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SPECTRAL METHOD FOR SOLVING THE DIFFERENTIAL
EQUATIONS INVOLVED IN AB-INITIO TREATMENT OF TUNNEL
TRANSISTORS STRUCTURES

Sever SPANULESCU!

In lucrare este prezentatd o noud varianta a metodei spectrale de rezolvare a
ecuatiilor diferentiale cu conditii la limitd, aplicabild la calcule ab-initio pentru
tunelarea electronilor. Prin exprimarea potentialului total in care se misca
electronul ca o dezvoltare in serie dupa un anumit set de functii intr-un spatiu
Hilbert, ecuatiile obtinute prin metoda colocatiei pot admite o integrare analitica
initiala. Experimentele noastre numerice au aratat o imbuntdtire importantd a
preciziei datoritd acestei prelucrari analitice suplimentare, ceea ce, impreund cu
propritatea de evanescentd poate conferi metodei avantaje importante pentru
calcule ab-initio.

A new variant of the spectral method for solving the boundary conditions
ordinary differential equations, suited to the ab-initio tunneling calculus is
presented. By expanding the total potential expression in a series in a Hilbert space,
the linear equations derived with the collocation method may admit an initial
analytical quadrature for certain basis sets. Our numerical experiments showed an
important improvement of the precision due to this supplementary analytical
treatment which, combined with the evanescence of the method may be a good
advantage for ab-initio calculations

Keywords: spectral methods, evanescence, boundary conditions, ab-initio,
tunneling transistors.

1. Introduction

As the dimensions of the microelectronic structures continuously decrease,
the inherent tunneling current becomes a disturbing part of the various devices
design. It seems that the time has come that these tunneling currents to become
the active, useful part of the electronic functions of the microelectronic devices,
mainly as tunnel transistors structures.

Some major benefits would accompany this new approach in large scale
integrated circuits. Among them, the huge increase in operating frequency and the
decrease of power consumption, due to the absence of minority carriers and the
leakage currents respectively.

' Prof, Physics Department, Hyperion University of Bucharest, Romania, e-mail:
severspa2004@yahoo.com



94 Sever Spanulescu

This highly promising achievement has generated an important research
effort all over the world and many solutions have been investigated for
introducing industrial tunnel transistor structures. Thus, there are some models
with simple barrier [1], and others that include one or more quantum wells [2].
The first type is based on the modulation of the Fowler-Nordheim tunneling
current by the electric field intensity created by an auxiliary electrode. The second
type is based on the resonance effects between the quantum wells, as a significant
tunneling current appears only if some quantum states equivalence is satisfied. An
auxiliary electrode controls the resonance conditions, starting or stopping the
tunneling current, so that the structure is easy to be used as a commutation device.

Concerning the geometry, there are several types of tunnel transistors.
Thus, the most promising seems to be the vertical transistor where the electrodes
are superposed, which allows a very good control of the thickness of the barrier
layer and hence a good reproducibility for large scale integration [1,3,4,7,8].

Also, lateral structures have been proposed, based on a Columbian barrier
generated by a lateral p-n junction, which is easier to control by the gate electrode
[5,6,14]. There are also some mixed structures [2] where both vertical and
horizontal geometries are used, and also some special devices as the magnetic
tunnel transistor and the single electron transistor (SET) used as structures in
scientific research [9].

Of course, the first step of the process is the mathematical and physical
simulation of various configurations using tunnel currents, with both analytical
and numerical treatment.

Two main approaches are possible for such models: one that adapts the
classical Fowler-Nordheim tunneling equation to the topological and electric
characteristics of a particular structure, and another one that uses ab-initio
calculations on quantum mechanics basis, considering the natural microscopic
details.

Although more difficult, the second approach may deliver much more
accurate predictions, taking into account that in several situation the ready-made
tunneling formulae have been found inappropriate for describing complex
configurations, with special topological and materials characteristics. On the other
hand, even the ab-initio calculations (both Hartree-Fock selfconsistent field theory
— SCF [18] and Kohn-Sham density functional theory — DFT [19]) notoriously fail
in some situations, especially due to the numerical difficulties involved in some
large atomic systems and possibly a subtle loss of precision. It seems that the
choice of the numerical method has a considerable importance in complex
structure models and some new, better adapted numerical methods have to be
considered. The aim of this paper is to exploit the particularities of the equations
involved in such calculations for achieving better performances, also trying to
preserve a certain amount of generality.
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2. The typical many-body problem for tunneling structures

The ab-initio methods, in the nonrelativistic case, start with the
Schrodinger equation for each particle of the many-body problem, taking into
account the particularities of the actual system (i.e. the specific potential and
boundary conditions):

2
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where V,,(;) is the function describing the total potential seen by the particle

characterized by the wave function ‘{'[(17). In two or three dimensional systems,

this PDE is transformed in a set of ODE by factorizing each wave function in one
variable functions and properly manipulating the terms for enabling the variables
separation. According to the system’s geometry, Cartesian, polar, spherical, etc.
coordinates are used trying to obtain standard differential equations, with known
analytical solutions. However, such lucky solutions are met only for very special
and simple systems, so that in most cases only a numerical treatment is possible.

In the microelectronic devices based on planar technologies one may
choose a two-dimensional Cartesian coordinate system so that the wave function
may be decomposed as:

¥, (r) = X, (x)Y,(») )
If the potential may also be decomposed as a sum of one variable function
V,(ir)=V,(x)+V,(») 3)

by plugging these relations in (1), the problem can be broken-down into one-
dimensional equations.

For the inner shells of atoms, the total potential for each electron is
composed by the simply Coulomb potential due to the nucleus —Z /r, the Hartree
potential due to the repulsion from the other electrons ¥, (r) and an exchange-

correlation term V,.(r) due to the antisymmetric fermionic nature of the

electrons. In a spherical coordinate system imposed by the symmetry of the
Coulomb potential of the nucleus in the Born-Oppenheimer approximation, the
single electron wave function equations read [18]

SIACE ( WD 2y ) 47 (r)jy,- ()= E, (1) @

Both the repulsion and the exchange-correlation potential have a
computational time expensive form, since they are depending on the wave
functions of others electrons. The direct evaluation implies solving the integrals
[18]
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G
()Zjhrﬁr (5)
Viei(r) = Zj‘y’jr)ﬁ )dr'+VC(r) (6)

where V, is the correlation potential, which is not known exactly, but some

widely accepted models are available in the literature [20-23].
On the other hand, these potentials obey the Poisson equation

VeV, =—4rp, (r) (7)
VeV, =—4np, (1) (8)
where
P, (r) = Z\y, (r)\ (9)
P (r) = Zum%m\ (10)

are the charge densities for the repulswe and the attractive terms respectively[19].
Thus, if the correlation term V, is separately treated, these potentials may

also be calculated from a second order differential equation with boundary
condition and with no first derivative term.

We notice that the main problem formulated in eq. (1) may be reduced to
solving this kind of differential equations with the general form

y'(x) +V (x)y(x) = f(x) (11)
y(a) =Y
y(b)=y, 12

for a given domain [a,b], usually from about 0 to 10-20 (in Bohr radius if
everything is expressed in atomic units). Here the coefficient V'(x) is the potential
calculated directly using egs (5)-(6) or using egs. (7)-(8), divided by the coefficient
of the second derivative in the uni dimensional Schrodinger equation.

3. Solving the second order differential equation involved in ab-initio
calculations

There are some popular methods for numerically solving the differential
equations involved in ab-initio calculations, each of them having various
advantages and disadvantages.

The main candidate for atomic systems seems to be the fifth order
Numerov method. Its main advantage is the high precision with reasonable speed,
but it has the disadvantage of the starting which demands two initial points. If the
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wave function normalization is possible the second point may be chosen arbitrary
and the result is afterwards adjusted. Unfortunately, for the ending point boundary
condition to be satisfied, an additional shooting algorithm is needed, which
drastically decreases the speed.

Also, the well known fourth order Runge-Kutta [24] method may be
applied, again in conjunction with a slowing shooting algorithm. The problem of
shooting is also present for various other very precise schemes that use the
Bulrich-Stoer extrapolation [24].

On the other hand, various methods specific to the boundary conditions
problems, especially the finite difference and the finite element methods are
currently used but their convergence is poor and hence the speed may be
insufficient for reasonably high accuracy [24].

A new class of methods developed in the last years was successfully
applied to ab-initio calculations: the spectral methods. They are already used in
well known techniques as Hartree-Fock-Roothaan [25] equations and Gaussian
software, but the complexity of the calculations (mainly the eigenvalues
problems) tends to slow-down the evaluations. The main advantages of these
methods are: an exponential decrease of the errors when the number of points in
increased (the evanescence property) and a natural dealing of the two point
boundary problems.

In the spectral methods, the unknown function y(x) is approximated as a

finite expansion in a Hilbert space, using a known (chosen) basis set ¢,(x) (the

trial functions)

y(x) =2 c0,(x) (13)
j=0
The problem of solving the second order ODE generated by linear
differential operator L
Ly(x) = f(x) (14)

subject to the boundary conditions (12) is reduced to the problem of finding the
coefficients ¢, in the expression (13).

Taking into account that the expansion (13) is only an approximation, by
plugging it in the ODE the relationship (14) will also be an approximation and we
may define a residual function R(x) as

R(x) = Ly(x) - f(x) (15)

Using another set of functions (y,(x), x(x).... 7,(x)) named fest
functions we check the smallness of a residual R, by means of the Hilbert space
scalar product:

Vie(,2,...n), {(z/(x),R(x))=0 (16)
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Among the spectral methods, the collocation method seems to have the
advantage of simplicity in conjunction with precision and speed. It uses the test
functions

r(x)=0(x—-x), i=01..,n (a7)
where x, form a set of fixed, chosen points (the collocation points) and &(x) is

the Dirac distribution. It follows from (16) the equations system
R(x)=0, i=01,..,n (18)
or, according to the definition (15)
Ly(x)=f(x) (19)

If the coefficients of the linear operator are constants, all the equations in
the system will have simple forms and any standard method for such systems will
determine the unknown function’s coefficients in the expansion (13). The most
usual trial functions for this procedure are: monomials, orthogonal polynomials
(Legendre, Chebyshev, etc.) for non periodic problems, and trigonometric
functions for periodic problems.

However, for the case discussed, the general equation (11) does not have
constant coefficients, so that the calculus will have an increased volume. Indeed,
from eqgs (19) and (11) we obtain

Y)Y E)y() = (%), i=01...n (20)

In fact, the most cumbersome term is the total potential /" (x), calculated in
the previous iteration for a given set of wave functions, which must be included in
the current iteration.

Our method avoids the increased complexity of the equations system by

expanding this term also, using a basis set {fj(x)}, in a similar way as for the
unknown function.

V() =2 d () @)

With one of the usual interpolation methods (as Newton or Lagrange
interpolation), we obtain the set of coefficients {d, } .

Of course, the multiplication of the two series has to generate an
expression as simple as possible for achieving good speed and accuracy. A
possible choice for the expansion (21) would be a polynomial one, so that the basis
set is monomial

& (x)=x" (22)
If we choose the same basis set for the expansion (13)
@;(x)=x’ (23)

from equations (20), (13) and (21) we obtain
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ic,w'i,(x,-)+[ﬁdkfk(xi)}{ic,¢zi(xi>}=f(xi), i=0L..n  (24)

Using the monomial expansions (22) and (23) we obtain the following
system

>e {j(j—l)x,:” + dexf*f} = /(%) i=12,.n-1 (25)
j=0 k=0

We have n+1 coefficients ¢,, so we used only n—1 equations in the

system (25) and complete them with two equations (13) that include the boundary
conditions

W)= c,a
- (26)
y(b) = chbj

By solving this system we obtain the coefficients ¢, and then the
unknown function

y(x)= icjxj (27)

Concerning the collocation points x;, it is known that uniform sampling of
the domain [a,b] is not recommended for polynomial approximations since

increasing errors appear at the ends, when the number of points increases (the
Runge phenomenon). That is why a non uniform sampling has to be considered
here, for example in the roots of a » degree Chebyshev polynomial

=2 os| Zl i 2| |4 222 is0,n-1 (28)
2 2 2

i
n

where the usual scaling of the range from [a, ] to [-1,1] was used.

Of course, some other expansions may be used for the unknown function
and its coefficient but this polynomial expansion has an important advantage: it is
possible to perform an analytical integration of the whole equation before
numerically solving it. One may expect an improvement of the performances due
to this supplementary analytical treatment which is not time consuming since the
polynomials are easy to integrate.

Indeed, performing integration in eq. (25) from a to x, the following

formula is obtained
k+j+l

n k+j+1 X
el j(xt-a )+ d, %}zjf(x)dx, i=12,...,n-1 (29)
=0 k=0 a
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We emphasize that the presented method can be extended to equations
where first order derivatives are also present. In this case, a supplementary term in
eq. Error! Reference source not found., (25) and (29) will occur. This term may
be easily calculated if the coefficient of the first derivative is constant, but if it is
not, the same procedure used for the coefficient of the free term may be applied. It
is an advantage over the Numerov method which is more difficult to be used in
such cases.

The disadvantage is the right hand member which demands an integration
in the general case. However, the quadrature is a very precise and low cost
operation if a Gauss-Legendre or Clenshaw-Curtis method is used.

Moreover, for the special case of ab-initio calculations for the stationary
wave functions, we may exploit the particular form of the right hand side of the
eq. (20). Indeed, according to the stationary Schrddinger equation it should be

S (%) =E y(x) (30)
where E_ is the eigenvalue and y(x) is the unknown wave function.

This may be included in the left side of the equation, and modifies only the
constant term of the potential so that the eq. (25) becomes

2 {f(j—l)xfz + Zekxf”} =0, i=12,.,n-1 (31)
j=0 k=0

where e, =d,—E and e, =d, for i=12,...,n.
This avoids the integration process in eq (29) which becomes

k+j+1

n m k+j+1
eli(xt=—a)+Ye X T4 |0, i=12,..n-1 32
Z[J( e 2

The system (32) with the boundary conditions equations (26) will be
solved for the coefficients ¢, and then the expansion (27) will provide the

solution.
4. Numerical results

As an example for testing the presented method we choose a potential
V(x) that often occurs in tunnel transistor structures. The various slopes
illustrated correspond to the regions with uniform electric fields in the regions
with various dielectric constants. Note that some regions with high-k dielectrics
have to be used for reducing the gate leakage currents. The sampling was made in
the roots of a Chebyshev polynomial in the rang [0.01,2.5] i.e. the abscises:
{0.041214,0.28162,0.714815,1.255,1.79519,2.22838,2.46879}, where the values
of the potential were (0,3,4,4,6,3,0} as in figure 1.
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A Lagrange interpolation of these values has been performed, generating
the following polynomial approximation

v k b ol 60318 16.2613X 4.35161x° 37.5001x° 47.8981x* 21.0653x°> 3.11488x°
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Fig 1. Approximation of a potential 7 (x) (continuous line) using a 6" degree polynomial
(dashed line)

We used the described method with f(x) =0and obtained the unknown
function presented in Fig. 2.
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Fig. 2. The solution of the ODE with the potential as in figure 1

We checked the obtained solution in 100 points in the range and choose
the maximum error (defined as the residual R). The errors are presented in table 1
and Fig. 3.

One may see the fast decrease of the absolute error with the increase of the
order of the interpolation polynomial (theoretically exponential) up till »~22.
Above this value, the terms of the equations become excessively great and the
condition number of the system’s matrix increase, generating increasing round-off
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errors. The evanescence property is very clear in figure 3 and the loss of precision
due to the increasing condition number is revealed also.
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Fig. 3. The logarithm of the residual function of the polynomial’s degree for integrated method

(continuous line) and simple method (dashed line)

Table 1
The error (residual) as a function of the polynomial’s degree
Maxim Maximum error
polynomial Without With integration
degree (n) integration
5 401.169 55.8884
6 315.819 77.5812
7 65.7409 41.6716
8 93.6927 5.16428
9 114.981 8.50767
10 73.0407 8.36208
11 27.9325 4.52969
12 2.5058 1.38072
13 4.39118 0.072402
14 2.98162 0.252796
15 0.96174 0.113378
16 0.101266 0.0277998
17 0.0847201 0.000890848
18 0.0632824 0.00323763
19 0.0221895 0.00181579
20 0.00337523 0.000468068
21 0.000986964 0.0000662559
22 0.000406731 0.0000484947
23 0.00534406 0.000263804
24 0.0140926 0.000179443
25 0.00956485 0.00676438
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5. Conclusions

The described method ensures errors lower than 10°% by solving a linear
equations system with 20-22 unknowns, much less than the finite difference or
finite element methods. However, the system’s matrix is dense and for higher
degree polynomials the condition number increases inevitably, so that the round-
off errors become dominant.

An important conclusion is that for any approximating polynomial’s
degree, the errors of the method with integration are several times lower than the
errors of the method without integration, due to the supplementary analytical
treatment.

This is particularly important in the self-consistent field calculations where
the potential involved by an equation depends on its solution and this implies an
iterative procedure until the convergence of the solution is achieved. Taking into
account the necessity of repeatedly applying the described procedure, the
precision and speed achieved at each step may be very important.

Acknowledgements

This work was supported by the Romanian National Council for Scientific
Research in High Teaching — CNCSIS, under the grant number 556/20009.

BIBLIOGRAFIE

[1] L.H. Chong, K. Malik , C. H. Groot, Microelectronic Engineering, 81, (2-4), pp. 171-180,
(2005)

[2] V. Ioganse, et al, Semicond. Sci Technol. 8, pp. 568-574, (1993)

[3] R.H. Klunder and J. Hoekstra, SAFE/IEEE (2001)

[4] M. Juan, Lopez-Gonzdlez et all 2004 Semicond. Sci. Technol. 19 1300-1305 (2004)

[5] S. van Dijken, X. Jiang, and SSP Parkin, |EEE, 91, 661 (2003).

[6] C. Aydin, A.Zaslavsky, et al, Applied Phys Lett 84 (10), 1780, (2004)

[7]1 P.F. Wang, K. Hilsenbeck, Th. Nirschl et all, Solid-State Electronics, 48, 2281 (2004]

[8] K.K. Bhuwalka, J. Schultze and I. Eisele, J of Appl Phys, 43, 4073 (2004)

[9]1 V 4 Krupenin, A B Zorin, D E Presnov et all,Chernogolovka 2000: Mesoscopic and strongly

correlated electron systems, p 113-116, (2000)

[10] W. Hansch, P. Borthen, J. Schulze et all, Jpn. J. Appl. Phys. 40 3131-3136,(2001)

[11] K. Bhuwalka, J. Schulze and I. Eisele, Japanese Journal of Applied Physics,43, 7A, 4073-
4078, (2004)

[12] K. Bhuwalka, M. Born et all, Japanese Journal of Applied Physics,45, 4B, pp. 3106-3109,
(2006)

[13] P.-F. Wang, K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. S.-Landsiedel
and W. Hansch, Solid-State Electron. 48,2281, (2004)

[14] C. Aydin, A. Zaslavsky, S. Luryi, S. Cristoloveanu, D. Mariolle, D. Fraboulet and S.
Deleonibus: Appl. Phys. Lett., 84 , 1780,(2004)




104 Sever Spanulescu

[15] B. Toshio , US Patent No. 960863, December 31, 1996

[16] Y. Y. Kim, S. J. Lee, M. G. Jang, et al, Korean Patent Application No. 2005-119409, Dec. 8,
2005

[17] Media coverage of March, 2007, Intel/IBM announcements

[18] J.C. Slater, Quantum Theory of Molecules and Solids, Vol. 4: The Self-Consistent Field for Molecules
and Solids (McGraw-Hill, New York, 1974)

[19] W. Kohn and L.J. Sham, Phys. Rev, 140, A113 (1965)

[20] A.D. Becke, Phys. Rev. A 38, 3098 (1988).

[21] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 - 13249 (1992)

[22] Ziesche and H. Eschrig, eds. (Akademie Verlag, Berlin, 1991); J.P. Perdew, J.A. Chevary, S.H. Vosko,
KA. Jackson, M.R. Pederson, D.J.Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

[23] S.H. Vosko,L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

[24] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C++, The art of
scientific Computing. Cambridge University Press, 1999.

[25] C. J. Roothaan, Reviews of Modern Physics, 23, 69, (1951)




