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ABOUT MOLECULES IN DISTRIBUTIVE LATTICES (I) 

Vlad BOICESCU1 

Scopul acestei lucrări este de a prezenta unele proprietăţi ale moleculelor în 
laticele distributive finite.  

The aim of this paper is to present some properties of molecules in finite 
distributive latices  
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1. Definitions. Preliminaries 

 
 Let A be a bounded distributive lattice. 

Definition 1.1 In A an element x is an atom if 0x ≠ and  0=⇒≤ yxy  or 
xy = . An element x  is join-irreducible if  yxzyx =⇒∨=  or zx = . Note by 

( )AJ  the set of nonzero join – irreducible elements and by ( )AAt  the set of atoms 
of A.  

We have ( ) ( )AJAAt ⊆  
Is A is a Boolean algebra ( ) ( )AJAAt = , and this equality characterizes 

finite Boolean algebras.  
Another generalization of atoms was introduced by Abian [1]. 
Definition 1.2 [1] An element m in A is a molecule if 0≠m  and myx ≤, ,  
⇒≠ 0, yx 0≠∧ yx . Note by ( )AM  the set of molecules. We have 

( ) ( )AMAAt ⊆  and in a Boolean algebra ( ) ( )AMAAt = . 
There are no relations between molecules and join-irreducible elements in 

arbitrary lattices. 
The notion of molecule was studied by Yaqub [6] in Postalgebras. He 

proved. 
Proposition 1.3 [6] In a Postalgebra A the following conditions are 

equivalent  
(i) m is a molecule 

                                                            
1 Reader, Dept. of Mathematics III, University “Politehnica” of Bucharest, ROMANIA 



Vlad Boicescu 44

(ii) ( )AAtCmn ∈−1ϕ  
and  the principal ideal ( ]m  is prime m¬⇔  is a molecule. 

This means ( ] [ )mm ¬=¬  is a prime filter m¬⇔  is a molecule so m is a 
molecule ( )AJm∈⇔  

Hence in Postalgebras molecule and join-irreducible element is a same 
notion. We have the following generalization. 

 
Proposition 1.4[3] In a n-valued Lukasiewicz-Moisil algebra A (an algebra 

without negation) the following are equivalent:  
(i) m is a molecule; 

(ii) ( )AAtCmn ∈−1ϕ  

(iii) ( )m J A∈  
But AAn →− :1ϕ  is a Boolean multiplicative closure, that is a 

multiplicative closure operator and ( )ACIm 1n =−ϕ . We have the following 
Proposition 1.5 [5] If A is a bounded distributive lattice, the following are 

equivalent: 
(i) A has a Boolean multiplicative closure 
(ii) A is a Stone Algebra (That is A ia pseudocomplemented lattice such 

that 1*** =∨ xx , for any Ax∈ ). 
*x is the pseudocomplement of x, and 

**xx6 is 
the Boolean multiplicative closure.  

Then the Proposition 1.4 allows us the following generalization: 
 
Proposition 1.6: In a Stone algebra A the following are equivalent: 
(i) m is a molecule 

(ii) ( )AAtCm ∈**
 

( ) mAJm ⇒∈ is a molecule. 
Proof :(i)⇒ (ii) If 

**m is a not an atom in ( )AC  there is ( )ACa∈ , such that  
**ma <<0 , so am ≤/**

, that is 0≠∧ *** am . Hence ( )*** 0m a∧ ≠
. Therefore 

.0* ≠∧ am But ( ) 0**** ≠=∧=∧ aamam  so .0≠∧ am Since m is molecule, it 
follows that 0* ≠∧∧ aam , a contradiction. 

(ii)⇒ (i):Consider 0, ≠yx , myx ≤, . We have 0** ≠x  and 0** ≠y , so 
****** myx == . This implies ( ) 0****** ≠∧=∧ yxyx so 0≠∧ yx . 

If ( )AJm∈ , [ )m  is a prime filter. Consider [ ) ( )ACm **

 and ( )ACyx ∈, , such 
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that 
**myx ≥∨ . Therefore myx ≥∨ . Since [ )m  is  prime it follows mx ≥ , or 

my ≥  so 
**mx ≥ or 

**my ≥ . Hence 
[ ) ( )ACm **

 is prime. So ( )( ) ( )AAtCACJm =∈**
. 

Therefore in a Stone algebra ( ) ( )AMAJ ⊆ . In the next section we prove 
the converse of Propositions 1.4 and 1.6 in the finite case. 

 
2. Molecules in finite distributive lattices 

 
In a infinite distributive lattice  there are no relations between molecules 

and atoms. But in a finite lattice the situation is very different and we have a 
satisfactory  characterization  of  molecules.  

Consider now A a finite distributive lattice.   
 
Proposition2.1 Am∈  is a molecule iff ( ) ( )( )maAAtaa ≤∈∃  and !  
Proof. If ( )AMm∈  then there exists an atom ma ≤ , since A is finite. If 

( )AAtbmb ∈≤ ,  and ab ≠ we have 0=∧ ba , a contradiction. 
If  m is an element such that there exists an unique atom maa ≤, , consider 

0 x m≠ ≤ . We have an atom xb ≤  so mb ≤ . Hence ba = . If  0,,, ≠≤ yxmyx , 
then yxa ∧≤ , so 0≠∧ yx . 

If ( )AAta∈  note by { }amMmM a =∈= supp| , where supp m is the 
unique atom of Proposition 2.1 

 
Proposition 2.2 The following properties hold: 

(i) aa MyxyMx ∈⇒≤≠∈ 0,  
(ii) aa MyxMyx ∈∧⇒∈,  
(iii) aa MyxMyx ∈∨⇒∈,  
(iv) aM is a sub lattice, where a is the least element 

(v) 0, =∧⇒≠∈∈ yxbaMxMx ba  

(vi) ( )
aM M

AAta

+
∈

=
(cardinal sum). 

Proof : 

(i) If aMx∈ then ax =supp , and yb ≤ , 
( )⇒∈ AAtb ⇒≤ xb ⇒= ab aMy∈  

(ii) By (i) 
(iii) Consider an atom yxb ∨≤ . As b is join-irreducible, we have xb ≤ or 
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yb ≤ , so ab =  
(iv) By (ii) and (iii) 

(v) If 0≠∧ yx then ba MMyx ,∈∧ , a contradiction. 
 

Lema 2.3 We have the following cases: 
(a) ( ) AAAt ⇒=1card is a Stone algebra. 
(b) ( ) 1card >AAt . The following are equivalent: 
(i) ( ) ( )AMAJ ⊆  
(ii) [ ] AM D =  
(iii)For any 0≠x there exists a set { } Mxx n ⊆…,1 such that 

0=∧⇒≠ ji xxji  and i

n

i
xx

1=
∨=

or Mx∈  

(iv) ( )AAta
a

∈
∨= 11

, where a1 is the greatest element in aM  

(v) 
[ )
Ata

aAA
∈

∏≅ 1|
 

(vi)  A is a Stone algebra 
Proof: 
If A has an unique atom, A is a dense lattice, that is a Stone algebra. 

Suppose now, ( ) 1card >AAt . 
(i)⇒ (ii): Any 0, ≠∈ xAx is a join of nonzero join-irreducible elements, 

because A is finite, and ( )1 2 1 20 , ,a a a a At A= ∧ ∈  so ( )[ ] AAJ D =  
(ii)⇒ (iii): By Proposition 2.2 (ii), (iii), (v) 

(iii)⇒ (iv): By Proposition 2.2 (iv) aM is a finite lattice, that is it has a greatest 
element 

(iv)⇒ (v): The set 
{ } ( )AAtaa ∈1

, contains disjunct elements with join 1, so we 

have the decomposition 
[ )

Ata
aAA

∈
∏= 1|

 (By [2], p.68) 

(v)⇒ (vi): [ ) ( ] aaa MA ⊕=≅ 011| ;as aM is a lattice (Proposition 2.2 (iv)) it 
follows that the factors are dense lattices, hence Stone Algebras  

(vi)⇒ (i): By Proposition 1.6 
 

Corollary 2.4 For a finite distributive lattice, the following are equivalent: 
(i) A is a Stone algebra 
(ii) ( ) ( )AMAJ ⊆  
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And the decomposition of Lemma 2.3 (iii) is unique 

Proposition 2.5 In a finite distributive lattice, ( ) ( )AMAJ ⊇  iff aM is a 
chain for any ( )AAta∈  

Proof: 

If any molecule is join-irreducible, consider aMyx ∈, . By Proposition 2.2 

(iii) aMyx ∈∨ , so ( )AJyx ∈∨ .Hence xyx =∨  or yyx =∨  and x, y are 

comparable. If aM is a chain, consider aMx∈ . x is a join of nonzero join – 

irreducible elements. By Proposition 2.2 (i), these elements belong to aM , and 
their join is a join – irreducible element. 

 
Theorema 2.6 If A is finite distributive lattice, the following are equivalent: 

(i) ( ) ( )AMAJ =  
(ii) A has a structure of Lukasiewicz-Moisil algebra 

(iii) ( ) iLAJ +=  where iL are chains 
Proof: 

(i)⇒ (ii):By Lemma 2.3 A is direct product of factors aM⊕0 and by 

Proposition 2.5 aM  are chains, so A is direct product of chains and has a 
structure of Lukasiewicz-Moisil algebra 
(ii)⇒ (iii): By [4], p.277 

(iii)⇒ (i): If ( )AJx∈ , then x belongs to a unique maximal chain iL ;so the 

least element in iL  is an atom  a and ax ≥ (a is unique by hypothesis). Hence 
aMx∈ . 

If x M∈ , then there exist an unique atom a, such that aMx∈ , and x is a join of 

nonzero join – irreducible elements in aM . These elements are in iL for some i, so 

their join is in iL . 
 Remark Proposition 2.1, 2.2 and Lemma 2.3 hold if A is a distributive 
lattice that satisfies the descending chain condition. 
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