
UPB Sci. Bull., Series C Vol.70, No.1, 2008 ISSN 1454-234x

TELEOPERATION CONTROLLER ARCHITECTURE

FOR MOBILE ROBOTS

Ctin NEGRESCU1, D. M. POSTELNICESCU2

Articolul prezintă un sistem de control al roboţilor mobili. Arhitectura

modulară a controllerului de teleoperare include comunicaţiile interproces,
localizarea, edificarea hărţilor, autoprotecţia, managementul senzorilor şi sinteza
vorbirii. Controllerul suportă multiple nivele de cooperare dintre operator şi
robot, de la controlul direct la cel de supervizare. Autorii acestui articol prezintă
arhitectura de control robotic, omisă în referinţele legate de această
implementare.

The paper presents a control system for mobile robots. The teleoperation

controller has a modular architecture and includes interprocess communications,
localization, map building, safeguarding, sensor management, and speech
synthesis. The controller supports varying degrees of cooperation between the
operator and robot, from direct to supervisory control. The authors of this article
presents an new approach of robot control architecture which is not represented
in other papers.

Keywords: human robot interaction, mobile robots, vehicle teleoperation

1. Introduction

Various researchers have addressed the problem of designing control

systems for teleoperation. Teleoperation controllers encompass an extremely
varied range of designs and techniques. The most, can be described within the
framework of one or more existing robot control architectures [1].A parallel,
three-layered control architecture for teleoperation of mobile robots is described
in [2].The design uses a network of low-level control behaviors switched on-off
by a high-level symbolic layer. A mobile robot control system with multisensor
feedback is presented in [3]. Cooperation between human and robot implies
command fusion witch enable operators to share control with a safeguarding
system on-board the robot [4].

1 Eng., PhD Student, Dept. of Control Engineering Industrial Informatics University Politehnica of
Bucharest, e-mail:negrescu55@yahoo.com
2 Eng., PhD Student, Dept. of Control Engineering Industrial Informatics University Politehnica
of Bucharest, e-mail: daragoshi @yahoo.com

Ctin Negrescu, D.M. Postelnicescu 78

2. Robot Hardware

The controller was designed to operate Pionner mobile robots: both shown

in Fig. 1 are 4-wheel skid-steered and capable of traversing moderately difficult
terrain. Both have a microcontroller for servo and hardware control.

Fig. 1. Left Pionneer –AT, right Pionner2-AT

3 Design
3.1 Requirements for teleoperation controller

The most teleoperation interfaces incorporate tools and displays to help the

operator perceive the remote environment, to make decisions and to generate
commands. An good teleoperation controller provide resources to support these
tools and displays. In particular the controller must supply capabilities and
sensory feedback which make the interface work well and the remote task easy to
perform. To support navigation, the controller must provide :

 spatial feedback (sensor-based maps)
 visual feedback (still images and / or video)
 situational feedback (robot health, position, command status)

Because navigation is dependent on perception, the controller is required to
provide capabilities for sensor management and sensor processing. (e.g. sensor-
based map building require range data processing.)

3.2 Controller architecture

The teleoperation controller is implemented as a distributed set of

modules. Fig. 2 shows where the modules are resides and how they are connected.

Teleoperation controller achitecture for mobile robots 79

This kind of structure look like a network of computers with a server (here notated
– FPC Server) and a lot of workstations (here the modules with different names.)

Fig. 2. Teleoperation controller architecture

It is partially true because some of modules run standalone and operate

asynchronously and, others modules, particularly those witch process sensor data
or operate robot hardware, have precise timing or data requirements. These last
modules operate in the SAPHIRA system.

 The system architecture provides a micro-tasking operating system and
functions for communicating with and operating robot hardware.

 The robot control architecture contains representations and routines for
sensor processing, for environment mapping, and for controlling robot actions.
SAPHIRA is a good choice for several reasons:

1. it is a mature system and works well with Pionner robots
2. it provides efficient command fusion through fuzzy behavior.
3. it is extensible, modular and portable
4. the micro-tasking operating system is synchronous and interrupt – driven,

thus making it easy to implement modules with precise timing.
SAPHIRA (see fig.3) is a framework for constructing mobile robot

controllers and contains both a system and a robot control architecture [5]. It was
first developed in conjunction with the Flakey mobile robot project, as an
integrated architecture for robot perception and action. The software runs a
reactive planning system with a fuzzy controller and a behavior sequencer.

There are integrated routines for sonar sensor interpretation, map building,
and navigation. At the center of the architecture is the Local Perceptual Space
(LPS). It accommodates various levels of interpretation of sensor information, as
well as a priori information from sources such as geometric maps. The main
system consists of a robot server that managest6he hardware, and SAPHIRA
which is a client to this server.

Ctin Negrescu, D.M. Postelnicescu 80

SAPHIRA has been implemented on a number of different operating systems
and in addition an API across a number of languages has been developed, in
particular to support different types of experiments from low-level control to task
planning. There are several coding methods used in the SAPHIRA architecture.
The core of system is programmed in the C language. A special high-level
interpreted language has been designed called Colbert (Konolige, 1997). It has a
C-like syntax with semantics based on finite state machines. A part of SAPHIRA
is written in LISP.

Fig. 2 The SAPHIRA system

Table1 lists the modules and describes functions, execution style and

implementation of each.

3.3 Interprocess communications

In the past, all robot software was designed as a single monolithic block.

Modern robotic system, however, are constructed as a group of modules each of
which performs distinct processing functions. Modular design provide many
benefits including:

 encouraging team development
 facilitating module implementation
 enabling distributed computation

Teleoperation controller achitecture for mobile robots 81

At the same time, however, this approach requires that some mechanism
be used to integrate modules and to distribute data between them.

A network-based interprocess communication toolkit is the most common
mechanism for this purpose. Interprocess communication toolkits have been used
to support distributed and parallel computing. Thus numerous interprocess
communication toolkits have been developed for robotics including –IPT, NDDS,
NML, TCA/TCX/IPC and RTC [6]
 For implementation was selected the Fourth Planet Communicator (FPC)
toolkit [7] (FPC’s design was inspired by both message-based (e.g. TCA/TCX/
IPC) and information-based (e.g. NDDS) systems. Reasons for choice:

1. It provided both reliable (for message sequences) and unreliable (for fast
data) delivery.

2. Its performance (message rate and latency) is well suited to the needs of
this controller modules.

3. It facilitates integration of diverse modules with multiple language
interfaces and support for multiples operating systems.

Table1

Teleoperation Controller modules
Name function execution style implementation

(language)
UI Gateway proxy server for user

interfaces
synchronous

(varies)
standalone -C

Task Modules task-specific
functions

asynchronous standalone -C

Motion Controller low-level motion synchronous
(10 Hz)

SAPHIRA
(C, fuzzy behavior)

Safeguarder health monitoring
motion safeguards

synchronous
(10 Hz)

SAPHIRA
(C, fuzzy behavior)

Map Maker/
Map Server

map building
map generation

asynchronous standalone -C

Localizer position estimation synchronous
(10Hz)

SAPHIRA (C)

Camera
 Manager

camera control asynchronous standalone -C

Image
 Server

image capture asynchronous standalone -C

Audio
 Manager

sound playback
speech synthesis

asynchronous standalone -C

Sensor
Modules

sensor processing synchronous
(10Hz)

standalone -C

Ctin Negrescu, D.M. Postelnicescu 82

4. Modules
4.1 User interface gateway

UI Gateway is a proxy server for user interfaces. It provides access to

controller services (e.g. motion control) and uses a simple message protocol (text-
based and asynchronous (to reduce latency). whenever an interface is connected,
the UI Gateway continually monitors the connection. If it detects a
communication problem (e.g. network outage), or that the interface not longer
responding. The module immediately stops the robot and close the connection to
ensure that operator commands are only executed while the interface is active and
functioning.

4.2 Task modules

Each Task Module performs a specific perception or decision making

function to meet the needs of a particular teleoperation application. A task module
may add an autonomous capability to the robot or may offer assistance to the
human. In this case two task modules have been developed; MotionDetector and
RockFinder. The MotionDetector is used for autonomous visual surveillance. It
detects motion in the environment by acquiring camera image sequences and
computing interframe differences. This task notifies the human whenever occur a
motion.

4.3 Motion Controller

Motion Controller execute and monitors motion commands. It generates

position and rate setpoints (translation and rotation) for the robot’s low-level
servo-controller. The MotionController sequences and executes motion
commands using SAPHIRA fuzzy behaviors. This allows all vehicle motion to be
safeguarded (i.e. via command fusion with Safeguarder behaviors.)

The MotionController continuously monitors the progress and status of
each executing motion behavior. Whenever it detects lack of progress (e.g. due to
safeguarding) or failure, the MotionController contacts the operator.

4.4 Safeguarder

This module maintains the robot’s safety. each safeguard is implemented

as a SAPHIRA fuzzy behavior and may be individually activated or disabled by
other controller modules. The most important behaviors are:

- Collision avoidance
- Rollover avoidance
- Health monitoring
- Clutter monitoring

Teleoperation controller achitecture for mobile robots 83

4.5 Map Maker

Image-based driving is an efficient command mechanism, but it may fail

to provide sufficient contextual cues for good situational awareness. Maps can
remedy this by providing reference to environmental features, explored regions
and traversed path. In addition, maps can be efficiently used for collision
avoidance. The MapMaker builds maps using range sensors.

4.6 MapServer

The MapServer provides maps as images. Whenever it receives a request,

the MapServer queries the MapMaker for the relevant grid region and converts
certainty values to graylevels. Clear areas appear as white, obstacles as black, and
unknown as light-gray. The maps are generated in either the world or local frame,
with arbitrary resolution (sub/super sampling) and of any extent (regions outside
the grid are marked “unknown”)

4.7 CameraManager

The CameraManager operates the robot’s camera system, arbitrating and

sequencing camera commands from other modules. The functions are :
- to control steereable CCD cameras
- to configure imaging parameters (gain, exposure compensation,

magnification, etc)
- to output a message describing the camera’s state (position, magnification,

field-of-view) so that modules making use of the camera can act appropriately.

4.8 ImageServer

In most vehicle teleoperation systems, video is the primary source of

visual feedback., but high-quality video, requires significant communication
bandwidth. For applications with low bandwidth and/or high transmition delay,
video may not be practical. For this reason the controller provides an event-driven
ImageServer. This server captures a frame, compresses it into a JPEG image, and
sends it whenever:

- the operator issues a request
- the robot stops
- an obstacle (static or moving) is detected
- an interframe timer expires.

Event-driven imagery is a flexible mechanism for visual feedback.

Ctin Negrescu, D.M. Postelnicescu 84

4.9 Sensor Modules

A sensor Module interacts with a single sensor or a group of related

sensors. each module works like an operating system driver: it communicates with
the device using sensor-specific protocols, processes the sensor data, then delivers
the results for other controller modules to use. There are currently five Sensor
Modules in the teleoperation controller: GPS, Health, Odometer, Sonar and
TCM2.

 The GPS Module acquires GPS position fixes and transforms the data from
geodesic coordinates to a regional Cartesian user grid.

 The Health module monitors vehicle health sensors: power(battery
voltage) temperature(environment) and watchdog (hardware controller)

 The Odometer module processes wheel encoder data by computing
differential position and velocity based on encoder pulses.

 The Sonar module controls a ring of ultrasonic sonar used to
enable/disable transducers and to configure polling order (to minimize
crosstalk)

 The TCM2 module acquires orientation (roll, pitch, compass heading) and
external temperature data from the TCM2.

4.10 AudioManager

When robot must operate around or with humans, audio plays an

important role in human-robot interaction. Audio is a highly effective mechanism
for conveying the robot’s intent and for communicating information to humans.
Thus the AudioManager is designed to perform two functions: sound playback
and speech synthesis.

Sound playback is used to produce informative signals. Speech synthesis
is used for information which cannot be conveyed by simple sound playback, such
as status messages.

5. Three-layer architecture

We have observed from the Fig. 2 that there is no true robot control

architecture and the figure represents only the interprocess communications. In
our opinion, it is important to represent the three layers architecture in a new
figure that should comprise the data flow, specific to the robot control.

In the bottom layer, the controller provides reactive feedback –control: it
uses behaviors for safeguarding and robot motion. In contrast to other three-layer
architecture, these behaviors maintain internal state (activation time, number of

Teleoperation controller achitecture for mobile robots 85

attempt, etc) to facilitate human-robot interaction and to assist in failure detection.
Modules involved: Localizer and Safeguarder

In the middle layer, the controller performs sequencing; it selects which
primitive actions should be in use, then handle behavior activation and
deactivation. (e.g. low-level motion control and safeguard behaviors are
sequenced during execution of waypoint commands. Similarly, task-specific
modules(e.g. autonomous survey) generate control sequences to exercise control
over the robot. Modules involved: Motion Controller and Camera Manger

In the top layer, the controller integrate human input via user interface.
- In autonomous systems, the top layer contains high-level planning and

decision making modules.
- In teleoperation the human typically performs these tasks (with

collaborative control, both the robot and human share responsibility for producing
plans and for responding to queries from the other controller layer. Task Modules
implements this layer. All the other modules are utility modules. The schema is
illustrated in Fig. 4

Localizer
position

estimation
orientation
estimation

GPS
module

Odometer
module

TCM2
module

Saveguarder
Collision avoidance
Rollover avoidance
Clutter monitoring
Health monitoring

(Saphira
 fuzzy behavior) Sonar

module
Health
module

Sensor Modules

Map
Maker

Command modes
Direct Mode
Image Mode
 Map Mode
Sensor Mode

image-based waypoint driving
position and rate control of robot pose

map-based waypoint driving
controling sensors and robot perception

Mode provide: UI
Controller

Map
Server

UI Gateway
(proxy server for user interface)

Map Display

Servo
Control

Task Modules :
RockFinder

MotionDetector

Motion
Controller

encoders

Audio
Manager

Speaker CCD
Camera

Positioning
mechanism

Camera
Manager

Image Display

Image
Server

vi
su

al
 fe

ed
ba

ck

PDA- User Interface

Fig. 4- Robot control architecture

Ctin Negrescu, D.M. Postelnicescu 86

 6. Conclusions

 The architecture represented in Fig. 4 points out the architecture of the
controller that we have been talking about, from the point of view of the system
organized on three layers, offering in this way a better understanding of the
functioning and from here on, finding future solutions for improving the actual
system.

R E F E R E N C E S

 [1] J-M. Hasemann, “ Robot Control Architectures : Applications, Requirements, Approaches,

and Technologies”, SPIE Intelligent Robots and Manufacturing Systems,
Philadelphia, PA, 1995

[2] A. Maslowski, et al.”Autonomous Mobile Robot Controller for Teleoperation System”
ISMCR Prague, Czech Republic 1998

[3] I. Lin et all “ An Advanced Telerobotic Control System for a Mobile Robot with
Multisensor Feedback ” IAS-4 IOS Press 1995

[4] E. Krotov “Safeguarded Teleoperation for Lunar Rovers: From Human Factors to Field
Trials”, IEEE Planetary Rover Tech. and Sys. Workshop 1996

[5] K. Konoligue and K Mayers “The SAPHIRA Architecture for Autonomous Mobile
Robots” in AI and Mobile Robots, (Bonasso, and Murphy R eds) MIT Press
Cambridge MA 1997

[6] J. Gowdy “ A Qualitative Comparison of Interprocess Communications Toolkits for
Robotics” CMU-RI-TR-00-16 Carnegie Mellon University 2000

[7] T. Fong ”FPC: Fourth Planet Communicator , Fourth Planet, Inc Los Altos Ca 1998

