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APPLICATION OF THE WAVELET TRANSFORM IN
MACHINE-LEARNING

Citalin DUMITRESCU ', Tlona Madalina COSTEA %, Florin Codrut NEMTANU?
Valentin Alexandru STAN4, Andrei Razvan GHEORGHIU®

The wide variety of waveform in EEG signals and the high non-stationary
nature of many of them is one of the main difficulties to develop automatic detection
system for them. In sleep stage classification a relevant transient wave is the K-
complex. The present paper purposes the developing an algorithms in order to
achieve an automatic K-complex detection from EEG raw data. The algorithm is
based on a time-frequency analysis and two time-frequency techniques , the
Continuous Wavelet Transform (CWT), are tested in order to find out which one is
the best for our purpose, being of two wavelet functions to measure the capability of
them to detect K-complex and to choose one to be employed in the algorithms. The
algorithm is based on the energy distribution of the CWT detecting the spectral
component of the K-complex.
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1. Introduction

The use of electroencephalography (EEG) — method used to explore
brain's bioelectrical manifestations via electrodes applied on scalp - enabled
knowledge about the changes in brain's electrical potential in both waking and
during various stages of sleep. This method has become a valuable tool in the set
of instruments used by physician in investigating the patient, brain's electrical
potential being different in the healthy person than in persons with medical
problems, but also an effective means of scientific research and exploration of the
human brain[1]. Electroencephalography also made possible the knowledge about
the internal organization of sleep, comprising two distinct stages: one stage of
paradoxical sleep or with rapid eye movements and one without such movements.
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The application in this paper refers to the study of one of the slow transient
waveforms, components of sleep's electroencephalogram microstructure, namely:
K-complex. As in the case of other non-stationary phenomena occurring during
deep sleep, such as delta waves' surges, the highlighting of the K-complex also
requires methods of statistical pattern recognition.[2][3]

The detection of the K-complex is a relatively difficult problem, the
specialized literature reporting no absolutely safe methods to highlight it.

The method for the investigation of the K-complex proposed herein allows
the development of an automated system for the detection and classification of the
aperiodic K-complex, occurring in EEG during the second stage of sleep, with a
very good probability.

The good results reported in a number of works concerning the non-
stationarity of sleep electroencephalogram justify the interest for the time-
frequency and wavelet representations that may characterize the transient
phenomena which occur in the early stages of sleep.

The time-frequency two-dimensional representations are a powerful tool
for signal analysis which have the advantage that they allow highlighting of
certain "hidden" properties of signals.

The analysis of signals at the lowest level possible, comparable with the
noise made by the device that carries out the acquisition of EEG, is interesting
from the standpoint of analysis system. That is why time-frequency analyses
should be carried out on the signals affected by noise, the signal-to-noise ratio
having a special significance in the evaluation of analyzed signal's parameters.

We resorted to this method of representation and analysis of transient
signals to develop a K-complex detector. The proposed methodology for the
synthesis of detectors with imposed structure has a wider applicability, for
instance, in the processing of voice signal.

A number of works treating nonstationarity approach this topic in terms of
the Fourier transform, which, beside the wavelet analysis, proves to be a
particularly effective tool in the analysis of transient signals.[4]

The pattern recognition (machine learning) has become a growing area
both theoretically and applicative, being, on one hand, an evolved form of
information processing and, from another perspective, being a component of
artificial intelligence. Many mathematical methods, grouped into two categories -
statistical decision and syntactic-structural - were proposed to solve the pattern
recognition issues. This separation is relative as certain inherent interlacing was
noticed. For instance, the description of primary patterns requires statistical
approaches, the same as representations of complex patterns or multiple-class
classifications lead to the replacement of statistical methods with structural
methods.
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2. Electroencephalogram analysis

Electroencephalogram represents signals' bioelectrical activity triggered by
brain's electrical activity. Brain oscillations are called brain waves. They have
certain characteristics, including: amplitude ranging between 10-500 pV and
frequency ranging between 0.5-40 Hz. The international standardized system
called ,,International Federation 10-20 system” is used to measure brain waves.
Conventionally, ,,slow-wave sleep ” or the NREM (Non Rapid Eye Movement)
stage groups stages 1, 2 and 3, while the ,,rapid — paradoxical sleep” or the REM
(Rapid Eye Movement) stage stands out in stage 4.[6] [7]
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Fig. 1. Illustration of the four stages of sleep with the help of analysis sequences during the 30
seconds of EEG. The horizontal segments occurring in 2nd and 3rd stage sequences indicate the
presence of the K-complex.
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3. Electroencephalogram microstructure

This paragraph describes briefly the best-known phasic events of sleep
electroencephalogram, without insisting on their physiological role, which is still
under debate.

e Vertex points: As shown in figure 2, negative impulses occur in stage 1,
during the sleep stage, whose amplitude increases once with deeper sleep (as sleep
grows deeper). These phasic phenomena may occur in response to certain external
stimuli and occur spontaneously.
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Fig. 2. Exemples of Vertex points

e Sleep spindle: These events are one of the criteria for definition of stage
2. They appear on EEG as quasi-sinusoidal transient signals, of frequency ranging
between 12-14 Hz and variable duration between 0.5 and 1 second in adults. An
example is shown in Figure 3. It is easily associated to a neurological mechanism
that protects the body from sleep’s external disturbances.
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Fig3. Examples of sleep spindles

e K-complex: The K-complex is, together with the sleep cycles, one of the
main "markers" of the beginning of sleep, since it appears from stage 2. It is
defined by a wave with both polarities having 100 pVvv minimum amplitude,
duration between 0.5 - 1 second, preceded and followed by low amplitude
activity, of no more than 50 pVvv for at least 2 seconds.

The K-complex is shown in Figure 4. The K-complex may occur both
spontaneously and under the influence of external stimuli. The K-complex has a
standard frequency between 0.5 - 1.5 Hz for the first peak and 5 - 10 Hz for the
second peak and it stands out by the large amplitude (65 pV) of the waveform
from the background EEG in stage 2, as shown in Figure 1. At the same time, it is
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very difficult to be isolated in stages 2 and 3 due to pronounced similarities with
other non-stationary phenomena noticed during deep, for example the surges of
delta waves shown in figures 1. The importance of detecting the K-complex is
owed to its significance in prognosis and diagnosis, but mainly to its occurrence in
moments of human thinking, especially when the human subject tries to solve
complex problems. The specialized literature refers to the K-complex, in terms of
its occurrence in parapsychology activities.[§]

This justifies the interest in statistical methods, with a view to trying to get
a satisfactory answer to these problems of detection.

The images below illustrate a series of K-complex's waveforms.

o\ e

Sleep spindles
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Fig. 4. Waveforms of the K-complex
4. Analysis of short-time Fourier transform (STFT)

The easiest way to transform locally a signal is to crop signal's section of
interest and turn it into a Fourier. This is the basic idea of the Short-Time Fourier
Transform. The name of the transformation comes from the fact that cropping is
done by multiplying the signal with a well time-located function, called the
"window". The Short-Time Fourier Transform or window is known in the
English-language literature as Windowed Fourier Transform or Short Time
Fourier Transform. Hereinafter, we shall refer to signals’ Short-Time Fourier
Transform by using the acronym STFT. By definition, Short-Time Fourier
Transform of a signal u(z), in relation to the "window" g(?), is given by the
following equation:
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STFTu(g)(T,f)=Iu(t)g*(t—T)e’jz"zﬂdt=<u(t);g(t—r)ej2”ﬁ> 7,/ €R.(1)

The Short-Time Fourier Transform of a signal is not unique. It depends on
the used function g(t). g(t) must be a local function (the largest part of the area it
limits should be in a compact area of the definition scope) in order to have a good
analysis resolution. An example of local function is Gaussian which, although it
has infinite support, concentrates over 99% of the area it limits, in the interval

Lu —3o3p+3 G] , where p and o are Gaussian's average, respectively, dispersion.
5. Continuous Wavelet Transform (CWT)

It is defined as the sum over all the time of the signal multiplied by scaled,
shifted versions of the wavelet function g.. Given a finite energy signal x(t) and a
normalized sampling period , Ts = 1 we can present a discrete wavelet analysis of

[}1] = X(l)‘ t=nT, neds

the sampled sequence X as follows:

[war=0, v e *(R) )
The discrete synthesis operation can be presented as follows:
1 < * t - b
CWTy ;(a,b) =Y ;(a,b)=—= | f(O)y¥ (—dt) 3)
v ¥, Ja J; a

where, \Pl,k (a,b) = <f’ L (t)>

Table 1
Qualities required for wavelet transforms and methods for processing of wavelet
coefficients depending on the type of application

Application Desired transformation Processing method
Signal analysis Time-frequency localization Highlighting and comparison
Data compression Appropriate rate-distortion feature Quantization and encoding
Noise reduction and Separation of signal from noise Change of wavelet coefficients
statistical estimation
Detection Concentration of the signal Statistical detection

6. Supervised statistical classification

The main goal of pattern recognition (PR) is to determine which category
a given observation vector may belong to. PR mainly uses special mathematical
methods of statistical decision theory and this approach is called statistical pattern
recognition. Statistical methods are essential for pattern recognition, because
inputs are vectors of observations, therefore sets of random sizes or, in
mathematical language, random vectors relating to the same probability field for
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actual PR systems. In statistical recognition, a pattern is represented by a n-
dimensional vector of characteristics (having pattern samples as elements) and the
classification decision relies on a measure of similarity, which is expressed as a
measure for distance or discriminant function.
Patterns’ statistical recognition systems consist of two components:
a) selection of features
b) statistical classifier.

Pattern Selection of Statistical N Labeled
features classifier —/ pattern

Fig. 5. Statistical recognition systems of patterns
The feature selection strongly affects performances of statistical
classification, which is why it is considered one of the main stages of the
statistical recognition process of patterns. The feature selection aims the
transformation of features' original space (n- dimensional) into a space with fewer
dimensions, m(m << n) so that the transformation preserves the significant

information for classification. The need to use this transformation emerges from
the fact that some classification algorithms which are effective in a space with a
small number of dimensions can become unpractical in a space with more
dimensions. In order to achieve the transition from initial observation space to a
space with fewer dimensions, we shall use the Karhunen- Loéve transformation
(“Karhunen- Loéve Transformation”= KLT or “Principal Component Analysis”=
PCA).

7. Time-frequency analysis with wavelet-type core functions

We use the JTFA libraries in the LabVIEW program to make the time-
frequency analysis. The JTFA method involves the selection of the closest kernel
functions that correspond to the fundamental waveform that describes the K-
complex. Thus, we must choose the kernel pattern based on peak values (location)
and amplitude of a "witness".

The resolution in the frequency corresponding to the spectrum analysis,
which varies in time, is equal to the Nyquist frequency divided by 2" (n = 8). The
time resolution is 2" ms (n = 4), being imposed by the applied method.

The kernel function is as follows:

C(t,w)= ! ”J.s*[u - %u}s[w + %)p(ﬁ,r)e'jg"j””a’dudrdﬁ 4)

4r*

where p(@,r) is a two-dimensional function called kernel function.
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The selection of the kernel function for wvarious time-frequency

distributions of the EEG was studied by Devedeux and Duchéne. They defined the
kernel function (pc) as follows:

p.(t,7)=&(7) foru |Z'| > 2|t| )
p.(t,z)=0  for the others
The kernel function defined by Zhao [Shi96], is mathematicaly expressed
as:

. [ Or
p0.7)=¢(x)| e/ "dt = 2§(T)5m[_2j

o =t [

6
0 (6)
2
for which:
1 70{72
&(r)=—e
T
sin(ezrj (7
plO,7)= o ¢
2

The simplified diagram for analysis of the wavelet kernel function from
the Cohen category is:
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Fig. 6. Simplified diagram of the kernel function (cone-shape kernels)

In mathematics and numerical analysis, the Ricker wavelet is the negative
normalized second derivative of a Gaussian function, i.e., up to scale and

normalization, the second Hermite function. It is a special case of the family of
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continuous wavelets(wavelets used in a continuous wavelet transform) known as
Hermitian wavelets:
2 2
\P(t)z—l(l——zJ*e 20 ®)
- o
N3orm?

The Morlet wavelet(or Gabor wavelet) is a wavelet composed of a

complex exponential(carrier) multiplied by a Gaussian window.
The execution of the approximation kernel function using the "Mexican

hat"- type and Morlet-type wavelet transformants is shown in the following

figure:
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Fig. 7. Representation of the K-complex by approximations with Mexican hat- type and Morlet-
type wavelet transformants

The results of the approximations presented in the previous figure underlie
the selection of K-complex’s waveform features required to achieve a supervised

statistical classification (machine learning).
The results of the time - frequency analysis with the Cohen class to detect

the K-complex and the delta wave are shown in Fig. 8.
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Fig. 8. Time-frequency analysis for K-complex and delta waves

The figure shows the time-frequency comparative analysis using Mexican
hat-type and Morlet-type wavelet approximation, between the nd sleep stage
(stage in which K-complex transient waves and sleep spindles occur), paradoxical
sleep (Rapid Eye Movement) and awakening stage.

The analysis of results shown in Figs. 8 and 9 reveals the energy
impression characteristic to the K-complex.

AT o]

; N
X by
1 I _Frequency[Hz]
Awalkening stage Spectrum
A
;’ 1
[t | | I
¥ "
. ]l. SR ALYy
. -
! Fraqt,anm[ﬂz
E-ta
e Spectrum
| Slaap :pm{.ah I'. ' N
m |k plex 2leep spindales
i L
1 '
¥ |
4 . .f'lt
1

F N % B

Frequeney[Hz]

Spectroeram of k-comnlex

Fig. 9.. Spectrogram resulting from Cohen class time-frequency analysis for various stages of
sleep
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8. Conclusions

At least two methods can be considered to solve a detection problem. The
first method refers to the free structure detection for which the relation of the
detection test results from the application of a decision criterion and from the
knowledge of observation probability laws.

The second method, called detection with imposed structure, requires prior
definition of a detection test class before establishing the optimum test for a given
criterion.

The material was dedicated to the definition of a methodology for the
elaboration of detectors with imposed structure. It was mainly shown that there
are at least two arguments which plead for one choice in favor of statistical
classifiers.

The first argument is based on the performance guarantees that the
statistical classification represents. The second argument, more practical, is based
on the search for a detector in a class that is tantamount to linear discriminant,
method used in analysis of pattern recognition.

The supervised learning method presented in this paper enabled the
response to this choice, leading to determination of the best decision criterion for
the analyzed issue, namely obtaining a detector with minimum error probability.

The proposed experimental results confirm, on one hand, the theory of
proposed algorithms, while the increase of learning is important in relation to the
level of detection statistics.

Acknowledgements

The work has been funded by the Sectoral Operational Programme Human
Resources Development 2007-2013 of the Ministry of European Funds through
the Financial Agreement POSDRU/159/1.5/S/134398

REFERENCES

[1] P. J. Durka and K. J. Blinowska, IEEE Engineering in Medicine and Biology Magazine 20, 47
(2001).

[2] P. Durka, BioMedical Engineering OnLine 2 (2003).

[3] P. Durka, W. Szelenberger, K. Blinowska, W. Androsiuk, and M. Myszka, Journal of
Neuroscience Methods 117,65 (2005).

[4] P. J. Durka, D. Ircha, and K. J. Blinowska, IEEE Transactions on Signal Processing 49, 507
(2001).

[5]S. Mallat and Z. Zhang, IEEE Transactions on Signal Processing 41, 3397 (1993).

[6] P. J. Durka, D. Ircha, C. Neuper, and G. Pfurtscheller, Medical & Biological Engineering &
Computing 39, 315 (2010).

[7] P. J. Franaszczuk, G. Bergey, P. J. Durka, and H. Eisenberg, Electroencephalography and
Clinical Neurophysiology 106, 513 (1998).



178 C. Dumitrescu, Ilona Méadalina Costea, FL. C. Nemtanu, V. AL. Stan, A. R. Gheorghiu

[8] C. Dumitrescu, “Time-frequency analysis of EEG”, Dissertation submitted in partial
fulfillment of the requirements for the degree of doctor, UPB, Bucharest, 2003

[9] C. Dumitrescu, “K-complex Detection using the Continous Wavelet Transform”, Dissertation
research, Timisoara 2012.

[10] R. Q. Quiroga, A. Kraskov, T. Kreutz, and P. Grassberger, Physical Review E 65, 041903
(2002).

[11]1R. A. DeVore and V. N. Temlyakov, Advances in Computational Mathematics 5, 173 (1996).

[12]1S. S. Chen, D. L. Donoho, and M. A. Saunders, SIAM Review 43, 129 (2001).

[13] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, in Proceedings of the 27th Annual Asilomar
Conference on Signals, Systems and Computers (1993).

[14] G. Davis, S. Mallat, and Z. Zhang, SPIE Journal of Optical Engineering 33, 2183 (1994).

[15] S. Jaggi, W. Carl, S. Mallat, and A. Willsky, High resolution pursuit for feature extraction
(1995), URL citeseer.nj.nec.com/jaggi9Shigh.html.

[16] D. L. Donoho and X. Huo, IEEE Transactions on Information Theory 47, 2845 (2001).



