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ZERO-KNOWLEDGE PROTOCOLS IMPLEMENTED WITH 
ELLIPTIC CURVES 

Bogdan TUDOR1 

În acest material se abordează protocoalele de tip ‘cunoastere zero’ în 
perspectiva curbelor eliptice. Elementele originale sunt optimizarea algoritmilor, 
alegerea parametrilor curbelor eliptice şi calcularea împerecherii Tate. Algoritmii 
se încadrează într- un cadru de dezvoltare şi împreună cu funcţiile de distorsiune se 
pot aplica pentru orice împerechere. 

 
In this paper ‘zero-knowledge’ protocols are treated in the elliptic curves 

perspective. The original elementes are the optimization of the algorithms, elliptic 
curves parameters and the Tate pairing calculus. The algorithms can be treated as a 
framework and through the distortion maps they can be applied on every elliptic 
curve pairing. 
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1. Introduction 

Zero-knowledge protocols play an important role in the data transfer 
systems nowdays. In the case of the wireless networks these protocols are being 
more important because of the propagation medium. In this moment, conforming 
to the latest standards the authentication infomation is protected through the best 
methods available but despite to these protections there are always posibilities to 
an virtual oponent to decrypt the the data through some kinds of cryptographic 
attacks [10]. The zero-knowledge protocols solve in part this kind of treat because 
the sensitive information is not even transmitted to the verifier. The new 
cryptographic framework introduced in paragraph 3 and the new parameters 
computed in paragraph 5 are the original contributions of this paper. 

2. Protocols with pairing  

In the beginning of the communication setup, is the asymmetric 
cryptographic part. The majority of the protocols use the Diffie-Hellman or RSA 
methods. Using the elliptic curves pairings is a relatively new perspective [4]. 
Three of the pairings are mostly used: Weil, Tate and Ate (a short version of 
Tate). These pairings are through definition bilinear mappings for elliptic curves. 
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In the present case two kinds of pairings are being used: symmetric and 
asymmetric. The main difference between them is about the definition domains.  

Every bilinear pairing used in cryptography for an elliptic curve G satisfies 
the following properties: 

- bilinear: abhgebhage ),(),( =  for every g,h∈G and b∈Z, in the 
multiplicative form (can be written as exponentials). 

- non-degenerate: for every generator element g and h from G with 
e(g,h)≠1 , in this point is important to note that most of this paper 
results are based on Tate pairing, where 1),( ≠gge  

- computability: there is an efficient algorithm for calculating ),( hge  
An admissible map is defined as a function 1: GGGe →×  where G is an 

subgroup from E(Fp) and G1 from E( 2pF ). These groups have the same order q 

and we choose g as generator element from G. The G group is chosen from the 
condition that the Gap Diffie-Hellman problem is intractable (if we know the 
values g, ag, bg calculate the element abg – in multiplicative form). 

The Hufschmitt scheme [6] is a zero-knowledge one through the value of 
abg obtained in l iterations comprising three steps as below. 

In this algorithm public parameters are (g, ag, bg, e(g,g), v=e(g,g)ab) and 
private key is abgS = . The public key is (ag, bg, v), who is calculated only 
once. The proposed scheme is backed by the following equation: 

ccabrabcr vWggeggeggeabgcrggeYge ×=×=== + )),((),(),())(,(),(  
Table 1 

The Hufschmitt algorithm 
Prover Verifier 

choose ],0[ qr ∈   

calculate rggeW ),(=   

send W to the verifier  
 choose ]2,0[ kc∈  
 send c to the Prover 

verify that ]2,0[ kc∈   

computes cr SgY ×=   

Send Y to the verifier  
 Verify that cvWYge ×=),(  

 

The probability of guessing the c value is after l rounds lk2
1 . 
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The scheme proposed by Shao, Lu and Cao [13] is based on the security of 
the Diffie-Hellman algorithm. The public parameters are g, e(g,g) and the private 
key is ],0( qs∈ . The public key is sgv = . 

Table 2 
The Shao algorithm 

Prover Verifier 
choose ],0[ qr ∈   

Calculate rgW =   

Send W to the verifier  
 Choose ],0( q∉β  
 Send β  to the prover 

Calculate βsrgY +=
1

 
 

Send Y to the verifier
 Verifies that ),(),( ggeWvYe =β  

 
This scheme is more efficient than those of Kim and Kim or Yao and 

Wang [13]. Below is a comparison between the two algorithms presented above. 
 

Table 3 
Comparison between Hufschmitt and Shao algorithms 

 Hufschmitt Shao 
Nr of exp for prover ε+2  2 

Nr of pairings for prover 0 0 
Nr of exp for verifier ε 1 

Nr of pairings for verifier 1 1 
 
These two algorithms are almost equals from the calculus point of view. 

Balancing the calculus power between the prover and the verifier is done based on 
the usage conditions. In the case of client-server implementations (the most used 
case) it is an advantage in Hufschmitt algorithm. In other applications (like smart 
devices) the Shao implementation is superior. The ε  number from the evaluations 
is from the fact that the exponent of the final verification vc is smaller than q, 
having only k bits. 

The initial calculus of  e(g,g) is done only once and is possible to be done 
outside the system, subsequent values will be calculated based on this result. This 
is the reason that number of pairings for the prover is 0.  

As it can be seen from the above comparison the number of the required 
computations of pairings is 1, a minimum value for the algorithms. The only 
operation that can be moved from one part to another is the exponentiation one. 
The sum is 3 for Shao and 2+2ε  for Hufschmitt. 
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Another perspective for using pairings in these kinds of protocols is 
presented by Zhang and Kim in [17] and has its roots in DVB (Digital Video 
Broadcasting). In that case is mandatory the presence of the third trusted party. 
That entity generates a user’s signature and put it in the user’s hardware (usually 
an smart-card). In the original scheme, proposed by the Boneh and Franklin exist 
a difference in the calculus power needed between the user and the provider. This 
is the main reason of the following scheme. In the beginning the system generates 
SID=s*h(ID), where s is a secret random parameter. The public key is Ppub=sP. 

 
Table 4 

Zhang and Kim algorithm 
Prover Verifier 

Has ID, SID  
Transmit ID to the verifier  

 Calculate )(IDhQID =  
 Choose r – random and R=rP 
 Transmit R to the prover 

Choose a at random  
Calculate A=aP, C=H1(A)SID+a2R  

Transmit A, C to the verifier  
 rAH

pubID AAePQePCe ),(),(),( )(1=  

 
The final step (verification) is done based on the equality: 

rAH
pubID

r
ID

IDID

AAePQeaPaPesPQAHe

aPaRePSAHePRaSAHePCe

),(),(),(),)((

),(),)((),)((),(
)(

1

1
2

1

1=

==+=
 

Here H is a hash function defined on R and H1 is a function defined on the 
image of the elliptic curve with results in R. 

In this context we can observe that filtering the values of points R (from C 
one cannot compute SID) we can drop the H1(A) term – which helps in diffusion of 
information. In that case: 

RaSC ID
2+=  and r

pubID AAePQePCe ),(),(),( =  
In this way it’s possible to introduce supplementary operations in the 

network, but the number of mathematical operations needed is decreased. The 
same is also in the case of rAAe ),( , where we can use ),( RAe  through 

RaSC ID += , which reduces an exponentiation from the client and server part. 
These improvements do not affect the overall scheme security, but reduces the 
implementation effort. In a presentation made by Xavier Boyen (A Roadmap of 
IBE Systems and their applications) on NIST workshop in 2008 he treats the 
Shao-like algorithm as bilinear DH inversion and the frameworks derived from it 
as “Exponent Inversion”. 
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3. Cryptographic framework  

All the previous schemes are following the classical three steps protocol of 
zero-knowledge protocols. The Shao ones is minimal from the computations point 
of view. So optimizing further the scheme following the classical setup is not 
possible (every another scheme involves a minimum 2 pairing computations). The 
key in this case is to minimize the number of steps and the message flow the 
protocol requires. The scheme in this case it would be composed from only two 
steps, thus requiring much lower network traffic. All the algorithms below will 
skip the first step from the classical zero-knowledge protocols (the prover first 
value - witness). In the classical algorithms the verifier is required to send only 
one random (challenge) value. In the new algorithm it must transmit 2 random 
values.  

In the setup, some entity generates g and e(g,g). The prover chooses some 
secret value s as private key and publishes Yg s =  as public key.  

Table 5 
First algorithm 

Prover Verifier 
 Choose random values b and r and transmit 

them to the prover 
Choose random t value 

Computes tgX = , rstbgZ +=
1

 

 

Send X, Z to the verifier  
 Verify that ),(),( ggeXYZe br =  

 
This is backed by the following equality: 

),(),(),(
1

ggegggeXYZe tbsrrstbbr == +  
We must to analyze the computational costs involved. 
 

Table 6 
Comparison between first algorithm and Shao 

 This scheme Shao 
Nr of exp for prover 2 2 

Nr of pairings for prover 0 0 
Nr of exp for verifier 2 1 

Nr of pairings for verifier 1 1 
 
From the table above it’s easy to see that these two algorithms are 

comparable from this point of view. In fact, the logical operations in the prover 
part are the same (the inversion of the sensitive parts). The implication of r and b 
in the final verification excludes the possibility of forgery. If one can compute 
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some values X, Z with the desired properties, he could solve the Yb equation and 
thus find the secret value r. The proposed algorithm is very useful in the wireless 
area, where network transmissions are expensive. From X and Z the verifier 
cannot learn anything about t and r, except for public information. The extra 
exponentiation in the verifier part is a little extra cost for dropping the witness 
value transmission. This scheme balances the network load with verifier’s 
computations. 

An analog scheme exists for identification with some credential (ID).  
 

Table 7 
ID-based algorithm 

Prover Verifier 
Calculate qFIDhID ∈→ )(  

Choose s – secret key 
Calculate )( IDhgZ = , sgY =  

 

Transmit ID, Z Calculate qFIDhID ∈→ )(  

Calculate )( IDhgZ =  
 Send three random values a, b, c 

Choose t random value and compute 
tgX =  

tcsbIDhagT **)(*
1

++=  

 

Send X, T to verifier
 Verifies that 

),(),( ggeTZYXe abc =  

 
The equality is evident and the system could be extended to more 

informations (in this case there are two informations: secret key s and ID value). 
For every piece of sensitive information the verifier must generate a random 
number. If k is the number of valuable informations (like private key), the number 
of random variables must be k+1. Of course if the number increases, extra care 
must be put in random values generation in the verifier part. This condition 
appears from the fact that information must be randomized through multiplying. 
This completes this kind of authentication protocols with something like a 
framework. For current case it is important to compare the number of operations 
required: 
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Table 8 
Comparison between previous ID algorithm and Zhang’s one 

 ID scheme Zhang scheme 
Prover expon 4 3 

Prover pairings 0 0 
Verifier expon 4 1 

Verifier pairings 1 3 
From the table above we see the difference in number of pairings (an 

operation who is far more time consuming than exponentiation). For every 
supplementary parameter we can add an extra exponentiation for verifier. Unlike 
the previous scheme the computations are more balanced between the prover and 
verifier. The schema with only two random numbers is the same with c=0. From 
these examples we can write the general case: 

Table 9 
Generalized version 

Prover Verifier 
In the setup, it chooses m secret values 

mini ...0, = . Publish in
i gX = , mi ...0=  

 

 Generates m random values ia  
Generates an binary vector of length m 

ib  with 1,0=ib  
Sends them to the prover 

Computes ∑= iii nbagY
1

 and send 
 

 
Verifies ),(),( ggeXYe

ia
ib

i =∏  

 
Through the judicious use of binary vector bi who selects what secret 

values are used in verification (the exponentiation in the end of the final formula 
is trivial when bi=0) the verifier can use a single step instead of using multiple 

steps for minimizing the forgery probability. This probability is ∏ ib

ip
)1(  where 

pi is the probability of guessing a secret number ni and we omit the influence of ai 
parameters. When the Hamming weight of the bi vector is sufficiently high, this 
probability is not an issue. This can be seen as an analogue of generalized Feige-
Fiat-Shamir protocol [10] in the elliptic curve domain.  

4. Pairing computation 

The main part of the algorithms consists in pairing’s computation. The 
Tate pairing seems to be much faster and appropriate than other pairings for 
cryptographic applications. It is based on the degree 0 divisors from )( qFE  
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represented by ∞− PP  with )( qFEP∈ . The calculus is done based on the 
observation that if we choose two points P and 'P  from )( qFE  we can find 
another point from the curve B and a function G with )(' GdivPBPP =−−+ ∞ . G 
is the equation of line through the two points and B is the negative of the sum. If 
we note L1 the above line and L2 the vertical line through B we can write the 
following equations: 

∞−++= PCPPLdiv 3')( 1  

∞−+= PBCLdiv 2)( 2  

)(')/( 21 GdivPBPPLLdiv =−−+= ∞  

The G line has 2
21

11

)(
)(

λ
λ

−++
−−−

=
xxX

yxXYG  where λ  is the angle of the line 

through P and P’ (or the tangent if that two points are equal). 
For some kinds of pairings (like Weil) the result is trivial if the points are 

dependent of each other. This situation is solved in [15] through distortion 
functions. In this case the pairings are called modified pairings. The distortion 
function is an endomorphism who transform an point P with order l in another 
point of order l but from )( kq

FE , where k is the embedding degree: 

)()( kqFEP ∈φ .  The advantage in using supersingular elliptic curves is that the 

distortion function always exists in this case and for regular ones does not exist 
(with some minor exceptions). The modified pairing can be defined in this way:     

))(,(),(' QPeQPe ll φ=  
Examples of distortion functions are: 

Table 10 
Distortion functions 

Characteristic Curve Embedding degree φ  

3>p  and 
3mod2≡p  

axy += 32  2 
1φ  

3>p  and 
4mod3≡p  

axxy += 32  2 
2φ  

 
Corresponding distortion functions: 

),(),(1 yxyx ξφ =  where 012 =++ξξ  
),(),(2 iyxyx −=φ  where 012 =+i  

The definition field does the security level of the operations.   

 



Zero-knowledge protocols implemented with elliptic curves                      117 

5. Choosing the parameters 

We choose the second example where 4mod3≡p . It is possible to show 
that the curve is supersingular and lcpFEu p =+== 1)(# , where l is the point 
order and c represents the cofactor. Because of the nature of the chosen curve, the 
MOV attack is possible so the discrete logarithm problem must be defined over a 
minimum field of 2048 bits (a level required by today’s computing possibilities). 
That field is defined by 2p

F , so p must be a prime number of 1024 bits. From the 

previous works, the point order must be at a minimum of 320 bits and the cofactor 
must fill the rest. From the fact that l must be a prime number, follows 

4mod0≡c . The main criterion in choosing these parameters is the Hamming 
weight who has to be as low as possible. The final Hamming weight is a 
combination between all the parameter’s weights. 

To find the parameters is sufficient to build a predefined model for searching 
numbers:  

yxc 22 += , with ]1024,1025[ lx −∈  and 1>> yx  
this model results from the condition that c is a multiple of 4. 
There are multiple possibilities for l but we try the lowest Hamming: 

12 += xl  and 122 ++= yxl  where ]1024,1025[ lx −∈  and 1>> yx  
Trying all the possibilities between chosen ranges performs searching. The first 
model cannot reveal any number who satisfies all the requirements. Because the 
term 2y from c representation has the main influence in final weight, it has to be as 
low as possible. We fix 704=x  in c representation and the results for 

xc 22704 +=  and 122 ++= zyl  are: 
Table 11 

 Parameters for low Hamming weight 
X y z Hamming p 
2 395 290 7 
3 365 87 8 
4 333 286 9 
2 499 94 7 
2 612 513 7 

 
It’s obvious that lower than 7 we cannot obtain valid Hamming weights 

(for x=2). So the values with 7 are optimum values. 
Similar result indicates Hamming weights of around 10 for 1024 bits 

security [3]. The primality tests used are not pseudo-primality tests, but 
combinations of Pocklington-Lehmer and APRCL tests, which slows down entire 
search process. These parameters are being computed only once, so the computing 
time is not important.  
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It is possible to compute ))(( 1 RfQ
−φ  instead of )()( Rf Qφ  where R is the 

random point used in pairings. These bring the required operations from the field 
extension in base field operations [3].  

An important point is finding and representing the torsion group. The 
multiplication can be done through division polynomials, but this is slow. Instead 
we can use the fact that the torsion group is generated by at most two independent 
points. This group is rather cyclic. In our case is sufficient to take some random 
points from the curve and multiply them with c. If the results are non-zero, the 
points are from torsion group of order l (because lc=p+1 ). We can use the fact 
that all the points kP with lk <  are from the same torsion group.  

For finding torsion points we can use three methods [14], but in this case 
the useful one is that who utilizes group structure. The group >< )(* qFEc  

contains all the l torsion points and the c torsion points.  
An algorithm for generating a torsion point of order l for a given curve: 

1. we choose a random point qFx∈  

2. verifies if the curve’s equation has solutions in Fq 
3. compute )( qFEcPQ ∈=  where )(),( qFEyxP ∈=  
4. if )0,1,0(=Q  we roll back to step 1, if not we step out to step 5 
5. Q is the l torsion point 

In this case, the probability of choosing in step 1 an element that is not on 

the definition field of the curve is 
2
1

. If we consider the probability of torsion 

points, the final probability in succeeding is 
)(2 cl

l
+

. The second model brings us 

multiple choices for parameters, and we choose the lowest values: 
2704 22 +=c  

122 290395 ++=l  
1* −= clp  

Value of p is a prime number, which can be verified through more 
specialized programs. The number of nonzero bits in this representation is 
minimum. That’s why the number of computations required by the Tate pairing is 
reduced. In the process to find out points on this curve, we can try all the natural 
numbers: 1, 2, and 3. We find that 3 is a point on the curve with coordinates: 
(3 : 
4041650132250435298147116573446777046604174225076637425696177291545332251244279
1335859806926093956724398275954478782129550707259996515911662948619647856050907
4418880890343515151344411907200727512718687535309124251143945085963121975335931
5645856483196665357093583501418280593078621907295968996087111853023331389462962
53190430028839 : 1) 
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Multiplying this point with c factor gives us a point of order l from the curve: 
(554120449733053560718973875887511055536728300616155946502664599914951698775597
5116885649291111089310917344704719385715267177884705118996737139278867324546082
8193309794466173975749313845973083067297934214149504103606158366757225456145200
4415570774290104643026083288114141430453670436027908144893636111312447690030717
9369450449198376 : 
3252778554606901935798705641760330660284414712966536699317451892894736574934303
9919922527650815039981488446409919454316894909961912200551035586345335522784238
1030891487342916414198543799431288109761437574064816918016512771460399012783758
8598678368608340033325227449177777440228686263519742052368127749567645336494234
811900751813074 : 1) 

This is the point required by the algorithms. If the preferred 
representations of the parameters are not these, choosing an addition/subtraction 
chain instead of binary chain presented by the classical Miller algorithm can do 
improving the computing speed. There are many possibilities [9], among these we 
refer to: 

- Morain and Olivo’s methods (based on Booth representations) [11] 
- window methods by Downey and Schonhage 
- Koyama methods 
- Lee and Kim sliding method  

In a particular case a method or another can be the best choice, but from statistical 
point of view for numbers with 512 bits the average chain lengths are: 

Table 12 
Chain’s lengths for different methods 

Algorithm Length
binary 766.5 
modified binary 681.7 
window methods ~606 
Koyama 602.6 
sliding window 595.6
 

For current case these methods (that works in general setup) cannot be 
applied because the number of the bits equal to 1 is minimal by the selection of 
parameters. The effort is moved on finding parameters. That’s why it is preferred 
to make the effort to find optimal parameters only once in the setup stage of the 
algorithm instead of applying the methods above. 

5. Conclusions 

The proposed algorithms can be seen as a framework and introduces the 
original idea of skipping the first step of protocol through an additional random 
challenge. The elliptic curve parameters are selected for minimum Hamming 
weight, thus the pairing implementation does not require sophisticated 
addition/subtraction chains and it’s calculus is optimal. The Hamming weight 
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value of 7 obtained in table 11 is the minimum one for the requirements. That 
value is better from computations point of view than those found in current 
literature.    
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