensor is, formally: 
  ( ) [ ]( )Cσ ε= ,                 (1) 

where   ( ) ( )11 22 33 23 13 12; ; ; 2 ; 2 ; 2
t

ε ε ε ε ε ε ε= ,             (2) 

is the one column matrix of deformations, and 

  ( ) ( )11 22 33 23 13 12; ; ; 2 ; 2 ; 2
t

σ σ σ σ σ σ σ= ,               (3) 

is the one column stress matrix and [ ]C  is the matrix of elastic coefficients. 
  In order to calculate the elastic coefficients, authors like H.L. Schreyer and 
Q.H. Zuo [9], S. Sutcliffe [8], use the spectral decomposition of the elasticity 
tensor. Assuming the same purpose, in this paper, the spectral decomposition of 
the matrix of elastic coefficients was used. After processing the matrix of elastic 
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coefficients using the spectral decomposition method, the mathematic expressions 
of obtained eigenvalues are identical to the eigenvalues of elasticity tensor, 
obtained in [8] and [9]. Using the spectral decomposition method turned out to be 
more simple than using the tensorial product decomposition. 
  In case of homogeneous and isotropic materials, [ ]C  has the following form: 

  [ ]

11 12 12

21 11 12

12 12 11

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c c
c c c
c c c

C
c c

c c
c c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

.             (4) 

and [ ]C  has the following spectral decomposition: 

  [ ] [ ] [ ]1 1 2 2C C Cλ λ= + ,             (5) 
where:   1 11 12 2 11 122 ;c c c cλ λ= + = −               (6) 
and: 

[ ] [ ]1 2

1 1 1 2 1 10 0 0 0 0 0
3 3 3 3 3 3
1 1 1 1 2 10 0 0 0 0 0
3 3 3 3 3 3
1 1 1 1 1 2;0 0 0 0 0 0
3 3 3 3 3 3
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

C C

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.         (7) 

  For transverse isotropic materials, the matrix of elastic coefficients has the 
following form: 

  [ ]

11 12 13

12 11 13

13 13 33

44

44

11 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c c
c c c
c c c

C
c

c
c c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

                  (8) 

and its spectral decomposition is: 
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  [ ] [ ] [ ] [ ] [ ]1 1 2 2 3 3 4 4C C C C Cλ λ λ λ= + + + ,             (9) 

where:   

( )

( )

2 2
1 11 12 33 11 12 33 13

2 2
2 11 12 33 11 12 33 13

3 11 12 4 44

1 8 ,
2
1 8 ,
2

, ,

c c c c c c c

c c c c c c c

c c c

λ

λ

λ λ

⎡ ⎤= + + + + − +⎢ ⎥⎣ ⎦
⎡ ⎤= + + − + − +⎢ ⎥⎣ ⎦

= − =

              (10) 

and:  [ ]

2 2
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1 1 1sin sin sin cos 0 0 0
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  [ ] [ ]3 4
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and:   13

1 2

2 2sin 2 c
α

λ λ
=

−
.             (12) 

  In case of isotropic and homogeneous and isotropic materials, two elastic 
constants, 1λ  and 2λ , are, necessarily, to be known. In case of transverse isotropic 
materials, four elastic constants, 1 2 3 4, , ,λ λ λ λ  and the parameter α  must be 
known. 

3. The calculus of eigenvalues of the elasticity matrix for a multilayer 
composite bar 

  A long fibers reinforced composite bar may be assumed as having elastic 
transverse isotropic elasticity. For this reason, the determination of elastic properties 
of a composite bar made of two homogeneous and isotropic constituents becomes 
possible. Assuming a perfect adherence between the two constituents and based on 
results obtained in [10]. In [11] is presented an algorithm designed to calculate the 
elastic characteristics of a multilayer composite bar. 

In order to estimate the elastic characteristics of a certain composite 
material, a homogenization theory has to be used. Choosing the appropriate theory 
is a difficult task and that because those elastic characteristics depend on the 
specific form of the composite material. Even in simple cases like composite 
plates and bars, using such kind of theories should be done carefully and taking 
into account some important issues like the reinforcing constituent distribution 
and the boundary conditions. In this kind of respect, [12] contains basis of a new 
theory concerning nonlinear incompressible composites. 

Focusing one some authors’ recent results and, also, being aware of some 
new releases [13-14], as well as of a recent paper especially dedicated to an epoxy 
resin-based matrix carbon fiber reinforced material [15], this paper presents an 
application of a homogenization theory based on the spectral decomposition of the 
elasticity matrix in a specific case of a multilayer composite bar. 
  For such a bar, made from two layers, the matrix of elastic coefficients has 
the following form: 
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where: ( )
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∑ ∑ .         (14) 

and 1 2,V V  are the corresponding volume ratios of those two components materials; 
( ) ( )1 1
1 2,λ λ are the elastic constants for the first homogeneous and isotropic constituent 

(phase) and ( ) ( )2 2
1 2,λ λ  represent the elastic constants for the second one. 

 Assuming that a multilayer composite bar is obtained by randomly 
overlapping elementary bars like the bar elastically described by the relations (13) 
and (14), then, the matrix of elastic coefficients for such a multilayer composite 
bar can be introduced by: 

  [ ] [ ]
( )

[ ]1 t

S
C S C S dS

A
∗⎡ ⎤= ⎣ ⎦∫∫            (15) 

where A  is the area of the transverse section S of the bar, and [ ]S  is the transit 
matrix from bar’s fixed own reference system to the reference system the relation 
(14) was written with respect to. 
  The matrix [ ]S  has the following form: 
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   [ ]

2 2

2 2

2 2

cos sin 0 0 0 2 cos sin

sin cos 0 0 0 2 cos sin
0 0 1 0 0 0 ,
0 0 0 cos sin 0
0 0 0 sin cos 0

2 cos sin 2 cos sin 0 0 0 cos sin

S

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

      (16) 

where ϕ  is, in fact, the angle between the 1x axis and an in-section perpendicular 
to a separation surface between whatever two constituents of each elementary bar 
found in the transverse section of the composite bar as a whole [11]. The 3x  axis 
is the longitudinal axis of the composite bar while the 1x  axis and 2x  axis are 
describing the planar transverse section of the bar [11]. 
  The elastic coefficients of the multilayer composite bar described by the 
elasticity matrix (8), are:  

     

* * * * * * * *
11 11 22 12 55 12 11 22 12 55

* * * * *
13 12 23 33 22 44 44 55

3 3 1 1 1 1 3 1, ,
8 8 4 4 8 8 4 4
1 1 1 1, , .
2 2 2 2

c c c c c c c c c c

c c c c c c c c

= + + + = + + −

= + = = +
 (17) 

  Considering the restrictions (10) and (12), we obtain for the composite bar, 
the following characteristics: 

 ( )
2 2* * * * * * * *

1 11 22 12 11 22 12 12 23
1 1 3 1 1 2 ,
2 2 2 2 2

c c c c c c c cλ
⎡ ⎤

⎛ ⎞⎢ ⎥= + + + − + + +⎜ ⎟⎢ ⎥⎝ ⎠
⎣ ⎦
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⎣ ⎦

 

   * * * *
3 11 22 12 55

1 1 1 1 ,
4 4 2 2

c c c cλ = + − +  
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( )

* *
12 23* *

4 44 55 2 2* * * * *
11 22 12 12 23

21 1 , sin 2 .
2 2 1 1 2

2 2

c c
c c

c c c c c

λ α
+

= + =
⎛ ⎞− + + +⎜ ⎟
⎝ ⎠

   (18) 

4. Application  

 We consider the case of a composite bar, which has an epoxy resin-based 
matrix and is reinforced with glass. The elastic characteristics of both constituents 
are given in the following table: 
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Table 1 
Elastic characteristics of constituents 

Material ( )E MPa  υ  ( )1 MPaλ  ( )2 MPaλ  

Epoxy Resin 4500 0,4 22500 3210 
Glass 74000 0,25 148000 59200 

The composite material may be considered as a transverse isotropic 
material, having the elastic characteristics given by the relations (18). 

The graphical representation (figures 1 – 5) of the dependences 
1 2 3 4, , ,λ λ λ λ  and sin 2α   given by relations (18) and (12), were obtained by 

using specific plotting software. 
The variation of the characteristic for the multilayer composite bar is 

presented in figure 1. V is the volume ratio of the reinforcing constituent. 
 

 
Fig. 1. Variation of 1λ  as dependence on V 

Is to be noticed that the variation curve starts from the value corresponding to 
the matrix constituent and arrives at the value corresponding to the reinforcing 
constituent. 

In fig. 2, fig. 3 and fig. 4, the variations of the characteristics and for the 
multilayer composite bar are presented. 
 

 
Fig. 2. Variation of 2λ  as dependence on V 
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Fig. 3. Variation of 3λ  as dependence on V 

 
Fig. 4. Variation of 4λ  as dependence on V 

  In all the last three graphic representations, the variation curves for 32 λλ ,  
and 4λ  start, also, from their values corresponding to the matrix constituent 
( )0=V  and arrive at their values corresponding to the reinforcing constituent 
( )1=V . 
 Although the extreme values for all the characteristics 32 λλ , and 4λ  are 
identical, their corresponding variation curves, depending on the volume ratio V  
of the reinforcing constituent, are quite different. 
 Examination of the last four graphic representations leads to the following 
conclusion: if the volume ratio V is smaller than 0,5,  then, all the variations 
curves are pretty much linear. 
 If the volume ratio V is bigger than 0,5, then, all the variation curves are 
far from being linear. 
 In figure 5, the variation of the function sin 2α  is presented. This function 
characterizes the so-called “non homogeneity degree” of composite material as a 
whole. 
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Fig. 5. Variation of sin 2α 

  At the value 2 2sin 2
3

α = , the material is considered as “homogeneous”. 

The more the value of the function sin 2α  differs from the specific 2 2
3

 value, 

the more the composite material is considered less homogeneous. 

  5. Conclusions 

Based mostly on some of their previous works and original results, the 
authors present a new, original and effective method designed to determine the 
elastic characteristics of a multilayer composite bar. Bars of this kind are often 
used in many different technical domains. The originality of this work consists 
especially in its analytical approach and in its strong mathematic fundamentals. 
Also, the elasticity matrix spectral decomposition method represents an authors’ 
original, comprehensive and engineering-like method to approach the important 
and ever actual issue of analytically calculating the elastic coefficients of 
composite materials. This work paper could be really useful when it comes to 
make accurate estimations concerning transverse isotropic composite       
materials – especially multilayer sandwich-shaped composite bars. In this kind of 
respect, expressing the elastic constants as dependences of each and every 
constituent volume ratio could turn out to be extremely useful in dynamics 
(vibrations) of a certain composite structure. In cases like that, the structure mass 
and the structure mass spatial distribution as well, become very important issues 
the way that mass distribution and elastic characteristics have work together in 
order to obtain a desired dynamic response. This paper, by offering an algorithm 
to estimate each and every elastic constant as dependence of each and every 
constituent volume ratio, actually offers the possibility to make          
computation-based choices concerning the nature of constituents as well as 
concerning their volume ratios and spatial distribution.  
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