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ZERO-KNOWLEDGE PROTOCOLS IMPLEMENTED WITH
ELLIPTIC CURVES

Bogdan TUDOR*

In acest material se abordeazd protocoalele de tip ‘cunoastere zero’ in
perspectiva curbelor eliptice. Elementele originale sunt optimizarea algoritmilor,
alegerea parametrilor curbelor eliptice §i calcularea imperecherii Tate. Algoritmii
se incadreazad intr- un cadru de dezvoltare si impreund cu functiile de distorsiune se
pot aplica pentru orice imperechere.

In this paper ‘zero-knowledge’ protocols are treated in the elliptic curves
perspective. The original elementes are the optimization of the algorithms, elliptic
curves parameters and the Tate pairing calculus. The algorithms can be treated as a
framework and through the distortion maps they can be applied on every elliptic
curve pairing.
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1. Introduction

Zero-knowledge protocols play an important role in the data transfer
systems nowdays. In the case of the wireless networks these protocols are being
more important because of the propagation medium. In this moment, conforming
to the latest standards the authentication infomation is protected through the best
methods available but despite to these protections there are always posibilities to
an virtual oponent to decrypt the the data through some kinds of cryptographic
attacks [10]. The zero-knowledge protocols solve in part this kind of treat because
the sensitive information is not even transmitted to the verifier. The new
cryptographic framework introduced in paragraph 3 and the new parameters
computed in paragraph 5 are the original contributions of this paper.

2. Protocols with pairing

In the beginning of the communication setup, is the asymmetric
cryptographic part. The majority of the protocols use the Diffie-Hellman or RSA
methods. Using the elliptic curves pairings is a relatively new perspective [4].
Three of the pairings are mostly used: Weil, Tate and Ate (a short version of
Tate). These pairings are through definition bilinear mappings for elliptic curves.
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In the present case two kinds of pairings are being used: symmetric and
asymmetric. The main difference between them is about the definition domains.
Every bilinear pairing used in cryptography for an elliptic curve G satisfies
the following properties:
- bilinear: e(ag,bh) = e(g,h)* forevery g,heG and beZ, in the
multiplicative form (can be written as exponentials).
- non-degenerate: for every generator element g and h from G with
e(g,h)=1 , in this point is important to note that most of this paper
results are based on Tate pairing, where e(g,g) #1

- computability: there is an efficient algorithm for calculating e(g, /)
An admissible map is defined as a function e: Gx G — G, where G is an
subgroup from E(Fp) and G; from E(Fp2 ). These groups have the same order g

and we choose g as generator element from G. The G group is chosen from the
condition that the Gap Diffie-Hellman problem is intractable (if we know the
values g, ag, bg calculate the element abg — in multiplicative form).

The Hufschmitt scheme [6] is a zero-knowledge one through the value of
abg obtained in | iterations comprising three steps as below.

In this algorithm public parameters are (g, ag, bg, e(g,g), v=e(g,9)*) and
private key is S =abg . The public key is (ag, bg, v), who is calculated only
once. The proposed scheme is backed by the following equation:

e(g,Y)=e(grg clabg ) ) =e(g,8)" " =e(g,g)" x(e(g,g)") =W xV*
Table 1
The Hufschmitt algorithm

Prover Verifier

choose r €[0, ¢]

calculate W =e(g,g)"

send W to the verifier

choose ¢ €[0,2"]

send c to the Prover

verify that ¢ € [0,2*]

computes ¥ = g" x S°

Send Y to the verifier

Verify that e(g,Y) =W xv°

The probability of guessing the ¢ value is after | rounds 2% .
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The scheme proposed by Shao, Lu and Cao [13] is based on the security of
the Diffie-Hellman algorithm. The public parameters are g, e(g,g) and the private
key is s € (0,¢]. The public key is v =sg .

Table 2
The Shao algorithm

Prover Verifier

choose r €[0,¢]

Calculate W =rg

Send W to the verifier

Choose S ¢ (0,4]

Send /3 to the prover

1
r+sf

Calculate Y =g

Send Y to the verifier

Verifies that e(Y, v’ W) = e(g, g)

This scheme is more efficient than those of Kim and Kim or Yao and
Wang [13]. Below is a comparison between the two algorithms presented above.

Table 3
Comparison between Hufschmitt and Shao algorithms
Hufschmitt Shao
Nr of exp for prover 2+¢ 2
Nr of pairings for prover 0 0
Nr of exp for verifier & 1
Nr of pairings for verifier 1 1

These two algorithms are almost equals from the calculus point of view.
Balancing the calculus power between the prover and the verifier is done based on
the usage conditions. In the case of client-server implementations (the most used
case) it is an advantage in Hufschmitt algorithm. In other applications (like smart
devices) the Shao implementation is superior. The & number from the evaluations
is from the fact that the exponent of the final verification v is smaller than g,
having only k bits.

The initial calculus of e(g,g) is done only once and is possible to be done
outside the system, subsequent values will be calculated based on this result. This
is the reason that number of pairings for the prover is 0.

As it can be seen from the above comparison the number of the required
computations of pairings is 1, a minimum value for the algorithms. The only
operation that can be moved from one part to another is the exponentiation one.
The sum is 3 for Shao and 2+2 ¢ for Hufschmitt.
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Another perspective for using pairings in these kinds of protocols is
presented by Zhang and Kim in [17] and has its roots in DVB (Digital Video
Broadcasting). In that case is mandatory the presence of the third trusted party.
That entity generates a user’s signature and put it in the user’s hardware (usually
an smart-card). In the original scheme, proposed by the Boneh and Franklin exist
a difference in the calculus power needed between the user and the provider. This
is the main reason of the following scheme. In the beginning the system generates
Sip=s*h(ID), where s is a secret random parameter. The public key is Pp,,=SP.

Table 4
Zhang and Kim algorithm

Prover Verifier

Has ID, S|D

Transmit ID to the verifier

Calculate Q,, = h(ID)

Choose r — random and R=rP

Transmit R to the prover

Choose a at random

Calculate A=aP, C=H,(A)Sp*+a’R

Transmit A, C to the verifier

e(C,P)=e(Qyp . P,;)"" e(A, A)’

The final step (verification) is done based on the equality:
e(C,P) = e(H,(A)S,, +a’R,P) = e(H,(A)S,,, P)e(aR, aP) =

e(H,(A)Q,,,sP)e(aP,aP)" = e(QlD’Ppub)Hl(A)e(A!A)r

Here H is a hash function defined on R and Hj is a function defined on the
image of the elliptic curve with results in R.

In this context we can observe that filtering the values of points R (from C
one cannot compute S;p) we can drop the H1(A) term — which helps in diffusion of
information. In that case:

C=S,+a’R and e(C,P) = e(Qips P,y)e(A4, 4)

In this way it’s possible to introduce supplementary operations in the
network, but the number of mathematical operations needed is decreased. The

same is also in the case of e(4,A4)", where we can use e(4,R) through

C=S,, +a R, which reduces an exponentiation from the client and server part.

These improvements do not affect the overall scheme security, but reduces the
implementation effort. In a presentation made by Xavier Boyen (A Roadmap of
IBE Systems and their applications) on NIST workshop in 2008 he treats the
Shao-like algorithm as bilinear DH inversion and the frameworks derived from it
as “Exponent Inversion”.
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3. Cryptographic framework

All the previous schemes are following the classical three steps protocol of
zero-knowledge protocols. The Shao ones is minimal from the computations point
of view. So optimizing further the scheme following the classical setup is not
possible (every another scheme involves a minimum 2 pairing computations). The
key in this case is to minimize the number of steps and the message flow the
protocol requires. The scheme in this case it would be composed from only two
steps, thus requiring much lower network traffic. All the algorithms below will
skip the first step from the classical zero-knowledge protocols (the prover first
value - witness). In the classical algorithms the verifier is required to send only
one random (challenge) value. In the new algorithm it must transmit 2 random
values.

In the setup, some entity generates g and e(g,g). The prover chooses some
secret value s as private key and publishes g* =Y as public key.

Table 5
First algorithm

Prover Verifier

Choose random values b and r and transmit
them to the prover

Choose random t value
1

Computes X = g',Z = g+

Send X, Z to the verifier

Verify that e(Z,Y" X") = e(g, g)

This is backed by the following equality:
1

e(ZY'X")=e(g"",g"g") =e(g,8)
We must to analyze the computational costs involved.

Table 6
Comparison between first algorithm and Shao
This scheme Shao
Nr of exp for prover 2 2
Nr of pairings for prover 0 0
Nr of exp for verifier 2 1
Nr of pairings for verifier 1 1

From the table above it’s easy to see that these two algorithms are
comparable from this point of view. In fact, the logical operations in the prover
part are the same (the inversion of the sensitive parts). The implication of r and b
in the final verification excludes the possibility of forgery. If one can compute
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some values X, Z with the desired properties, he could solve the Y® equation and
thus find the secret value r. The proposed algorithm is very useful in the wireless
area, where network transmissions are expensive. From X and Z the verifier
cannot learn anything about t and r, except for public information. The extra
exponentiation in the verifier part is a little extra cost for dropping the witness
value transmission. This scheme balances the network load with verifier’s
computations.
An analog scheme exists for identification with some credential (ID).

Table 7
ID-based algorithm

Prover Verifier

Caleulate ID — h(ID) € F,
Choose s — secret key
Calculate Z = g"") | Y = g*

Transmit ID, Z Calculate /D — h(ID) € F,

Calculate Z = g"™

Send three random values a, b, ¢

Choose t random value and compute
X=g
o
T = g a*h(ID)+b*s+c*t

Send X, T to verifier

Verifies that
e(X"YbZ“,T) =e(g,2)

The equality is evident and the system could be extended to more
informations (in this case there are two informations: secret key s and ID value).
For every piece of sensitive information the verifier must generate a random
number. If k is the number of valuable informations (like private key), the number
of random variables must be k+1. Of course if the number increases, extra care
must be put in random values generation in the verifier part. This condition
appears from the fact that information must be randomized through multiplying.
This completes this kind of authentication protocols with something like a
framework. For current case it is important to compare the number of operations
required:
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Table 8
Comparison between previous ID algorithm and Zhang’s one
ID scheme Zhang scheme
Prover expon 4 3
Prover pairings 0 0
Verifier expon 4 1
Verifier pairings 1 3

From the table above we see the difference in number of pairings (an
operation who is far more time consuming than exponentiation). For every
supplementary parameter we can add an extra exponentiation for verifier. Unlike
the previous scheme the computations are more balanced between the prover and
verifier. The schema with only two random numbers is the same with ¢=0. From

these examples we can write the general case:
Table 9
Generalized version

Prover Verifier

In the setup, it chooses m secret values
n;,i=0..m.Publish X, =g",i=0..m

Generates m random values a;
Generates an binary vector of length m
b, with b, =0,1
Sends them to the prover

1

Z a;bn;

Computes ¥ = g and send

Verifies e(Y,HX,-b‘W )=e(g,g)

Through the judicious use of binary vector b; who selects what secret
values are used in verification (the exponentiation in the end of the final formula
is trivial when b;=0) the verifier can use a single step instead of using multiple

steps for minimizing the forgery probability. This probability is H(i)b' where
pi is the probability of guessing a secret number n; and we omit the influence of a;
parameters. When the Hamming weight of the b; vector is sufficiently high, this
probability is not an issue. This can be seen as an analogue of generalized Feige-
Fiat-Shamir protocol [10] in the elliptic curve domain.

4. Pairing computation

The main part of the algorithms consists in pairing’s computation. The
Tate pairing seems to be much faster and appropriate than other pairings for
cryptographic applications. It is based on the degree 0 divisors from E(F,)
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represented by P-P, with Pe E(F,). The calculus is done based on the
observation that if we choose two points P and P from E(F,) we can find

another point from the curve B and a function G with P+ P'-B—- P, =div(G) .G

is the equation of line through the two points and B is the negative of the sum. If
we note L, the above line and L, the vertical line through B we can write the
following equations:

div(L)) =P+ P+C-3P,
div(L,)=C+ B-2P,
div(L,/L,) =P+ P-B—-P, =div(G)
Y-A(X —x)-»n
X +(x, +x,) = A

through P and P’ (or the tangent if that two points are equal).
For some kinds of pairings (like Weil) the result is trivial if the points are
dependent of each other. This situation is solved in [15] through distortion

functions. In this case the pairings are called modified pairings. The distortion
function is an endomorphism who transform an point P with order | in another

point of order | but from E(Fq,( ), where k is the embedding degree:

The G line has G =

where A is the angle of the line

#(P) e E(Fqk). The advantage in using supersingular elliptic curves is that the

distortion function always exists in this case and for regular ones does not exist
(with some minor exceptions). The modified pairing can be defined in this way:

ell (P, Q) =¢ (Pv ¢(Q))

Examples of distortion functions are:

Table 10
Distortion functions
Characteristic Curve Embedding degree @
p >3 and y2=x3+a 2 ¢1
p=2mod3
p>3and yZ:x3+ax 2 ¢2
p=3mod4

Corresponding distortion functions:
#,(x,y) = (&, y) where &% +&+1=0
#,(x,y) = (~x,iy) where i* +1=0
The definition field does the security level of the operations.
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5. Choosing the parameters

We choose the second example where p =3mod4. It is possible to show
that the curve is supersingular and u =#E(F,) = p+1=Ic, where | is the point

order and c represents the cofactor. Because of the nature of the chosen curve, the
MOV attack is possible so the discrete logarithm problem must be defined over a
minimum field of 2048 bits (a level required by today’s computing possibilities).
That field is defined by F ., $0 p must be a prime number of 1024 bits. From the

previous works, the point order must be at a minimum of 320 bits and the cofactor
must fill the rest. From the fact that | must be a prime number, follows
c¢=0mod4. The main criterion in choosing these parameters is the Hamming
weight who has to be as low as possible. The final Hamming weight is a
combination between all the parameter’s weights.

To find the parameters is sufficient to build a predefined model for searching
numbers:

c=2"+2",withx €[1025-/1024] and x> y >1

this model results from the condition that c is a multiple of 4.

There are multiple possibilities for | but we try the lowest Hamming:
[=2"+1and /=2"+2" +1 where x €[1025-/1024] and x > y >1
Trying all the possibilities between chosen ranges performs searching. The first
model cannot reveal any number who satisfies all the requirements. Because the
term 2¥ from c representation has the main influence in final weight, it has to be as
low as possible. We fix x=704 in c representation and the results for

c=2"4+2"and [ =2’ +2° +1 are:

Table 11
Parameters for low Hamming weight
X y z Hamming p
2 395 290 7
3 365 87 8
4 333 286 9
2 499 94 7
2 612 513 7

It’s obvious that lower than 7 we cannot obtain valid Hamming weights
(for x=2). So the values with 7 are optimum values.

Similar result indicates Hamming weights of around 10 for 1024 bits
security [3]. The primality tests used are not pseudo-primality tests, but
combinations of Pocklington-Lehmer and APRCL tests, which slows down entire
search process. These parameters are being computed only once, so the computing
time is not important.
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It is possible to compute f,, (¢ (R)) instead of S50 (R) where R is the

random point used in pairings. These bring the required operations from the field
extension in base field operations [3].

An important point is finding and representing the torsion group. The
multiplication can be done through division polynomials, but this is slow. Instead
we can use the fact that the torsion group is generated by at most two independent
points. This group is rather cyclic. In our case is sufficient to take some random
points from the curve and multiply them with c. If the results are non-zero, the
points are from torsion group of order | (because Ic=p+1 ). We can use the fact
that all the points kP with & </ are from the same torsion group.

For finding torsion points we can use three methods [14], but in this case
the useful one is that who utilizes group structure. The group c*< E(F,) >

contains all the | torsion points and the c torsion points.
An algorithm for generating a torsion point of order | for a given curve:
1. we choose a random point x € F,
2. verifies if the curve’s equation has solutions in Fq
3.compute Q =cP e E(F,) where P=(x,y) € E(F,)
4.if O =(0,1,0) we roll back to step 1, if not we step out to step 5

5. Q is the I torsion point
In this case, the probability of choosing in step 1 an element that is not on

the definition field of the curve is % If we consider the probability of torsion

points, the final probability in succeeding is . The second model brings us

2(1+c¢)
multiple choices for parameters, and we choose the lowest values:
c= 2704 + 22
[=2% 42241
p=1*c-1
Value of p is a prime number, which can be verified through more
specialized programs. The number of nonzero bits in this representation is
minimum. That’s why the number of computations required by the Tate pairing is
reduced. In the process to find out points on this curve, we can try all the natural

numbers: 1, 2, and 3. We find that 3 is a point on the curve with coordinates:

(3:
4041650132250435298147116573446777046604174225076637425696177291545332251244279
1335859806926093956724398275954478782129550707259996515911662948619647856050907
4418880890343515151344411907200727512718687535309124251143945085963121975335931
5645856483196665357093583501418280593078621907295968996087111853023331389462962
53190430028839 : 1)
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Multiplying this point with ¢ factor gives us a point of order | from the curve:
(554120449733053560718973875887511055536728300616155946502664599914951698775597
5116885649291111089310917344704719385715267177884705118996737139278867324546082
8193309794466173975749313845973083067297934214149504103606158366757225456145200
4415570774290104643026083288114141430453670436027908144893636111312447690030717
9369450449198376 :
3252778554606901935798705641760330660284414712966536699317451892894736574934303
9919922527650815039981488446409919454316894909961912200551035586345335522784238
1030891487342916414198543799431288109761437574064816918016512771460399012783758
8598678368608340033325227449177777440228686263519742052368127749567645336494234
811900751813074 : 1)

This is the point required by the algorithms. If the preferred
representations of the parameters are not these, choosing an addition/subtraction
chain instead of binary chain presented by the classical Miller algorithm can do
improving the computing speed. There are many possibilities [9], among these we
refer to:

- Morain and Olivo’s methods (based on Booth representations) [11]

- window methods by Downey and Schonhage

- Koyama methods

- Lee and Kim sliding method
In a particular case a method or another can be the best choice, but from statistical
point of view for numbers with 512 bits the average chain lengths are:

Table 12
Chain’s lengths for different methods
Algorithm Length
binary 766.5
modified binary 681.7
window methods ~606
Koyama 602.6
sliding window 595.6

For current case these methods (that works in general setup) cannot be
applied because the number of the bits equal to 1 is minimal by the selection of
parameters. The effort is moved on finding parameters. That’s why it is preferred
to make the effort to find optimal parameters only once in the setup stage of the
algorithm instead of applying the methods above.

5. Conclusions

The proposed algorithms can be seen as a framework and introduces the
original idea of skipping the first step of protocol through an additional random
challenge. The elliptic curve parameters are selected for minimum Hamming
weight, thus the pairing implementation does not require sophisticated
addition/subtraction chains and it’s calculus is optimal. The Hamming weight
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value of 7 obtained in table 11 is the minimum one for the requirements. That
value is better from computations point of view than those found in current
literature.

10.
11.

12.

13.

14.

15.

16.
17.

REFERENCES

P.S.L.M. Barreto, B. Lynn, M. Scott, Constructing elliptic curves with prescribed
embedding degrees, SCN, LNCS 2576, pp.257-267, Springer-Verlag, 2002

Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic curves, Pages
29--50 in Advances in cryptology---ASIACRYPT 2007, 13th international conference,
December 2--6, 2007 Lecture Notes in Computer Science 4833, Springer, 2007

G. Bertoni, L. Chen, P. Fragneto, K. Harrison, G. Pelosi, Computing Tate Pairing on
Smartcards, White Paper STMicroelectronics, 2005

D. Boneh, M. Franklin, ldentity-based encryption from the Weil pairing, SIAM J. of
Computing, vol. 32, No. 3, pp. 586-615, 2003 Extended abstract in Crypto 2001, LNCS
2139, pp. 213-229, 2001

T. Hadano, Elliptic curves with a torsion point, Nagoya Math. J 66. (1977) 99-108
E.Hufschmitt, A zero-knowledge identification scheme in Gap Diffie-Hellman groups,
Western European Workshop on Research in Cryptography Workshop Record (2005)
J.-S. Hwu, R.-J. Chen, Y.-B. Lin, An Efficient Identity-based Cryptosystem for End-to-
end Mobile Security, Accepted and to appear in IEEE Transactions on Wireless
Communications

MKim , K.Kim, A new identification scheme based on the bilinear Diffie-Hellman
problem, Springer-Verlag 2002

Y. Lee, H. Kim, Expansion of sliding window method for finding shorter addition-
subtraction chains, International Journal of Network Security, vol. 2, No.1, pp.54-60,
2006.1

A.Menezes, Handbook of applied cryptography, CRC Press 1996

F. Morain, J. Olivos, Speeding up computations on an elliptic curve using addition-
subtraction chains, Inform.TheoryAppl.24(190), p.531-543

M. Scott, Computing the Tate pairing, CT-RSA, vol. 3376 of Lecture Notes in Computer
Science, pages 293—304, Springer-Verlag, 2005

J. Shao, R. Lu, Z. Cao, A new efficient identification scheme based on the strong Diffie-
Hellman assumption, International Symposium on Future Software Technology 2004x

J. Shikata, Y. Zheng, Optimizing MOV algorithm for non-supersingular elliptic curves,
Lecture Note on Computer Science, Asiacrypt '99, 1999

E. Verheul, Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems, Journal of Cryptology, vol. 17, Number 4, September 2004, pp. 277-
296(20),Springer-Verlag

G.Yao, G. Wang , Y.Wang, An improved identification scheme, Berkhauser- Verlag 2003
F. Zhang, K. Kim, Signature-Masked Authentication Using the Bilinear Pairings,
Cryptology & Information  Security Laboratory (CAIS), Information and
Communications University, technical report, 2002.



