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SPECTRAL METHOD FOR SOLVING THE DIFFERENTIAL 
EQUATIONS INVOLVED IN AB-INITIO TREATMENT OF TUNNEL 

TRANSISTORS STRUCTURES 

Sever SPANULESCU1 

In lucrare este prezentată o nouă variantă a metodei spectrale de rezolvare a 
ecuaţiilor diferenţiale cu condiţii la limită, aplicabilă la calcule ab-initio pentru 
tunelarea electronilor. Prin exprimarea potenţialului total în care se mişcă 
electronul ca o dezvoltare în serie după un anumit set de funcţii într-un spaţiu 
Hilbert, ecuatiile obtinute prin metoda colocatiei pot admite o integrare analitica 
initiala. Experimentele noastre numerice au aratat o îmbuntăţire importantă a 
preciziei datorită acestei prelucrări analitice suplimentare, ceea ce, împreună cu 
propritatea de evanescentă poate conferi metodei avantaje importante pentru 
calcule ab-initio.     

A new variant of the spectral method for solving the boundary conditions 
ordinary differential equations, suited to the ab-initio tunneling calculus is 
presented. By expanding the total potential expression in a series in a Hilbert space, 
the linear equations derived with the collocation method may admit an initial 
analytical quadrature for certain basis sets. Our numerical experiments showed an 
important improvement of the precision due to this supplementary analytical 
treatment which, combined with the evanescence of the method may be a good 
advantage for ab-initio calculations  

Keywords: spectral methods, evanescence, boundary conditions, ab-initio,  
                    tunneling transistors.  

1. Introduction 

As the dimensions of the microelectronic structures continuously decrease, 
the inherent tunneling current becomes a disturbing part of the various devices 
design. It seems that the time has come that these tunneling currents to become 
the active, useful part of the electronic functions of the microelectronic devices, 
mainly as tunnel transistors structures. 

Some major benefits would accompany this new approach in large scale 
integrated circuits. Among them, the huge increase in operating frequency and the 
decrease of power consumption, due to the absence of minority carriers and the 
leakage currents respectively. 
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This highly promising achievement has generated an important research 
effort all over the world and many solutions have been investigated for 
introducing industrial tunnel transistor structures. Thus, there are some models 
with simple barrier [1], and others that include one or more quantum wells [2]. 
The first type is based on the modulation of the Fowler-Nordheim tunneling 
current by the electric field intensity created by an auxiliary electrode. The second 
type is based on the resonance effects between the quantum wells, as a significant 
tunneling current appears only if some quantum states equivalence is satisfied. An 
auxiliary electrode controls the resonance conditions, starting or stopping the 
tunneling current, so that the structure is easy to be used as a commutation device. 

Concerning the geometry, there are several types of tunnel transistors. 
Thus, the most promising seems to be the vertical transistor where the electrodes 
are superposed, which allows a very good control of the thickness of the barrier 
layer and hence a good reproducibility for large scale integration [1,3,4,7,8]. 

Also, lateral structures have been proposed, based on a Columbian barrier 
generated by a lateral p-n junction, which is easier to control by the gate electrode 
[5,6,14]. There are also some mixed structures [2] where both vertical and 
horizontal geometries are used, and also some special devices as the magnetic 
tunnel transistor and the single electron transistor (SET) used as structures in 
scientific research [9]. 

Of course, the first step of the process is the mathematical and physical 
simulation of various configurations using tunnel currents, with both analytical 
and numerical treatment.  

Two main approaches are possible for such models: one that adapts the 
classical Fowler-Nordheim tunneling equation to the topological and electric 
characteristics of a particular structure, and another one that uses ab-initio 
calculations on quantum mechanics basis, considering the natural microscopic 
details. 

Although more difficult, the second approach may deliver much more 
accurate predictions, taking into account that in several situation the ready-made 
tunneling formulae have been found inappropriate for describing complex 
configurations, with special topological and materials characteristics. On the other 
hand, even the ab-initio calculations (both Hartree-Fock selfconsistent field theory 
– SCF [18] and Kohn-Sham density functional theory – DFT [19]) notoriously fail 
in some situations, especially due to the numerical difficulties involved in some 
large atomic systems and possibly a subtle loss of precision. It seems that the 
choice of the numerical method has a considerable importance in complex 
structure models and some new, better adapted numerical methods have to be 
considered. The aim of this paper is to exploit the particularities of the equations 
involved in such calculations for achieving better performances, also trying to 
preserve a certain amount of generality. 
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2. The typical many-body problem for tunneling structures 

The ab-initio methods, in the nonrelativistic case, start with the 
Schrödinger equation for each particle of the many-body problem, taking into 
account the particularities of the actual system (i.e. the specific potential and 
boundary conditions): 

 
2

2 ( ) ( ) ( ) ( )
2 i i i i i

i

r V r r E r
m

− ∇ Ψ + Ψ = Ψ  (1) 

where ( )iV r  is the function describing the total potential seen by the particle 

characterized by the wave function ( )i rΨ . In two or three dimensional systems, 
this PDE is transformed in a set of ODE by factorizing each wave function in one 
variable functions and properly manipulating the terms for enabling the variables 
separation. According to the system’s geometry, Cartesian, polar, spherical, etc. 
coordinates are used trying to obtain standard differential equations, with known 
analytical solutions. However, such lucky solutions are met only for very special 
and simple systems, so that in most cases only a numerical treatment is possible. 
 In the microelectronic devices based on planar technologies one may 
choose a two-dimensional Cartesian coordinate system so that the wave function 
may be decomposed as: 

 ( ) ( ) ( )i i ir X x Y yΨ =  (2) 
 If the potential may also be decomposed as a sum of one variable function 

 ( ) ( ) ( )i xi yiV r V x V y= +  (3) 
by plugging these relations in (1), the problem can be broken-down into one-
dimensional equations. 
 For the inner shells of atoms, the total potential for each electron is 
composed by the simply Coulomb potential due to the nucleus /Z r− , the Hartree 
potential due to the repulsion from the other electrons ( )HV r  and an exchange-
correlation term ( )XCV r  due to the antisymmetric fermionic nature of the 
electrons. In a spherical coordinate system imposed by the symmetry of the 
Coulomb potential of the nucleus in the Born-Oppenheimer approximation, the 
single electron wave function equations read [18] 

 2

1 ( 1)''( ) ( ) ( ) ( ) ( )
2 2i Hi XCi i i i

Zy r V r V r y r E y r
r r
+⎛ ⎞− + − + + =⎜ ⎟

⎝ ⎠
 (4) 

 Both the repulsion and the exchange-correlation potential have a 
computational time expensive form, since they are depending on the wave 
functions of others electrons. The direct evaluation implies solving the integrals 
[18] 
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where cV  is the correlation potential, which is not known exactly, but some 
widely accepted models are available in the literature [20-23]. 
 On the other hand, these potentials obey the Poisson equation 

 2 4 ( )Hi irV rπρ∇ = −  (7) 
 2 4 ( )Xi iaV rπρ∇ = −  (8) 

where  
 

2
( ) ( )ir j

j
r y rρ =∑  (9) 

 ( ) ( ) ( )ia i j
j

r y r y rρ =∑  (10) 

are the charge densities for the repulsive and the attractive terms respectively[19]. 
 Thus, if the correlation term cV  is separately treated, these potentials may 
also be calculated from a second order differential equation with boundary 
condition and with no first derivative term. 
 We notice that the main problem formulated in eq. (1) may be reduced to 
solving this kind of differential equations with the general form 

 ''( ) ( ) ( ) ( )y x V x y x f x+ =  (11) 

 
( )
( )

i

f

y a y
y b y

=

=
 (12) 

for a given domain [ , ]a b , usually from about 0 to 10-20 (in Bohr radius if 
everything is expressed in atomic units). Here the coefficient ( )V x  is the potential 
calculated directly using eqs (5)-(6) or using eqs. (7)-(8), divided by the coefficient 
of the second derivative in the uni dimensional Schrödinger equation. 
 
 3. Solving the second order differential equation involved in ab-initio 
calculations 
 There are some popular methods for numerically solving the differential 
equations involved in ab-initio calculations, each of them having various 
advantages and disadvantages.  
 The main candidate for atomic systems seems to be the fifth order 
Numerov method. Its main advantage is the high precision with reasonable speed, 
but it has the disadvantage of the starting which demands two initial points. If the 
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wave function normalization is possible the second point may be chosen arbitrary 
and the result is afterwards adjusted. Unfortunately, for the ending point boundary 
condition to be satisfied, an additional shooting algorithm is needed, which 
drastically decreases the speed. 
 Also, the well known fourth order Runge-Kutta [24] method may be 
applied, again in conjunction with a slowing shooting algorithm. The problem of 
shooting is also present for various other very precise schemes that use the 
Bulrich-Stoer extrapolation [24]. 
 On the other hand, various methods specific to the boundary conditions 
problems, especially the finite difference and the finite element methods are 
currently used but their convergence is poor and hence the speed may be 
insufficient for reasonably high accuracy [24]. 
 A new class of methods developed in the last years was successfully 
applied to ab-initio calculations: the spectral methods. They are already used in 
well known techniques as Hartree-Fock-Roothaan [25] equations and Gaussian 
software, but the complexity of the calculations (mainly the eigenvalues 
problems) tends to slow-down the evaluations. The main advantages of these 
methods are: an exponential decrease of the errors when the number of points in 
increased (the evanescence property) and a natural dealing of the two point 
boundary problems. 
 In the spectral methods, the unknown function ( )y x  is approximated as a 
finite expansion in a Hilbert space, using a known (chosen) basis set ( )i xϕ  (the 
trial functions) 

 
0

( ) ( )
n

j j
j

y x c xϕ
=
∑  (13) 

 The problem of solving the second order ODE generated by linear 
differential operator L  

 ( ) ( )Ly x f x=  (14) 
subject to the boundary conditions (12) is reduced to the problem of finding the 
coefficients ic  in the expression (13). 
 Taking into account that the expansion (13)  is only an approximation, by 
plugging it in the ODE the relationship (14) will also be an approximation and we 
may define a residual function ( )R x  as 

 ( ) : ( ) ( )R x Ly x f x= −  (15) 
 Using another set of functions ( )0 1( ), ( ),..., ( )nx x xχ χ χ  named test 
functions we check the smallness of a residual R, by means of the Hilbert space 
scalar product: 

 (1, 2,..., ), ( ), ( ) 0ii n x R xχ∀ ∈ =  (16) 
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 Among the spectral methods, the collocation method seems to have the 
advantage of simplicity in conjunction with precision and speed. It uses the test 
functions  

 ( ) ( ), 0,1,...,i ix x x i nχ δ= − =  (17) 
where ix  form a set of fixed, chosen points (the collocation points) and ( )xδ  is 
the Dirac distribution. It follows from (16) the equations system  

 ( ) 0, 0,1,...,iR x i n= =  (18) 
or, according to the definition (15) 

 ( ) ( )i iLy x f x=  (19) 
 If the coefficients of the linear operator are constants, all the equations in 
the system will have simple forms and any standard method for such systems will 
determine the unknown function’s coefficients in the expansion (13). The most 
usual trial functions for this procedure are: monomials, orthogonal polynomials 
(Legendre, Chebyshev, etc.) for non periodic problems, and trigonometric 
functions for periodic problems. 
 However, for the case discussed, the general equation (11) does not have 
constant coefficients, so that the calculus will have an increased volume.  Indeed, 
from eqs (19) and (11) we obtain 

 ''( ) ( ) ( ) ( ), 0,1,...,i i i iy x V x y x f x i n+ = =  (20) 
 In fact, the most cumbersome term is the total potential ( )V x , calculated in 
the previous iteration for a given set of wave functions, which must be included in 
the current iteration. 
 Our method avoids the increased complexity of the equations system by 
expanding this term also, using a basis set { }( )j xξ , in a similar way as for the 
unknown function.  
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 With one of the usual interpolation methods (as Newton or Lagrange 
interpolation), we obtain the set of coefficients{ }kd . 
 Of course, the multiplication of the two series has to generate an 
expression as simple as possible for achieving good speed and accuracy. A 
possible choice for the expansion (21) would be a polynomial one, so that the basis 
set is monomial 

 ( ) k
k x xξ =  (22) 

 If we choose the same basis set for the expansion (13) 
 ( ) j

j x xϕ =  (23) 
from equations (20), (13) and (21) we obtain 
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 Using the monomial expansions (22) and (23) we obtain the following 
system  
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 We have 1n +  coefficients jc ,  so we used only 1n −  equations in the 
system (25) and complete them with two equations (13)  that include the boundary 
conditions 
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 By solving this system we obtain the coefficients jc  and then the 
unknown function 
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 Concerning the collocation points ix , it is known that uniform sampling of 
the domain [ , ]a b  is not recommended for polynomial approximations since 
increasing errors appear at the ends, when the number of points increases (the 
Runge phenomenon). That is why a non uniform sampling has to be considered 
here, for example in the roots of a n  degree Chebyshev polynomial  

 1cos , 0,1,..., 1
2 2 2i

b a b ax i i n
n
π− ⎡ ⎤ +⎛ ⎞= + + = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (28) 

where the usual scaling of the range from [ , ]a b  to [ 1,1]−  was used. 
 Of course, some other expansions may be used for the unknown function 
and its coefficient but this polynomial expansion has an important advantage: it is 
possible to perform an analytical integration of the whole equation before 
numerically solving it. One may expect an improvement of the performances due 
to this supplementary analytical treatment which is not time consuming since the 
polynomials are easy to integrate. 
 Indeed, performing integration in eq. (25) from a  to ix  the following 
formula is obtained 
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1 1
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We emphasize that the presented method can be extended to equations 
where first order derivatives are also present. In this case, a supplementary term in 
eq. Error! Reference source not found.,  (25) and (29) will occur. This term may 
be easily calculated if the coefficient of the first derivative is constant, but if it is 
not, the same procedure used for the coefficient of the free term may be applied. It 
is an advantage over the Numerov method which is more difficult to be used in 
such cases. 
 The disadvantage is the right hand member which demands an integration 
in the general case. However, the quadrature is a very precise and low cost 
operation if a Gauss-Legendre or Clenshaw-Curtis method is used.  
 Moreover, for the special case of ab-initio calculations for the stationary 
wave functions, we may exploit the particular form of the right hand side of the 
eq. (20). Indeed, according to the stationary Schrödinger equation it should be 

 ( ) ( )sf x E y x=  (30) 
where sE  is the eigenvalue and ( )y x  is the unknown wave function.  
 This may be included in the left side of the equation, and modifies only the 
constant term of the potential so that the eq. (25) becomes 
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where 0 0 se d E= −  and i ie d=  for 1, 2,...,i n= . 
 This avoids the integration process in eq (29) which becomes 
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 The system (32) with the boundary conditions equations (26)  will be 
solved for the coefficients jc  and then the expansion (27) will provide the 
solution. 
 
 4. Numerical results  
 
 As an example for testing the presented method we choose a potential 

( )V x  that often occurs in tunnel transistor structures. The various slopes 
illustrated correspond to the regions with uniform electric fields in the regions 
with various dielectric constants. Note that some regions with high-k dielectrics 
have to be used for reducing the gate leakage currents. The sampling was made in 
the roots of a Chebyshev polynomial in the rang [0.01,2.5]  i.e. the abscises: 
{0.041214,0.28162,0.714815,1.255,1.79519,2.22838,2.46879}, where the values 
of the potential were (0,3,4,4,6,3,0} as in figure 1. 
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 A Lagrange interpolation of these values has been performed, generating 
the following polynomial approximation 
V�x�� 0.660318  16.2613 x  4.35161 x2  37.5901 x3  47.8981 x4  21.0653 x5  3.11488 x6  
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Fig 1. Approximation of a potential ( )V x  (continuous line) using a  6th degree polynomial 
(dashed line) 

 
 We used the described method with ( ) 0f x = and obtained the unknown 
function presented in Fig. 2. 
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Fig. 2. The solution of the ODE with the potential as in figure 1 

  
 We checked the obtained solution in 100 points in the range and choose 
the maximum error (defined as the residual R). The errors are presented in table 1 
and Fig. 3. 
 One may see the fast decrease of the absolute error with the increase of the 
order of the interpolation polynomial (theoretically exponential) up till 22n ≈ . 
Above this value, the terms of the equations become excessively great and the 
condition number of the system’s matrix increase, generating increasing round-off 
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errors. The evanescence property is very clear in figure 3 and the loss of precision 
due to the increasing condition number is revealed also. 
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Fig. 3. The logarithm of the residual function of the polynomial’s degree for integrated method 

(continuous line) and simple method (dashed line)  
 

         Table 1 
               The error (residual) as a function of the polynomial’s degree  

Maxim 
polynomial 
degree (n) 

       Maximum error
Without 
integration 

With integration 

5 401.169 55.8884 
6 315.819 77.5812 
7 65.7409 41.6716 
8 93.6927 5.16428 
9 114.981 8.50767 

10 73.0407 8.36208 
11 27.9325 4.52969
12 2.5058 1.38072
13 4.39118 0.072402 
14 2.98162 0.252796 
15 0.96174 0.113378 
16 0.101266 0.0277998 
17 0.0847201 0.000890848
18 0.0632824 0.00323763
19 0.0221895 0.00181579 
20 0.00337523 0.000468068 
21 0.000986964 0.0000662559 
22 0.000406731 0.0000484947 
23 0.00534406 0.000263804
24 0.0140926 0.000179443
25 0.00956485 0.00676438 
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5. Conclusions 
 
The described method ensures errors lower than 610− % by solving a linear 

equations system with 20-22 unknowns, much less than the finite difference or 
finite element methods. However, the system’s matrix is dense and for higher 
degree polynomials the condition number increases inevitably, so that the round-
off errors become dominant. 

An important conclusion is that for any approximating polynomial’s 
degree, the errors of the method with integration are several times lower than the 
errors of the method without integration, due to the supplementary analytical 
treatment.   

This is particularly important in the self-consistent field calculations where 
the potential involved by an equation depends on its solution and this implies an 
iterative procedure until the convergence of the solution is achieved. Taking into 
account the necessity of repeatedly applying the described procedure, the 
precision and speed achieved at each step may be very important. 
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