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THE UTILIZATION OF ELASTICITY MATRIX SPECTRAL
DECOMPOSITION IN CALCULATING THE ELASTIC
PROPERTIES OF A COMPOSITE BAR HAVING
TRANSVERSE ISOTROPY

Dumitru BOLCU', Marcela URSACHEZ, Sabin RIZESCU3,V
Sonia DEGERATU", Nicu George BIZDOACA®, Marius Marinel STANESCU®

Lucrarea prezintd descompunerile spectrale ale matricilor coeficientilor
elastici pentru materiale omogene §i izotrope, precum §i pentru materiale omogene
cu izotropie transversd. O barda compozita armata cu fibre de sticla lungi poate fi
consideratd ca fiind izotropica transversal, constituentii sdi fiind considerafi
omogeni §i izotropi. Sunt determinate valorile proprii ale matricii coeficientilor
elastici pentru bara compozitd, in functie de caracteristicile elastice si de proportiile
volumice ale ambilor constituenti. Este studiat cazul concret al unei bare compozite,
armatd cu fibre de sticla lungi, plasate in matrice de rdsina epoxidica.

The paper presents the spectral decomposition of the elasticity matrix for a
homogeneous and isotropic material and for a material having transversal isotropy.
A bar made of a composite material (epoxy resin longitudinally reinforced with long
glass fibers), is assumed as being transverse isotropic. Both its constituents are
homogeneous and isotropic materials. The paper presents the calculus of the
eigenvalues corresponding to the elasticity matrix of the composite bar as a whole.
The paper also presents how these eigenvalues do vary, depending on the
reinforcing constituent volume ratio.

Keywords: composite materials, spectral decomposition, elastic properties,
eigenvalues, matrix constituent, reinforcing constituent

1. Introduction

All theories demonstrate that the mechanic and elastic properties of a
certain composite material depend, largely, on many issues, like following:

- the mechanical properties of its constituents;

- the volume ratio of each and every constituent;

- the geometric form of its constituents;
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- the inner arrangement of its constituents

- the adhesion status between whatever two constituents (phases);

- the technological process to obtain it.

That is why, some big computation-related difficulties do occur during
studies concerning the mechanical behavior of composite materials. These studies,
basically, consist in building methods to determine the elastic coefficients of a
certain composite material.

The first micromechanical model used to evaluate the macroscopic
properties of a fiber-reinforced material was the cylinder assemblage model
proposed by Haskin [1]. The model was designed to present the analogy between
the elastic relaxation modulus and the viscoelastic relaxation modulus in case of
heterogeneous materials having the same geometry of phase distribution.

Laws and McLaughlin [2] estimated the viscoelastic creep compliances of
several composites by applying the self-consistent method. They used Stieltjes
convolution integrals to formulate the problem in the Carson domain and a
numerical inversion method to obtain the time domain solution. In the same
respect, Yancey and Pindera [3] estimated the creep response of unidirectional
linear viscoelastic matrix based composites reinforced with elastic fibers. Also, in
case of linear viscoelastic matrix based composite materials reinforced with
periodically distributed elastic inclusions, Luciano and Barbero [4] proposed some
close-form expressions in the Laplace domain for the elastic coefficients.

In order to determine the elastic coefficients for composites, the finite
element-based method was applied, too. Using this method, Huang and Hu [5],
analyzed the case of bearing spherical inclusions reinforced composites. Also,
Meguid [6], determined the properties of a long fibers reinforced (twice
periodically arranged in the transverse section) composite bar.

In this paper, we present the spectral decomposition of the elasticity matrix
in case of homogeneous and isotropic materials and in case of materials having
transversal isotropy.

The long fibers (periodically arranged in the transverse section) reinforced
composite bars, can be considered as having transversal isotropy. Usually, both
constituents of such composite material are kind of homogenous and isotropic.
Taking into account the existing continuities of deformations and tensions on the
boundary surfaces between whatever two constituents (phases) is kind of common
sense. Starting from the mathematical expressions of those continuities, we shall
establish the dependence between eigenvalues of the matrix of elastic coefficients
for the composite bar as a whole and the eigenvalues of the matrix of elastic
coefficients of each constituent.

For an epoxy resin based composite bar reinforced with glass fibers, we
present the variations of each and every eigenvalue as dependence on the
reinforcing constituent volume ratio. For the composite material as a whole, the
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greatest eigenvalue of the matrix of elastic coefficients depends only on the
biggest eigenvalues obtained for each constituent. The following three
eigenvalues depend only on the smallest eigenvalues obtained for each
constituent.

If the stress tensor and strain tensor are regarded as vectors in an inner
product space of suitable dimension, the elasticity tensor can be viewed as a linear
transformation on that space. This allows a natural representation of the elasticity
tensor in its spectral form and a simple geometrical interpretation of the
relationship between stress and strain, regardless the degree of anisotropy. Using
the elasticity matrices in their spectral form enhances qualitative comparisons
between whatever two different materials within the same elastic symmetry
group, and, sometimes, may reveal similarities between materials belonging to
different elastic symmetry groups.

In a very comprehensive and substantially founded paper, Mehrabadi and
Cowin [7], determined the eigenvalues and eigenvectors in case of homogenous
but anisotropic elastic materials. Then, Sutcliffe [8] developed this method and he
used it for different types of elastic symmetries.

After pointing out these significant results, the paper continues with
original considerations on the spectral decomposition of the elasticity matrix for
homogenous materials and for transverse isotropic materials (also homogenous).
Next, based on our theoretical results, we present how the elasticity matrix and its
corresponding eigenvalues, for a multilayer composite bar, can be obtained.
Finally, we give an application designed to validate our theoretically-obtained
results in case of epoxy resin matrix, glass fiber reinforced composite bar.

2. Spectral decomposition of the elasticity matrix for homogeneous
materials and for transverse isotropic materials

For linear elastic materials, the dependence between the components of
deformation tensor and the components of stress tensor is, formally:

(e)=[C](¢). (1)

t
where (¢)= (811; e22: 3332633V 2813; \/5812) : )
1s the one column matrix of deformations, and

t
(0‘)=(011;022;0333\/5023;\/5013;\/5012) ; €)

is the one column stress matrix and [C ] 1s the matrix of elastic coefficients.

In order to calculate the elastic coefficients, authors like H.L. Schreyer and
Q.H. Zuo [9], S. Sutcliffe [8], use the spectral decomposition of the elasticity
tensor. Assuming the same purpose, in this paper, the spectral decomposition of
the matrix of elastic coefficients was used. After processing the matrix of elastic
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coefficients using the spectral decomposition method, the mathematic expressions
of obtained eigenvalues are identical to the eigenvalues of elasticity tensor,
obtained in [8] and [9]. Using the spectral decomposition method turned out to be
more simple than using the tensorial product decomposition.

In case of homogeneous and isotropic materials, [C ] has the following form:

ar < an 0 0 0
&1 91 92 0 0 0
ar Qi 0 0 0
=1y o o qi-cy 0 0 )
0 0 O 0 a1—qn 0
10 0 0 0 0 a1—asz |
and [C ] has the following spectral decomposition:

[Cl=a4[G]+A[G]. (5)
where: A =ci1+2c; A=c1—cp (6)
and:

S L RREEEREE
bilee [3E oo
[Gl=|L L 1 4 o oplGl=|_L 1 2 4 ¢ o )

3 3 3 3 3 3

0 0 00 0O 0O 0 0 1 00
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00 0 0 00 L0 0 0 0 01

For transverse isotropic materials, the matrix of elastic coefficients has the
following form:

ar 2 ¢z 0 0 0
a ¢ g3 0 0 0
(] az a3 ¢z 0 0 0 ®
0 0 0 ey O 0
0 0 0 0 cu 0
0 0 0 0 0 -]

and its spectral decomposition is:
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[C]=A4[C ]+ 4 [C]+ A [C5]+ 44 [Cy], )
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2\/§CI3

o)
In case of isotropic and homogeneous and isotropic materials, two elastic

constants, 4, and 4, , are, necessarily, to be known. In case of transverse isotropic

and: sin2q = (12)

materials, four elastic constants, A;,4,,43,44 and the parameter a must be
known.

3. The calculus of eigenvalues of the elasticity matrix for a multilayer
composite bar

A long fibers reinforced composite bar may be assumed as having elastic
transverse isotropic elasticity. For this reason, the determination of elastic properties
of a composite bar made of two homogeneous and isotropic constituents becomes
possible. Assuming a perfect adherence between the two constituents and based on
results obtained in [10]. In [11] is presented an algorithm designed to calculate the
elastic characteristics of a multilayer composite bar.

In order to estimate the elastic characteristics of a certain composite
material, a homogenization theory has to be used. Choosing the appropriate theory
is a difficult task and that because those elastic characteristics depend on the
specific form of the composite material. Even in simple cases like composite
plates and bars, using such kind of theories should be done carefully and taking
into account some important issues like the reinforcing constituent distribution
and the boundary conditions. In this kind of respect, [12] contains basis of a new
theory concerning nonlinear incompressible composites.

Focusing one some authors’ recent results and, also, being aware of some
new releases [13-14], as well as of a recent paper especially dedicated to an epoxy
resin-based matrix carbon fiber reinforced material [15], this paper presents an
application of a homogenization theory based on the spectral decomposition of the
elasticity matrix in a specific case of a multilayer composite bar.

For such a bar, made from two layers, the matrix of elastic coefficients has
the following form:

* * *
1 ‘12 a2
* *
Cl2 ¢ 3

* *
* C C C
[ C J: 12 23 22
0 0 0 C44
%
0 0 0 0 C55

* O O O

; (13)
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P 2|
where: 011=Z Z

A= (14)

2 D20+ A | = D20+ A
and V7, V, are the corresponding volume ratios of those two components materials;

1 1 . . . .
/11( ),/15 )are the elastic constants for the first homogeneous and isotropic constituent

(phase) and 21(2), /éz) represent the elastic constants for the second one.

Assuming that a multilayer composite bar is obtained by randomly
overlapping elementary bars like the bar elastically described by the relations (13)
and (14), then, the matrix of elastic coefficients for such a multilayer composite
bar can be introduced by:

[c]ﬁ(ﬂ)[s][c*}[sr ds 15)

where A is the area of the transverse section S of the bar, and [S ] is the transit

matrix from bar’s fixed own reference system to the reference system the relation
(14) was written with respect to.

The matrix [S] has the following form:
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I cos? 1) sin’ ) 0 o0 0 2 cos @sin @ |
sin’ 1) cos? 1) 0 o0 0 —J/2 cos @sin @
[ S] _ 0 0 1 0 0 0 (16)
0 0 0 cosp —sing 0 ’
0 0 0 sing cosg 0
_\/5 cospsing —/2cosgpsing 0 0 0 cos? go—sin2 0|

where ¢ is, in fact, the angle between the x, axis and an in-section perpendicular
to a separation surface between whatever two constituents of each elementary bar
found in the transverse section of the composite bar as a whole [11]. The x, axis

is the longitudinal axis of the composite bar while the x, axis and x, axis are

describing the planar transverse section of the bar [11].
The elastic coefficients of the multilayer composite bar described by the

elasticity matrix (8), are:
3*+3*+1*+1* 1*+1*+3*l*
c1=—C|1+=Cp+—Cpp+—Cs55, Clp=—C11+—C+—C|p ——Cs5,
11811822412455 12811822412455

I = 1 = I = 1 = 17

*
as :56‘12 +5023a €33 =C22,C44 :5044 +5055-

Considering the restrictions (10) and (12), we obtain for the composite bar,
the following characteristics:

/111*+3*+*+ 1*1*+* +2(*+*)2
=—| —C —C C —Ci1——¢C C C C ,
1 5 211 222 12 211 222 12 12 TC23

/12_1 lc* +§c* +epy - (lc* —lc* +q j2+2(c* +eo )2
202 11 ) 22 T2 2 11 2 22 712 12 7623 >

p) 1 = +1 * 1 % +1 *
=—cj1 +—Cpy ——C|p +—=C55,
3 4 11 4 22 > 12 ” 55

\E(Crz +C§3)

[1c* _lc* +c* j2+2(c* +c* )2
5 11 5 22 T2 12 T€23

1 = 1 =
Ag =—cCgq +—C55,8IN 200 =
4 =5 Ca4 75055

(18)

4. Application

We consider the case of a composite bar, which has an epoxy resin-based
matrix and is reinforced with glass. The elastic characteristics of both constituents
are given in the following table:
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Elastic characteristics of constituents
Material E (MPa) v A (MPa) | 4,(MPa)
Epoxy Resin 4500 0,4 22500 3210
Glass 74000 0,25 148000 59200

Table 1

The composite material may be considered as a transverse isotropic
material, having the elastic characteristics given by the relations (18).

The graphical representation (figures 1 — 5) of the dependences
A, A, A3, A4 and sin2a  given by relations (18) and (12), were obtained by
using specific plotting software.

The variation of the characteristic for the multilayer composite bar is
presented in figure 1. V' is the volume ratio of the reinforcing constituent.
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Fig. 1. Variation of ; as dependence on V’

Is to be noticed that the variation curve starts from the value corresponding to
the matrix constituent and arrives at the value corresponding to the reinforcing
constituent.

In fig. 2, fig. 3 and fig. 4, the variations of the characteristics and for the
multilayer composite bar are presented.
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Fig. 2. Variation of A, as dependence on V/
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Fig. 4. Variation of A4 as dependence on V/
In all the last three graphic representations, the variation curves for A,,4,
and A, start, also, from their values corresponding to the matrix constituent
(VzO) and arrive at their values corresponding to the reinforcing constituent

v =1).
Although the extreme values for all the characteristics A,,4,and A, are

identical, their corresponding variation curves, depending on the volume ratio
of the reinforcing constituent, are quite different.

Examination of the last four graphic representations leads to the following
conclusion: if the volume ratio V' is smaller than 0,5, then, all the variations
curves are pretty much linear.

If the volume ratio V is bigger than 0,5, then, all the variation curves are
far from being linear.

In figure 5, the variation of the function sin 2« is presented. This function
characterizes the so-called “non homogeneity degree” of composite material as a
whole.
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Fig. 5. Variation of sin 2a
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At the value sin2a = 5 the material is considered as “homogeneous”.

The more the value of the function sin2¢ differs from the specific % value,

the more the composite material is considered less homogeneous.
5. Conclusions

Based mostly on some of their previous works and original results, the
authors present a new, original and effective method designed to determine the
elastic characteristics of a multilayer composite bar. Bars of this kind are often
used in many different technical domains. The originality of this work consists
especially in its analytical approach and in its strong mathematic fundamentals.
Also, the elasticity matrix spectral decomposition method represents an authors’
original, comprehensive and engineering-like method to approach the important
and ever actual issue of analytically calculating the elastic coefficients of
composite materials. This work paper could be really useful when it comes to
make accurate estimations concerning transverse isotropic composite
materials — especially multilayer sandwich-shaped composite bars. In this kind of
respect, expressing the elastic constants as dependences of each and every
constituent volume ratio could turn out to be extremely useful in dynamics
(vibrations) of a certain composite structure. In cases like that, the structure mass
and the structure mass spatial distribution as well, become very important issues
the way that mass distribution and elastic characteristics have work together in
order to obtain a desired dynamic response. This paper, by offering an algorithm
to estimate each and every elastic constant as dependence of each and every
constituent volume ratio, actually offers the possibility to make
computation-based choices concerning the nature of constituents as well as
concerning their volume ratios and spatial distribution.
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