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A HYBRID FIREWORKS ALGORITHM FOR THE MULTI-

TRIP VEHICLE ROUTING PROBLEM 

Qiang SONG1 

This paper investigates the muti-trip vehicle routing problem (MTVRP) with 

considerations of vehicle capacity and time constraints. The problem aims to 

determine a set of trips and assign each trip to a vehicle in a proper way. In this 

work, firstly, a mixed integer linear programming (MILP) model is formulated to 

optimize the total travelling time. Then, a hybrid fireworks algorithm (HFWA) is 

developed for solution generation since it has been proven to be NP-hard. In the 

algorithm design, a new coding scheme is proposed to accommodate the problem 

characteristic. Meanwhile, the opposition-based learning technique and the 

evolution mechanism of artificial bee colony (ABC) algorithm are embedded into 

FWA for balancing its exploration and exploitation abilities. Computational results 

indicate that HFWA is effective and efficient in solving MTVRP when compared to 

other algorithms. 

Keywords: vehicle routing problem, multi-trip, fireworks algorithm, reverse 

learning 

1. Introduction 

Vehicle routing problem (VRP) is a research hotspot in the field of 

operations research and combinational optimization. A number of VRP variants 

have appeared in different practical scenarios over the years, such inbound 

logistics and express logistics [1,2]. Multi-trip vehicle routing problem (MTVRP) 

is a significant variant of VRP for logistics and transportation companies, in 

which a vehicle may execute multiple delivery tasks in the planning horizon [3]. 

In this regard, appropriate planning of MTVRP plays an important role in 

reducing transportation cost and increasing customer satisfaction [4,5]. This paper 

is motivated by this background and aims to investigate such a practical 

scheduling problem in effective manner. 

This paper investigates the MTVRP with considerations of capacity and 

time constraints, in which the total travelling time is selected for improvement. As 

MTVRP has been proven to be NP-hard, the design of solution methodologies has 

attracted much attention from many researchers. The algorithms in this field can 

be classified into three categories: exact methods, heuristic and metaheuristic. The 

methods are capable of obtaining optimal solutions, and related algorithms 

include mixed integer programming modeling (MILP) and dynamic programming 
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(DP). However, the computation time will explosively grow with the increase of 

problem size [6]. Such a dilemma makes it impossible to apply these algorithms to 

practical cases. The heuristic methods can quickly obtain the approximate optimal 

solution of MTVRP by virtue of different scheduling rules [7]. Meanwhile, it is 

very difficult to select appropriate scheduling rules for different practical 

scenarios and some minor change of a specified scenario may lead to invalidation 

of the original selection of scheduling rules [8]. It should be noticed that it is 

almost impossible to solve practical-scale instances to optimality considering the 

exploding search space. Under such circumstances, metaheuristic algorithms have 

become the most appropriate approaches since they are problem-agnostic and able 

to find optimal approximation solutions in a reasonable time [9]. For example, Hsu 

[10] proposed a hybrid shuffled frog-leaping algorithm to solve the problem of 

disassembly process planning; Salhi [11] presented a hybrid genetic algorithm for 

traditional VRP; in order to solving the MTVRP, François [12] combined the 

heuristic algorithm with bin packing routines in order; Saxena [13] adopted a 

parallelized version of genetic algorithm to solve VRP based on OpenMP 

programming model. In this regard, this paper proposes a hybrid fireworks 

algorithm (HFWA) to the investigated MTVRP. 

FWA is a relatively new meta-heuristic algorithm, which is inspired by 

emulating the fireworks explosion in the night [14]. Due to its simple and novel 

concept, FWA has attracted much attention of many researchers. So far, FWA has 

been successfully applied in solving different practical engineering problems, 

including numerical optimization, image fusion and job shop scheduling [15, 16]. 

Yang and Ke studied capacitated vehicle routing problem (CVRP) and modified 

FWA for solution generation [17]. They proposed a new method to generate 

sparks according to selection rule and designed a new method to determine the 

explosion amplitude for each firework. Wang et al. developed a new task 

scheduling method for fog computing, in which a hybrid algorithm is proposed by 

introduce the explosion radius detection mechanism of FWA into genetic 

algorithm [18]. Simulation results indicated that the hybrid method can achieve 

better execution time and ensure better load in a short time. Pang et al. designed 

an improved fireworks algorithm to minimize the makespan in permutation flow 

shop scheduling problems (PFSPs) and hybrid flow shop scheduling problems 

(HFSPs) [19]. Different improved strategies, non-linear decreasing radius and 

Cauchy mutation operators are utilized to enhance algorithm performance. 

Comprehensive experiments in these have validated FWA’s excellent 

performance when compared to traditional metaheuristics, like genetic algorithm 

and particle swarm optimization. Meanwhile, the FWA applications in these 

works have directive significance to model formulation and algorithm design in 

current research. 
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To our knowledge, little was published on addressing MTVRP by virtue of 

FWA-based algorithm. In this research, an effort was made to deal with such a 

practical scheduling problem by this efficient algorithm. To better adapt FWA to 

the investigated MTVRP, three modifications have been embedded into FWA. 

First, a novel solution representation architecture is developed to accommodate 

the problem characteristic. Second, an opposition-based learning initialization 

method is utilized to generate initial solutions with high qualities. Third, evolution 

strategy of ABC algorithm is embedded into FWA to strengthen the information 

exchange among different individuals, which aims to balance its exploration and 

exploitation abilities. 

The rest of this paper is organized as follows. Section 2 formulates 

MTVRP with a MILP model. Section 3 presents the outlines of FWA, and Section 

4 gives detailed designs of the proposed HFWA. Computational studies are 

designed and discussed in Section 5. Finally, Section 6 presents conclusions and 

future work. 

2. Mathematical modeling 

2.1 Problem description 

Fig. 1 depicts the investigated MTVRP. Let ( , )G V E=  be a complete and 

undirected graph, where {0, , }V n= L  is the set of vertices and 
{( , ) | , , }E i j i j V i j=    the set of arcs. Vertice 0 represents the distribution center 

and {1, , }J n= L  correspond to clients. The travelling time between two vertices is 

defined as ijt . For every client i , the corresponding order size is iq . A fleet of 

homogeneous vehicles are used to execute multiple trips in the planning horizon 

HT . 
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Fig. 1. Schematic diagram of MTVRP problem 
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In MTVRP, two important decisions should be made: (1) group clients 

into trips and (2) schedule these trips on vehicles. A solution is feasible if the 

following constrains are all satisfied: 

(1) Every client is served only once. 

(2) Every trip starts and ends at the distribution center. 

(3) Trips assigned to a vehicle do not overlap with each other. 

(4) The completion time of each vehicle does not exceed HT . 

(5) The demand sum in any trip does not exceed the vehicle capacity Q . 

2.2 Mathematical model 

The MTVRP is formulated in this subsection by virtue of a MILP model. 

First, some decision variables are introduced as follows: 

 

0-1 decision variable, if arc ( , )i j  is assigned to the -r th  trip of 

vehicle k , =1r

ijkx ; otherwise, =0r

ijkx ; 

: 

0-1 decision variable, if the vehicle k is used, =1ky ; otherwise, =0ky ; 

: 

The time point when vehicle k  arrives at vertice j  by arc ( , )i j  in its 

-r th  trip； 

Mathematically, the MTVRP can be formulated in the following manner. 
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The objective function (1) is to minimize the total travelling time. 

Constraint (2) ensures that each client is visited exactly once by a vehicle in a trip.  

Constraint (3) states that there are no routes or trips between same vertices, and 

the flow conservation at each client is defined in Constraint (4). Constraint (5) 

guarantees that only selected vehicles can execute trips. Constraints (6) and (7) 

indicates that each trip start from the distribution center and trips assigned to a 

vehicle do not overlap with each other. Constraint (8) ensures that there exists at 

least on trip for each selected vehicle. For each vehicle, Equations (9) and (10) are 

used to calculate the arrival time at its first client vertice, while equation (11) 

defines the arrival times point at its last client vertice. The time points when a 

vehicle arrives at other client vertices are calculated in Equation (12). Constraints 

(13) guarantees that all trips should be completed within the planning horizon. 

Constraint (14) takes into consideration the vehicle capacity, i.e., all demand 

assigned to a trip may not exceed the limitation. Finally, Equations (15)~(17) 

defines boundary values of all decision variables. 

3. FWA algorithm 

FWA is a new meta-heuristic algorithm, which is inspired by emulating 

the fireworks explosion in the night [20]. FWA is a population-based evolutionary 

meta-heuristic in nature, and the individual in algorithm is referred as firework. 

Two types of mutation operations are utilized to generate offspring individuals, 

which are called explosion sparks and Gaussian sparks. Numerical results indicate 

that FWA works very well on some practical engineering problems. This section 

presents a detailed introduction of this novel algorithm.  

The outlines of basic FWA are stated as follows: 
Algorithm 1. Outlines of FWA 

1: Initialize algorithm parameters. 
2: Randomly generate n  individuals. 

3: Evaluate the solution performance of n  individuals. 
4: Repeat 

5: calculate the number of explosion sparks for each individual; 

6: calculate the explosion amplitude for each individual; 
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7: generate sparks for each individual; 
8: generating Gaussian sparks for each individual; 

9: select the best individual into offspring generation; 

10: randomly select the other 1n −  offspring individuals based on a probability; 

11: until any algorithm stopping criteria is met. 
12: Output the best individual. 

 

In FWA’s evolution, the explosion sparks number 
is  generated for parent 

firework ix (i.e., the -thi  individual in population) is determined by its solution 

performance. Given the evaluation function ( )f  , 
is  is obtained according to the 

following expression: 
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where mins and maxs  are boundary of is . In addition, M  represents the total 

number of sparks and maxf  defines the evaluation of the worst individual in current 

population. Parameter   is a small constant to avoid zero division. In addition, the 

explosion amplitude iA  for ix  is calculated by: 
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where A  defines the maximum explosion amplitude, and minf  is the evaluation of 

the best individual in current population. 

Explosion sparks in FWA are generated by taking the flowing steps: 

Algorithm 2. Explosion sparks generation in FWA 

1: Initialize all solution arrays of the explosion sparks, i.e., set    i ispark x . 

2: Calculate the offset displacement, i.e., set ( ) 1,  1ix A rand =  − . 

3: Set (    (0 ),  1)dz round rand= , where   1,2, ,d D= . 

4: For   1,2, ,d D= , where   1zd ==  do 

5: , ,  i d i dspark spark x +   

6: if ,i dspark out of bounds then 

7: Set , , , , , | | %( )i d min d i d max d min dspark x spark x x + −  

8: end if 

9: end for 
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In FWA, the Gaussian sparks are generated according to Algorithm 3. 

 

Algorithm 3. Gaussian sparks generation in FWA 

1: Initialize all solution arrays of Gaussian sparks, i.e., set i ix x . 

2: Calculate the offset displacement, i.e., set (1,1)e Gaussian . 

3: Set (    (0 ),  1)dz round rand= , where   1,2, ,d D= . 

4: For   1,2, ,d D= , where   1zd ==  do 

5: , ,i d i dx x e   

6: if ,i dspark out of bounds then 

7: Set , , , , ,| | %( )i d min d i d max d min dx x x x x + −  

8: end if 

9: end for 

  

The distance-based selection strategy in FWA is used to select other -1n  

fireworks to formulate offspring generation. The selection probability ( )ip x  of ix  

is calculated by: 

1
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where ( )iR x  represents the Euclid distance between two different solution array. 

Such a selection strategy is to able to ensure that individuals in low crowded 

regions may have a higher probability to be selected for next generation. 
 

4. The proposed HFWA algorithm 

4.1 The solution presentation 

The solution to MTVRP is to group clients into trips and schedule trips on 

homogeneous vehicles under some constraints. In this regard, a novel solution 

representation architecture is proposed to accommodate problem characteristics 

on purpose of paving the way for FWA deployment.  

Consider the scenario where n  clients are to be served by m  vehicles, the 

solution can be defined by n  real numbers in interval [1, 1)m + . The -thi  number in 

solution array stores the information about the assign information of client i .  
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Fig. 2. The schematic diagram of encoding and decoding 

 

The decoding process includes three steps.  First, the integer and fractional 

parts of all coding values are separated to form two arrays. Second, the integer 

part of the -thi  number is used to determine the vehicle index for client i . Then, 

the number of clients assigned to each vehicle can be known with certainty, and 

the trip size of a vehicle equals the number of clients assigned to it. On basis of 

this, the roulette rule is used to determine the trip index and visit priority of each 

client by virtue of the fractional part of the -thi  number. Some minor adjustments 

are utilized to modify the final schedule, i.e., delete empty trips. 

To facilitate understanding of above-mentioned description, Fig.2 presents 

an illustrative example. In this case, six clients are to be served by two vehicles, 

and thus the solution can be denoted by six real numbers in interval [1, 3). Given a 

solution array (1.9, 2.3, 1.6, 2.4, 2.7, 2.6), the interpreted schedule is as follows: 

⚫ Vehicle 1: only one trip with visit sequence 0→3→1→0 

⚫ Vehicle 2: two trips with visit sequences 0→2→4→0 and 

0→6→5→0. 

4.2 Evaluation function 

The proposed solution representation architecture has efficiently taken 

advantage of the real-coding mechanism, which makes it possible to solve 

MTVRP with FWA. Meanwhile, to eliminate infeasible solution in the algorithm 
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evolution, this research adopts the penalty function to establish the evaluation 

function. The expression is defined as follows: 

1 0 0 2+ max ,0 max ,0r r r

j k j i H ijk i

k K r R j J k K r R i V j V

F F T x T x q Q 
      

   
 =   − +   −   

   
     (23) 

where 1 and 2  are two penalty factors. 

4.3 Fuse the initialization strategy of reverse learning 

The opposition-based learning initialization method is embedded into 

FWA to diversify initial individuals and to find good initial solutions [21,22]. To 

be more specific, the initial population is created in a random manner, and the 

corresponding opposition-based population is generated. Then a greedy selection 

method is used to find some good solutions inside these two groups in order to 

form initial population with high qualities. 

Give the population size n , let 1( , , , , )i i id iDx x x x= L L  be the solution 

array of the i th− solution. The opposition-based 1( , , , , )o o o o

i i id idx x x x=  of ix is 

defined as follows: 
o l u

id d d idx x x x= + −  (24) 

where 1,2, ,d D= L  and is the length of solution array. In addition, 

[ , ]l u

d dx x  boundary values of each dimension of soliton array. On basis of above-

mentioned description, the Opposition-based learning initialization method is 

stated as follows 

Step 1. Set 1i   and 1d  . Then, go to Step 2. 

Step 2. If i D , go to Step 3; otherwise, go to Step 7. 

Step 3. If d D , go to Step 4; otherwise, go to Step 5. 

Step 4. Generated solution array value idx  in a random way and 

calculated its opposition-based value 
o

idx . Then, go to Step 5. 

Step 5. Set 1d d + . If d D , set 1d  and go to Step 6; 

otherwise, go to Step 3. 

Step 6. Set 1i i + , and then go to Step 2. 

Step 7. Rank these solutions according to their evaluation function 

values, and then select n  best solutions to form the initial population. 

4.4 Local evolutionary method of fusing swarm search 

To better adapt FWA for MTVRP, this subsection designs a local search 

method by taking advantage of evolution strategies of ABC algorithm [23]. In 

each iteration of FWA, some ABC-based evolution strategies are used to enhance 

the performance FWA’s offspring. The proposed ABC-based local search 
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includes three significant components: individual selection probability model, 

individual update method and offspring selection strategy. 

(1) Individual selection probability model 

The probability model is used to select candidates from current population 

for ABC-based local search. To ensure that good soliton has higher opportunities 

to be selected, all individuals in current population are ranked firstly according to 

evaluation function values and then the selected probability ir of the i th−  

solution ix  is calculated as follows: 

1

exp( )

exp( )

i
i n

j

j

rank
r

rank
=

−
=

−
                                          (25) 

where irank  denotes the rank index of solution ix . 

(2) Individual update method 

The local search adopts the evolution strategy in ABC algorithm to update 

individuals. In this regard, given a selected solution ix  and another random 

solution rx ( k i ), the mutant individual 1( , , , , )i i id iDv v v v= L L  is calculated as 

follows: 

rand( 1,1) ( )id id id kdv x x x= + −  −                           (26) 

where rand( 1,1)− represents a random value on interval [-1,1]. 

(3) Offspring selection strategy 

Give a selected solution ix  and its mutant solution iv , the ABC-based local 

search adopts greedy selection strategy for individual retention. In other words, 

the solution with a better evaluation function is selected to form offspring 

generation. 

4.5 The implementation process of HFW algorithm 

Based on above descriptions, the outlines of HFWA algorithm are stated 

as follows: 

Algorithm 4. Outlines of HFWA 

1: Initialize algorithm parameters. 

2: 
Generate n  individuals by virtue of opposition-based learning 

initialization method 

3: Evaluate the solution performance of n  individuals. 

4: Repeat 

5: calculate the number of explosion sparks for each individual; 

6: calculate the explosion amplitude for each individual; 

7: generate sparks for each individual; 

8: generating Gaussian sparks for each individual; 
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9: select the best individual into offspring generation; 

10: 
randomly select the other 1n −  offspring individuals based on a 

probability; 

11: 
Build individual selection probability model and select n  candidate 

solutions 

12: 
Generated ABC-based mutant solutions by the proposed local search 

algorithm  

13: 
Select solutions with better performance to formulate the offspring 

generation 

14: until any algorithm stopping criteria is met. 

15: Output the best individual. 

5. Simulation experiment and result analysis 

5.1 Experimental description 

To verify the optimization performance of the HFWA built in this paper, 

Matlab 2016a programming platform is used for simulation. The computer 

parameters are Intel Core I5-8250U CPU 1.6GHZ, and 8GB memory. We refers 

the relevant steps in literature [24] to generate the MTVRP test example in this 

paper, and the parameters are set as follows: the total quantity of customers =40n , 

the total quantity of vehicles =3m , the vehicle load capacity =10Q  (unit: ton); 

Table 1 shows the horizontal and vertical coordinates and demand values of all 

nodes, among which, 0 represents the distribution center; the planning period 

[0, ]HT is defined as [0,8] , the unit is hour, and the delivery speed is set as 60 

km/h. 
Table 1 

Parameters of problem 

Number 

i  

X-

coordinate 

/km 

Y-

coordinate 

/km 

Demand iq
 

/ton 

Number 

i  

X-coordinate 

/km 

Y-coordinate 

/km 

Demand 

iq
/ton 

0 60 50 -- 21 61 45 3 

1 13 40 2 22 36 12 2 

2 60 16 2 23 73 10 2 

3 50 72 1 24 86 43 4 

4 95 28 1 25 93 77 4 

5 34 21 2 26 4 56 3 

6 9 42 3 27 11 46 3 

7 16 13 1 28 33 71 1 

8 78 66 1 29 34 78 1 

9 69 20 3 30 27 19 4 

10 34 58 3 31 86 40 2 

11 92 2 3 32 11 40 1 

12 71 29 1 33 19 33 1 

13 45 85 2 34 34 40 3 
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14 18 95 1 35 62 25 2 

15 62 90 2 36 58 22 1 

16 32 16 2 37 1 62 2 

17 46 3 2 38 18 4 3 

18 8 2 2 39 26 99 2 

19 28 62 3 40 35 25 3 

20 73 44 1     

5.2 Parameter calibration of HFWA  

The iterative evolution of HFWA involves the following algorithm control 

parameters: the fireworks population number n , the iteration number G , the 

explosive spark parameter SN , the Gaussian spark number GN , the basic 

explosion radius A , the explosion radius integration parameters a and b . 

According to relevant studies, parameters a and b  have little influence on 

optimization performance of the algorithm, so the recommended values in 

literature research are as follows: =0.1a , =0.2b [17]. To obtain the optimal 

solution capability of HFWA, orthogonal experimental method is adopted to 

verify the remaining five parameters [25]. Each parameter is set at 4 levels 

respectively. Table 2 summarizes the values of each algorithm parameter at 

different levels. Meanwhile, Table 3 shows the orthogonal experimental 

arrangement with 5 factors and 4 levels. Based on this, the HFWA is used to 

conduct 15 independent simulation experiments under different algorithm 

parameter arrangements. The mean value F of the decision target obtained by the 

algorithm is taken as the response variable, Table 4 carries out the range analysis 

on the test results. 
Table 2 

Parameter setting of orthogonal test 

Level 
Factors 

n  G  SN  GN  A  

1 30 1000 10 8 0.4 

2 40 1200 20 10 0.6 

3 50 1500 30 14 0.8 

 

Table 3 

Test results of orthogonal experiment 

No. 
factors 

F  No. 
factors 

F  
n  G  SN  GN  A  n  G  SN  GN  A  

1 1 1 1 1 1 19.63 15 2 2 3 1 3 18.74 

2 1 1 1 1 2 20.23 16 2 3 1 2 1 20.43 

3 1 1 1 1 3 17.98 17 2 3 1 2 2 19.27 

4 1 2 2 2 1 18.13 18 2 3 1 2 3 21.09 

5 1 2 2 2 2 19.62 19 3 1 3 2 1 18.92 
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6 1 2 2 2 3 20.71 20 3 1 3 2 2 18.34 

7 1 3 3 3 1 21.08 21 3 1 3 2 3 20.97 

8 1 3 3 3 2 19.79 22 3 2 1 3 1 20.96 

9 1 3 3 3 3 19.78 23 3 2 1 3 2 21.22 

10 2 1 2 3 1 19.30 24 3 2 1 3 3 19.19 

11 2 1 2 3 2 19.67 25 3 3 2 1 1 17.71 

12 2 1 2 3 3 19.47 26 3 3 2 1 2 18.24 

13 2 2 3 1 1 19.88 27 3 3 2 1 3 18.46 

14 2 2 3 1 2 20.77        

 

Table 4 

Range analysis of orthogonal experiment 

Level 
Factors 

n  G  SN  GN  A  

1 58.98 58.18 60.00 57.21 58.68 

2 59.54 59.74 57.11 59.16 59.05 

3 58.01 58.61 59.42 60.15 58.80 

4 1.53 1.56 2.90 2.94 0.37 

range 4 3 2 1 5 

grade 3 1 2 1 1 

According to the orthogonal experimental results, the explosive spark 

parameter SN and the Gaussian sparks number GN  have the greatest influence on 

the HFWA. These two parameters are used to balance the global search and the 

local mining of the HFWA, thus directly determining the optimization quality of 

the solution algorithm. Secondly, population size n and iteration number G also 

have great influence on the optimization performance of HFWA. Relatively 

speaking, the basic explosion radius parameter Ahas little influence on the 

optimization performance of HFWA, but it also needs to be set to ensure that the 

algorithm achieves better performance. To sum up, the five parameters of HFWA 

algorithm are set as follows: the number of fireworks population n is set as 50, the 

quantity of iterations G  is set as 1000, the explosive spark parameter SN is set as 

20, the quantity of Gaussian sparks GN is set as 8, and the basic explosion radius 

A is set as 0.6. 

5.3 Analysis of test results 

To verify the optimization effect of HFWA, it is compared with FWA, SA 

and PSO. To ensure the equity of algorithm comparison, the population size of the 

three comparison algorithms is set to the same value of HFWA, the population 

size of FWA, PSO and the number of internal cycles of SA are set to the same 

value as the population size of HFWA, and the other parameters are maintained to 
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the same value as the references. For the above calculation example, the decision-

making method runs independently for 15 times. Table 5 statistics the test results. 

Statistical indicators include: optimal value optF , worst value worF , mean 

value meanF , standard deviation stdF , average percentage relative deviation 

(APRD), which are the parameters of the decision target [29], and average 

running time of the algorithm. APRD is calculated as follows: 

100%
mean lb

lb

F F
APRD

F

−
=                                         (22) 

Table 5 

Comparison of test results of the four algorithms 

Algorithms optF  
worF  

meanF  
stdF  APRD /% time/s 

HFWA 17.19  17.71  18.29  1.46  3.00  576.30 

FWA 17.89  18.70  19.25  1.52  8.79  544.75 

SA 17.73  18.37  19.00  1.93  6.87  418.89 

PSO 18.03  19.08  19.19  1.82  10.98  535.12 

 
Fig. 3. Comparison of optimal evolution curves 

 

In the expression, meanF represents the mean value of the 15 times solution 

results of an algorithm, lbF is the low-order value of the current example, and lbF  

is replaced by the optimal value optZ  of the four algorithms. Meanwhile, Fig. 3 

shows the iterative process of the optimal solution evolution curve of the four 

algorithms, and the corresponding scheduling scheme is shown in Fig. 4. In 

addition, Table 6-9 summarizes the details of the optimal decision scheme. 
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Fig. 4. Optimal scheme of the four algorithms 

Table 6 

The optimal scheme of HFWA algorithm 
Vehicle 

No. 

Trip 

No. 
Line arragement 

Line length 

/km 

Time-consumption 

/km 

Loads 

/ton 

1 1 0→27→6→32→1→33→0 112.07 1.87 10 

1 2 0→3→13→15→25→8→0 132.11 2.20 10 

1 3 0→5→16→38→18→7→0 144.06 2.40 10 

2 1 0→28→29→39→14→37→26→0 172.84 2.88 10 

2 2 0→34→30→40→0 95.35 1.59 10 

2 3 0→12→9→23→11→4→0 131.82 2.20 10 

2 4 0→24→31→20→21→0 60.67 1.01 10 

3 1 0→35→36→2→17→22→0 113.91 1.90 9 

3 2 0→10→19→0 68.59 1.14 6 

 

Table 7 

Optimal scheme obtained by FWA 

Vehicle No. Trip No. Line arrangement 

Line 

length/k

m 

Time-

consumption 

/hour 

Loads 

/ton 

1 1 0→5→7→18→38→22→0 147.09  2.45  10 

1 2 0→20→31→24→12→0 75.14  1.25  8 

1 3 0→40→30→16→0 95.23  1.59  9 

1 4 0→21→2→17→36→35→0 105.77  1.76  10 

2 1 0→8→25→15→3→13→0 149.94  2.50  10 

2 2 0→33→1→32→6→27→0 112.07  1.87  10 

2 3 0→4→11→23→9→0 130.22  2.17  9 

2 4 0→34→19→10→0 85.07  1.42  9 

3 1 0→26→37→14→39→29→28→0 172.84  2.88  10 
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Table 8 

Optimal scheme obtained by SA algorithm 
Vehicle No. Trip No. Line arrangement Line length 

/km 

Time-consumption/hour    Loads 

/ton 

1 1 0→12→23→11→4→31→20→0 132.52  2.21  10 

1 2 0→38→18→7→30→0 143.90  2.40  10 

1 3 0→10→34→21→0 77.76  1.30  9 

1 4 0→35→36→17→2→9→0 112.83  1.88  10 

2 1 0→28→29→14→39→13→15→3→0 160.69  2.68  10 

2 2 0→27→6→32→1→33→0 112.07  1.87  10 

2 3 0→40→5→16→22→0 95.46  1.59  9 

2 4 0→24→25→8→0 104.32  1.74  9 

3 1 0→19→37→26→0 124.20  2.07  8 

 

Table 9 

Optimal scheme obtained by PSO algorithm 

Vehicle No. Trip No. Line arrangement 
Line length 

/km 

Time-consumption 

/hour 

Loads 

/ton 

1 1 0→34→33→32→6→1→0 110.39  1.84  10 

1 2 0→27→26→37→0 128.29  2.14  8 

1 3 0→21→35→9→12→20→0 72.40  1.21  10 

1 4 0→3→29→14→39→13→15→8→0 167.79  2.80  10 

2 1 0→38→18→7→30→0 143.90  2.40  10 

2 2 0→40→5→16→22→36→0 102.76  1.71  10 

2 3 0→4→11→23→17→2→0 169.13  2.82  10 

3 1 0→25→24→31→0 108.21  1.80  10 

3 2 0→10→19→28→0 78.91  1.32  7 

Based on the comparison of the 15 times results with independent running, 

it can be seen from the above optimization results: as far as the optimization index 
optF , the optimal solution of HFWA algorithm is 17.19, which is superior to FWA 

( optF is17.89), SA ( optF is 17.73) and PSO ( optF is 18.03). At the same time, the 

indexes optF of the four algorithms are 18.29, 19.25, 19.00 and 19.19, 

corresponding APRD indexes are 3.00%, 8.79%, 6.87% and 10.98% respectively. 

The performance of HFWA is the best, so the hybrid algorithm proposed in this 

paper can obtain the high-quality scheduling scheme of MTVRP. In addition, as 

far as stdF index, the index data corresponding to the four algorithms are 1.46, 

1.52, 1.93 and 1.82 respectively, and HFWA performs the best. In other words, 

HFWA not only achieves high quality scheme, but also has strong solution 

stability. Finally, in terms of algorithm running time, the value corresponding to 

SA is the minimum (418.89 seconds), while the value corresponding to HFWA is 

the maximum (576.30 seconds). In general, the running time of the tested 

algorithm is within the same order of magnitude, and both of them are relatively 

short, indicating that evolutionary algorithm has strong practical application value 

for solving MTVRP problem. 
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6. The Conclusion 

This paper investigated MTVRP with considerations of capacity and time 

constraints. A MILP model is formulated to minimize total transportation time, 

and a hybrid approach named HFWA is proposed for solution generation. In 

algorithm design, a novel solution representation architecture is utilized to 

accommodate MTVRP’s characteristic. In addition, an opposition-based learning 

initialization method is introduced to generate initial solutions with high qualities. 

In order to balance the algorithm’s exploration and exploitation abilities, the 

solution mutation strategy of ABC is embedded into the FWA’s evolution. 

Computational results indicate that HFWA is effective and efficient in solving 

MTVRP when compared to other metaheuristic algorithms. 

With respect to future research, an interesting research hotpot worth 

researching is to apply HFWA to more complicated problems, such as dynamic 

MTVRPs. Meanwhile, another research direction is to formulate new 

mathematical models of MTVRPs with the consideration of green manufacturing 

or sustainability. 
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