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DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING
THE KOOPMAN OPERATOR THEORY

Benaissa DEKHICI1∗, Boumediene BENYAHIA1, Brahim CHERKI1

The chemostat is widely used as a laboratory pilot for bioprocess
studies. Chemostat models are nonlinear and rarely used in modern control
experiments. For a data-driven control strategy, we use the Koopman op-
erator approach to derive a linear model for a simple chemostat with one
substrate and one biomass, using only the chemostat’s input-output data.
For chemostat control, we use the linear Koopman model to develop a MPC
controller. The linear Koopman model best fits chemostat data compared
to the local linearization-based model. In addition, the MPC based on the
Koopman model gives very satisfying results compard with a linear MPC
controller when applied to control the chemostat. The results are gained for
a large space of initial conditions when chemostat control is usually limited.

Keywords: Chemostat, Model predictive control, Data-driven control de-
sign, Linear model, Koopman operator theory.

1. Introduction

The chemostat is a laboratory instrument used to study microbial ecol-
ogy, develop microbial species in a controlled environment, and emulate biopro-
cesses like the Continuously Stirred Tank Reactor (CSTR) used for wastewater
treatment [1]. The mass balance rule is used to describe biological responses
between substrates and biomasses in a chemostat. In the literature, the sim-
plest chemostat model with one substrate and one biomass is well known [1, 2].
It is updated to use existing control methods based on the input substrate con-
centration and the dilution rate [3, 4]. Models of bioprocesses especially of the
chemostat remain strongly nonlinear and uncertain, which hinders experimen-
tal implementation of current controllers.

Data-driven modeling and control solutions are prevalent in engineering,
biology, and physics. These techniques, especially those based on the Koop-
man operator theory [5], avoid modeling uncertainty and high nonlinearity,
and provide linear models for dynamical systems. The infinite-dimensional
Koopman operator captures nonlinear dynamic systems’ activities. It projects
a finite-dimensional nonlinear system onto an infinite-dimensional linear space,
from which the linear model can be recovered. In recent years, many scientific
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research on the Koopman operator coupled with Dynamic Mode Decomposi-
tion method have been published [6, 7, 8].

In this paper, we adopt a Koopman operator extension to control a
chemostat with one substrate and one biomass. We employ the chemostat’s
nonlinear model as a virtual system on which we apply control sequences to
generate data (just the input-output data), from which we deduce a linear
model using the Extended Dynamic Mode Decomposition (EDMD); a data-
driven approximation of the Koopman operator [9, 10]. To highlight the capa-
bility of the linear Koopman model, we use it to perform a Model Predictive
Control (MPC) [11] for the initial system (chemostat) , and we compare results
with other conventional models like the local linearization-based model. We
control the chemostat in the large space of the initial conditions which is the
novelty of this work. We will be able to impose linear inequality constraints on
state and control inputs, as well as nonlinear state constraints, using the pro-
posed Koopman MPC framework. The suggested technique, which avoids the
difficult and complex solution of non-convex optimization issues in standard
nonlinear MPC schemes [12], may be simply applied for predictive control of
the nonlinear chemostat system using improved and very efficient linear MPC
solvers.

The paper is organized as follows: In Section 2, we outline the nonlinear
system (chemostat) that we are interested in. The Koopman model of the
chemostat is then presented in Section 3 for both full-state and input-output
measurements. Section 4 then builds a linear Koopman-MPC controller for
chemostat’s input-output data. Finally, in Section 5, simulation findings are
displayed and analyzed before some conclusions and views are reached.

2. Nonlinear dynamical model of the chemostat

The chemostat is a small bioreactor used in the study of the growth of
microorganisms or the emulation of biological reactions. The chemostat can
function in CSTR mode (Figure 1), where it is operated at a constant volume
V with an equal outflow and inflow rate F , and it is fed with an inlet substrate
concentration Sin.

Figure 1. Continuous Stirred Tank Reactor (CSTR). [1]
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Here, we consider a chemostat with a simple structure with only one
limiting substrate S and one population of microorganisms X (bacteria). The
dynamics of such system is described by a set of nonlinear differential equations
derived from the law of mass balance [13].{

Ṡ = D(Sin − S)− µ(S)X

Ẋ = (µ(S)−D)X
(1)

S and X are the substrate and the biomass concentrations, respectively, Sin

is the input substrate concentration, D is the dilution rate given by D = F
V
,

µ(S) is the specific growth rate of the biomass on the substrate (the kinetics),
which can be modeled by different functions, but the one we use here is the
Monod type function given by [2]:

µ(S) = µmax
S

S +K
(2)

where µmax is the maximum growth rate and K is the half-saturation constant
(µ(K) = µmax

2
). The specific growth rate µ(S) is a function of the limiting

substrate concentration S.
In this work, we suppose that the initial conditions S0 et X0 of system

(1) are in the box [S−
0 , S

+
0 ]× [X−

0 , X
+
0 ] ⊂ Σ where the set Σ is defined by :

Σ = {(S,X) ∈ R2
+ : 0 < S < Sin and X > 0}

It is well known that the state variables will remain positive for all future times
[1]. We assume the measured output of system (1) is the substrate y = S, and
we consider D ∈ [DMin, DMax] as the control variable.

Substituting (2) by (1), the system is rewritten as follows:{
Ṡ = D(Sin − S)− µmax

S
S+K

X

Ẋ = (µmax
S

S+K
−D)X

(3)

The chemostat model in (3) has at most two equilibrium points : the undesired
washout equilibrium where the chemostat is washed out by bacteria, and the
desired positive equilibrium where the chemostat is normally functioning (i.e S
is degraded by X). Stability of equilibria depends on operating parameters D
and Sin. Figure 2 displays the behavior of system (3), when it is functioning
around the positive equilibrium. For more details on analysis of equilibria
and their stability, the reader can refer to [14]. In this paper, the continuous-
time system (3) is turned into discrete-time dynamics model in order to make
numerical control and data storage easier. Denote x = [S,X]⊤ the state vector,
hence nonlinear system (3) can be characterized as ẋ = f(x, u). Utilizing the
4th order Runge-Kutta technique (RK4) with a specified sampling time Td as
in [22], the discrete-time model of the chemostat is given by:

xk+1 = f(xk, uk), (4)
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Figure 2. Numerical simulation of system (3) around the pos-
itive equilibrium. Right: the phase plan X(t) with respect to
S(t) for different initial conditions., Left: the solutions S(t) and
X(t) with respect to time

where xk = [Sk, Xk]
⊤, xk ∈ Σ ⊂ R2

+ and u ∈ U ⊂ R1 . The main contribution
of this study is the development of a data-driven control approach for the
chemostat that is purely based on input-output data.

3. Koopman model of the chemostat

The Koopman operator theory is a data-driven approach that provides
an infinite-dimensional linear operator which can transform a nonlinear dy-
namical system to a linear one [5, 8]. For the intent of this article, we focus
more on the functional development of the idea behind the Koopman opera-
tor. Nevertheless, for a large review on the Koopman operator theory and its
applications, the reader is referred to [15]. In this section, we will first present
the Koopman model for the chemostat when having access to the full-state
measurements of the system. The case of input-output Koopman model of the
chemostat is addressed in the second subsection where we have restrictions in
terms of measuring the full-state of the system.

3.1. Koopman model of the chemostat with full-state measure-
ments

For the dynamic system (4), first we can define an observable function
g ∈ G where g : E → R and E is the Cartesian product of the original state-
space Rn and the space of all input sequences ℓ(U) = {(uk)

∞
k=0|uk ∈ U}, i.e.,

E = Rn × ℓ(U). Now, we can define the Koopman operator K : G → G :

[Kg](x, (uk)
∞
k=0) = g(f(x, u0), (uk)

∞
k=1). (5)

The Koopman operator K in (5) is an infinite-dimensional linear operator,
that acts on observables g defined on state space and maps them into new
function Kg also defined on state space (K updates g based on changes in state
space trajectories). Thus, the nonlinear dynamical system (4) can be equally
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represented by a linear operator of infinite dimensions, since the set of all
observables form an infinite-dimensional vector space. Implicitly, the Koopman
operator (5) supposes that G is invariant under its actions, hence, G usually
can also include functions based on (uk)

∞
k=0 even in the controlled setting. For

a detailed explanation of the Koopman operator in the extended state-space,
see [9]. We underline that the Koopman operator represents the nonlinear
system in a linear fashion with a generalization of the local linearization around
equilibria; this linear representation is globally accurate as demonstrated in
[16]. In this paper, we are focusing on time domain forecast of the trajectories
of (4). For that reason, we are using a finite-dimensional approximation of
the Koopman operator K by applying a data-driven technique called EDMD
[9, 10]. The procedure is done in two main steps:
(1) The chemostat’s measured states, including substrate and biomass con-

centrations, are uplifted to the space of observables, but the control inputs
are not lifted;

(2) An approximation of the Koopman operator is obtained by applying a
least-square regression on the uplifted data.i.e., we are seeking to approx-
imate the nonlinear dynamics of the chemostat by linear time-invariant
model given by:

sk+1 = Ask +Buk,

x̂ = Csk,
(6)

where the state sk ⊂ RN+2 is the lifted state, and the first two elements
of sk are represented by the substrate and the biomass concentrations
respectively; uk ⊂ R1 is the control input which is not lifted; x̂ ⊂ R2 is
the Koopman model output or the prediction of x.

Consider the collection of data generated from the nonlinear system (4) in the
form of:

X = [x1, .., xK ], X
′
= [x2, .., xK+1], U = [u1, .., uK ] (7)

where K is the number of collected data points. The data sets in (7) should be
obtained using the same sampling time. However, it is not necessary to have
temporal ordering in the data and is not generated from the same trajectory
of (4).

First, the data X,X ′ and U presented in (7) is lifted to a higher-
dimensional space with the help of the lifting function ϕ : R2 → RN+2 where
ϕ is defined as

ϕ(x) = [x⊤, ϕ1(x), . . . , ϕN(x)]
⊤, (8)

where the original state x = [S X]⊤ is included; {ϕi}Ni=1 denote a vector of
user-defined (possibly nonlinear) basis functions, such as sinusoids, exponen-
tials, monomials and radial basis functions. By combining (7) with (8), we can
form a new set of lifted data snapshot matrices given by:

Xlift = [ϕ(x1), ..,ϕ(xK)], X
′

lift = [ϕ(x2), ..,ϕ(xK+1)], U = [u1, .., uK ] (9)
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These new data matrices are the lifted coordinates of the system (4) in the
lifted space (the space of lifting functions). The components of the matrix U
have not been lifted to maintain the Koopman model’s linear dependency on
the original input of the system as in [9]. In addition, the link between the
original state xk and the lifted state sk is presented by:

sk = ϕ(xk) = [x⊤
k , ϕ1(xk), .., ϕN(xk)]

⊤, (10)

The matrix A ∈ R(N+2)×(N+2), B ∈ R(N+2)×1 and C ∈ 2 × R(N+2) in (6) are
given as the solution to the following optimization problems:

min
A,B

∥ X
′

lift − AXlift −BU ∥F , min
C

∥ X − CXlift ∥F , (11)

With the symbol ∥ . ∥F as the Frobenius norm 1of a matrix. The optimization
problems presented in (11) are linear least-squares problems, where A and B
are calculated as the best one-step linear model in the lifted space as a least
square sense and C is calculated as the best linear least squares prediction of
X given Xlift. For more details on the analytical solution and the application
of the Koopman operator theory for the data-driven forecast of the chemostat
with full-state measurements, see [17].

3.2. Koopman model for the input-output chemostat

Now, we illustrate how the technique may be adapted to the scenario
where the measurements of the full-state are unavailable and just a single out-
put is observed. (y = S, only the measurement of the substrate concentration
is available, in practice, the measurement of biomass is always limited). The
discrete-time representation of the nonlinear input-output dynamical system
of the chemostat is considered as follows :

xk+1 = f(xk, uk),

yk = h(xk),
(12)

where xk = [Sk Xk]
⊤ is the state of the system with xk+1 as its successor,

xk ∈ Σ ⊂ R2
+, uk = D is the control input, f is the transition mapping and yk

is the measured output which in our case h(xk) = Sk so h : R2
+ → R+. We are

specifically searching for a basic model with a linear structure that is suitable
for linear control design approaches such as MPC [11]. The Koopman model
is assumed to be of the forms of a controlled linear dynamical system

sk+1 = Ask +Buk,

ŷk = Csk,
(13)

With ŷk being the prediction of the output yk in (12). Notice that, the control
input uk of (13) stays the same as in (12) so that linear constraints can be
applied linearly on the control inputs. In order to construct such a valid
linear model for the chemostat given in (12), we should follow all the steps

1The Frobenius norm of a matrix A is given by ∥ A ∥F=
√∑m

i=1

∑n
j=1 |aij |2
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of the Koopman operator framework presented in Section 3.1. However, the
one distinction is that we will choose the lifting functions depending on the
actual measured output and also many previous measured outputs and inputs
at the same time. This is known as the time-delayed embedding (embedding
into a single data point many successive measurements of the output) which
is a classical methodology extremely powerful in system identification theory
(see, e.g., [19]), but recently the context of the Koopman operator has been
including this technique in its approximations (see, e.g., [20, 8]).

Let us consider the following set of data matrices as in (7):

X̃ = [ξ1, .., ξK ], X̃+ = [ξ+1 , .., ξ
+
K ], U = [u1, .., uI ] (14)

The only difference is that the matrices include a string of samples of series
with nd + 1 length (nd is a number of delays), where

ξi = [y⊤i,nd
û⊤
i,nd−1 y⊤i,nd−1 . . . û⊤

i,0 y⊤i,0]
⊤ ∈ R(nd+1)nh+nd

ξ+i = [y⊤i,nd+1 û⊤
i,nd

y⊤i,nd
. . . û⊤

i,1 y⊤i,1]
⊤ ∈ R(nd+1)nh+nd

ui = ûi,nd

(15)

(ûi,j)
nd
j=0 is a series of inputs generating a vector (yi,j)

nd+1
j=0 of consecutive output

measurements.
As in (9), the data matrices X̃, X̃+ and U given in (14) are lifted with

the help of the following lifting function:

ϕ(ξ) = [ϕ1(ξ), . . . , ϕN(ξ)]
⊤, (16)

Then, new sets of lifted data are obtained as follows:

X̃lift = [ϕ(ξ1), ..,ϕ(ξK)], X̃
+
lift = [ϕ(ξ+1 ), ..,ϕ(ξ

+
K)], U = [u1, .., uK ] (17)

By having Xlift,X
+
lift and the input matrix U , we can find the linear matrices

A,B and C of (13) by solving the following least squares problems:

min
A,B

∥ X̃+
lift − AX̃lift −BU ∥F , min

C
∥ [y1,nd

. . . yK,nd
]− CX̃lift ∥F , (18)

The predictor (13) starts from the initial condition:

s0 = ϕ(ξ0) (19)

Where

ξ0 = [y⊤0 û⊤
−1 y⊤−1 . . . û⊤

−nd
y⊤−nd

]⊤ (20)

is the vector of nd input measurements and nd+1 are the latest measurements
of the output.



144   Benaissa DEKHICI, Boumediene BENYAHIA, Brahim CHERKI

4. Koopman MPC Framework

In the last section, we presented a methodology that allows us to build a
model of the chemostat in the form of a linear dynamical system (13). In this
section, we will use MPC to this linear model to control the original nonlinear
system of the chemostat; this concept is depicted in Figure 3.

Figure 3. Koopman MPC Framework [9, 21].

MPC is used for constrained, feedback control of multivariable systems.
In MPC, the altered input is determined by minimizing a user-defined cost
function across a time horizon at each closed-loop sampling instant. Linear
MPC solves a convex quadratic program (QP) to quickly assess the control
input. Whereas Nonlinear MPC solves a significantly more sophisticated non-
convex optimization problem every time step, making the solution exceedingly
expensive to calculate. Local optimization approaches are therefore required.
For an overview of MPC and Nonlinear MPC, the reader is referred to [11, 12].

The Koopman MPC uses the receding horizon control approach; first,
the linear model (13) is used to forecast the evolution of the system during
the prediction horizon, next, these forecasts are used to calculate the optimal
control input sequence that minimizes the given cost function on this hori-
zon, finally, we apply only the first component of the calculated control input
sequence to the real system, thus generating a new output value and repeat-
ing the whole process. We will present, in the following, some notations and
mathematical background on this technique. The discern property when using
the Koopman linear model (13) is that the derived MPC problem is now a
convex QP although we have a nonlinear dynamical system at the beginning.
Since, the so-called dense form [9] is used , the solution of complex quadratic
problem is independent of the possible very large dimension of the s, now, the
QP can be easily solved with the help of optimized and highly efficient existing
solvers for linear MPC.
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The optimization problem solved by the Koopman MPC at each time
instant of the closed loop process is as follows:

(u⋆
i )

Nh−1
i=0 , (y⋆i )

Nh
i=0) = argmin J((ui)

Nh−1
i=0 , (yi)

Nh
i=0)

s.t. si+1 = Asi +Bui, i = 0, ..., Nh

yi = Csi

W y
i yi +W u

i ui ≤ vi, i = 0, ..., Nh − 1

WNh
yNh

≤ vNh

s0 = ϕ(ξk),

(21)

where Nh is the prediction horizon, and (ui)
Nh−1
i=0 , (yi)

Nh
i=0 are the sequence of

input and output value over Nh,the matricesW y
i=0,...,Nh−1,W

u
i=0,...,Nh−1 WNh

and
the vector vi are the state and input polyhedral constraints. The current state
ξk of the delayed-state ξ at a time instant k is as follows:

ξk = [y⊤k u⊤
k−1 y⊤k−1 . . . u⊤

k−nd
y⊤k−nd

]⊤ (22)

The cost function J has a convex quadratic form given by:

J((ui)
Nh−1
i=0 , (yi)

Nh
i=0) = y⊤Nh

QNh
yNh

+ q⊤yNh

+

Nh−1∑
i=1

(yi)
⊤Qiyi) + u⊤

i Riui + q⊤i yi + r⊤i ui

+ u⊤
0 Ru0 + r⊤0 u0,

(23)

with Ri=0,...,Nh−1, Qi=0,...,Nh
are cost function matrices (real symmetric posi-

tive semi-definite), the cost function J can be utilized to formulate lots of
control objectives, for instance, time-varying reference tracking. Furthermore,
nonlinear constrains and objectives in the original state xk can be handled
by integrating nonlinear functions in the embedding variables (see [9],[21]).
When the optimal input sequence (u⋆

i )
Nh−1
i=0 is calculated, its first component

u⋆
0 is applied to the system to generate a new value of the measured output

(h(xk)) which refreshes the current state ξk and the whole procedure is then
repeated in a receding horizon way. Algorithm 1 summarizes the Koopman
MPC approach’s closed-loop operation.

Algorithm 1 Closed-loop operation of Koopman MPC

1: for k=0,1,... do
2: Set s0 = ϕ(ξk)

3: Solve (21) to get an optimal solution (u⋆
i )

Nh
i=1

4: Apply u⋆
1 to the nonlinear system of the chemostat (12)

5: end for
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5. Simulation results and discussions

In this section we extend the proposed data-driven technique to control
the nonlinear input-output dynamical system of the chemostat (12). The con-
trol of the chemostat dynamics is always restricted in the large space of initial
conditions. Rather, it is usually controlled in the invariant manifold (i.e., the
trajectories begin from initial conditions x1(0), x2(0) generated randomly with
uniform distribution where x1(0) + x2(0) = Sin). We are going to construct a
linear Koopman model and use it to control the chemostat in the general and
difficult case (control in a large space of the initial conditions). The parame-
ters of the chemostat dynamics are presented in Table 1. In terms of collecting

Table 1. Parameters of the chemostat dynamics
Parameters Values Units
Sin 20 mg/l
µMax 0.6 d−1

K 3 mg/l
D [0.01, 0.5] d−1

the set of data as in (14), we will consider the dynamical system of the CSTR
in (12) as a virtual bioreactor generating this data (The data can be collected
from a real chemostat system, if available ) and we use it for constructing the
Koopman model (13). To collect the data in (14), the discretization period
of the RK4 method is chosen to be Td = 0.1 day (since the dynamics of the
chemostat are evolving slowly due to the consumption of the substrate by the
biomass) and we simulate 200 trajectories over 1000 sampling periods with
a random control input (u = D) signal equally distributed. There are many
basis functions that can be used for the construction of the linear Koopman
model of the chemostat. In this paper, we choose the Inverse Multi-Quadric
Radial Basis Function (IMQ-RBF) [23] given by:

ϕ(x) =
1√

1+ ∥ x− xc ∥2
(24)

where xc is the center. The IMQ-RBF above is one of the most effective
and commonly-used basis functions in the approximations of the Koopman
operator from data, as recommended in [10]. Furthermore, we choose that
the trajectories of the system (12) begin from initial conditions x1(0), x2(0)
randomly generated with a uniform distribution, where x1(0) ∈ [10, 20] and
x2(0) ∈ [2, 10] (it is obvious that in general x1(0)+x2(0) ̸= Sin). We choose the
number of delays nd = 1 and the lifting functions ϕi = Sk taken to form the
time-delayed vector ξ ∈ R3 in (15). We used 60 IMQ-RBFs (24) with centers
randomly selected with a consistent distribution over [0, 20]3. Therefore, the
dimension of the lifted space is N = 63.
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5.1. Model prediction comparison

First, we compare the prediction accuracy of the output of the con-
structed linear Koopman model (13) with the output of the true dynamics
of the chemostat and a model based on local linearization of the chemostat
at a given initial condition x0 (the prediction accuracy is evalutated using the
Relative Mean Squared Error (RMSE) (25)).

RMSE = 100×

√
Σk ∥ xPredicted(kTd)− xReal(kTd) ∥22

Σk ∥ xReal(kTd) ∥22
(25)

Figure 4 shows the accuracy of the output forecast of the Koopman model (13)
constructed only from input-output data generated from two randomly chosen
initial conditions (x1

0 = [10, 9]⊤, x2
0 = [12, 5]⊤), and how it fits the real system

of the chemostat compared to the local linearization-based model, in Table
2 we demonstrate the superiority of the Koopman model prediction accuracy
over the linerization-based model for longer prediction times and several initial
conditions. This is done by the RMSE (25) averaged over 30 days forecast
horizon over 100 randomly selected initial conditions (in both Figure 4 and
Table 2, we have applied a pseudo-random binary control signal u = [0.1, 0.35]
for each initial condition anew).

Table 2. Forecast comparison using RMSE (25).
Model Average RMSE
Koopman Model 11.68 %
Local linearization at x0 4.72 ×104%

Figure 4. Control in larger space of the initial condition -
Model prediction comparison of the chemostat - yk = Sk. Right:
initial condition x0[10, 9]

⊤. Left: initial condition x0[12, 5]
⊤
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5.2. Feedback control of the chemostat

Now, we apply the Koopman-MPC controller proposed in Section 4 for
the feedback control of the chemostat in the large space of initial condition.
The control objective is to track a given substrate concentration reference yRef ,
which means that we need to minimize the following objective function of the
MPC problem:

J = (yNh
− yRef )

⊤QNh
(yNh

− yRef )

+

Nh−1∑
i=1

(yi − yRef )
⊤Q(yi − yRef ) + u⊤

i Rui,
(26)

Where cost functions matrices were chosen as Q = QNh
= 10 and R = 0.01

with a prediction horizon Nh = 10(i.e.,one day). We establish a comparison
between MPC controller based on the Koopman model presented in this study
(Koopman-MPC) and a local linearization-based MPC (Linear-MPC) in two
cases. First, we track a reference constant (yRef = SConstant

k ) where we want
to minimize the output which is the substrate concentration Sk. With no
constraints imposed on the output but we have imposed constraints on the
control input u ∈ [0.2, 3]. In the second case, we track a time-varying func-
tion yRef (t) = 17cos(2πt/300) with constraints imposed on the output where
y ∈ [2, 15]. Simulation results are presented in Figure 5, we can see that
the tracking performance in the first case is almost identical. Both Koopman-
MPC and Linear-MPC reach the desired output in the same time and manner.
However, the Koopman-MPC controller has the advantage of being entirely
data-driven with only output measurements being required. For the second
case, we can clearly see a good reference tracking without any violation of the
output constraints with a constrained control input applied (u ∈ [0.2, 3]) for
the Koopman-MPC controller, however, the Linear-MPC controller turns out
to be infeasible and therefore it stops before continuing the entire simulation
period (in predictive control, infeasibility is a common issue that occurs as a
result of different trial-and-error or theoretically backed-up methods, for more
details, see [11, 12]). The Linear-MPC controller is infeasible due to the local
linearization-based model’s inaccurate long-term predictions. The Koopman-
MPC controller is data-driven and can overcome simulation infeasibility. All
the defining data are pre-computed offline with the Koopman-MPC controller,
but with the Linear-MPC controller, they are re-computed at each iteration.
Koopman-MPC is thus faster than Linear-MPC. These results are gained for
a large space of initial conditions when chemostat control is limited.

6. Conclusion

Mathematical models can be used to describe the chemostat’s behavior.
However, these models remain complex and uncertain, which makes system
control difficult. Our research shows how we might use data-driven strategies
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Figure 5. Feedback control of the chemostat in a large space
of the initial conditions. Top: Constant reference tracking with
no state constraints and constrained control input u ∈ [0.2, 3],
yRef = 3 and initial condition x0 = [18, 7]⊤. Bottom: Time-
varying reference tracking with constraints imposed on the out-
put (y ∈ [2, 15]) and constrained control input (u ∈ [0.2, 3]) ,
initial condition x0 = [10, 9]⊤

to create models from experimental data for control reasons.The Koopman-
MPC technique [9] was utilized to build a global linear model for state esti-
mation and control of the nonlinear chemostat model. The trick is to project
the nonlinear model into a higher-dimensional space to make it appear lin-
ear. The linear Koopman model generated from the data is used to perform a
linear MPC, which is applied to the original nonlinear chemostat model. Im-
portantly, the whole control design process is internally data-driven, and only
the measurements of input and output are required. The suggested chemostat
modeling and control method outperforms the standard model-based MPC
method in substrate concentration tracking accuracy and overall control per-
formance. The ideal choice of lifting functions (observables) can reveal crucial
information about the chemostat’s dynamical system, especially when we use
substrates with complicated growth rate functions. This will increase control
and Koopman linear model accuracy.
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