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1. Introduction

A birdcage group is a finite group whose Hasse diagram is an unbranched graph. The
starting point for our discussion is given by the paper [10], where these groups have been
classified.

Theorem 1.1. A birdcage group is either a cyclic group Cpn of prime power order or a
semidirect product group Cp ⋊ Cq of two cyclic groups of prime orders (possibly p = q, in
which case this is a direct product group Cp × Cq).

We first provide a simpler proof of this theorem. It is based on the classification
of finite minimal non-cyclic groups, that is finite non-cyclic groups all of whose proper
subgroups are cyclic.

Theorem A ([4]). A finite group G is a minimal non-cyclic group if and only if it is
isomorphic to one of the following groups:

a) C2
p = Cp × Cp, where p is a prime;

b) Q8;
c) ⟨a, b | ap = bq

m

= 1, b−1ab = ar⟩, where p and q are distinct primes and r ̸≡ 1 (mod p),
rq ≡ 1 (mod p).

We note that birdcage groups are particular planar groups, that is finite group with
planar Hasse diagram. Such groups have been studied by Starr and Turner [8], Bohanon and
Reid [1], and Schmidt [7]. We also note that a classification theorem of iterated birdcage
groups, that is groups obtained by iterated application of group extensions to birdcage
groups, cannot be done. For this, it suffices to observe that any finite solvable group is an
iterated birdcage group since it has a composition series with cyclic factors of prime order.

Our second goal is to describe finite minimal non-birdcage groups, that is finite non-
birdcage groups all of whose proper subgroups are birdcage groups.

Theorem 1.2. A finite group G is a minimal non-birdcage group if and only if it is iso-
morphic to one of the following groups:

a) C3
p , where p is a prime,

b) Hep - the Heisenberg group of order p3, where p is a prime,
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c) C2
p ⋊ Cq, where p and q are distinct primes,

d) Cp2q, Cpqr, where p, q and r are distinct primes,
e) Cp × Cpq, where p and q are distinct primes,
f) Q8, D8, Cp × Cp2 , M(p3), where p is a prime and p ̸= 2 for M(p3),
g) (Cq ⋊ Cp)× Cr, where p, q and r are distinct primes,
h) Cq ⋊ Cp2 , where p and q are distinct primes,
i) Cq ⋊ C2

p , where p and q are distinct primes,
j) Cp2 ⋊ Cq, where p and q are distinct primes.

We remark that A4 is a group of type c), S3×C5 is a group of type g), Dic3 is a group
of type h), and D20 and D18 are groups of types i) and j), respectively. Also, we remark
that all groups in Theorem 1.2 are iterated birdcage groups and solvable.

For the proof of Theorem 1.2 we need to know the structure of finite groups with all
non-trivial elements of prime order (CP1-groups, in short) and the structure of finite groups
containing a cyclic maximal subgroup. These are described in the next two theorems.

Theorem B ([3, 2]). Let G be a CP1-group. Then:

a) G is nilpotent if and only if G is a p-group of exponent p.
b) G is solvable and non-nilpotent if and only if G is a Frobenius group with kernel

P ∈ Sylp(G), with P a p-group of exponent p and complement Q ∈ Sylq(G), with
|Q| = q. Moreover, if |G| = pnq then G has a chief series G = G0 > P = G1 > G2 >
· · · > Gk > Gk+1 = 1 such that for every 1 ≤ i ≤ k one has Gi/Gi+1 ≤ Z(G/Gi+1), Q
acts irreducibly on Gi/Gi+1 and |Gi/Gi+1| = pb, where b is the exponent of p (mod q).

c) G is non-solvable if and only if G ∼= A5.

Theorem C ([5]). A finite group G contains a cyclic maximal subgroup if and only if it is
of one of the following types:

a) G = P ×K1, where K1 is an arbitrary finite cyclic group and P is a Sylow p-subgroup
of G containing a cyclic maximal subgroup.

b) G = (K2 ⋊ P ) × K1, where K1 is an arbitrary finite cyclic group which is a Hall
subgroup of G, P is a Sylow p-subgroup of G containing a cyclic maximal subgroup,
K2 ⋊ P is non-nilpotent, and the centralizer CP (K2) is a maximal cyclic subgroup of
P .

c) G = (P⋊K2)×K1, where K1 is an arbitrary finite cyclic group which is a Hall subgroup
of G and G1 = P ⋊ K2 is a non-nilpotent group satisfying the following conditions:
P is a SyIow p-subgroup of G1, CP (K2) ⊇ Φ(P ), and CP (K2) is a cyclic invariant
subgroup of G1 such that K2CP (K2)/CP (K2) is a maximal subgroup of G1/CP (K2).

The particular case of finite p-groups containing a cyclic maximal subgroup is exhaus-
tively treated in Theorem 4.1 of Suzuki’s monograph [9], volume II.

Theorem D. A finite p-group G of order pn, n ≥ 3, contains a cyclic maximal subgroup if
and only if one of the following conditions holds:

a) G is abelian of type Cpn or Cp × Cpn−1 ;
b) G is non-abelian and isomorphic to the modular group

– M(pn) = ⟨x, y | xpn−1

= yp = 1, y−1xy = xpn−2+1⟩
when p is odd, or to

– M(2n) (n ≥ 4),
– the dihedral group

D2n = ⟨x, y | x2n−1

= y2 = 1, yxy−1 = x−1⟩,
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– the generalized quaternion group

Q2n = ⟨x, y | x2n−1

= y4 = 1, yxy−1 = x2n−1−1⟩,
– the quasi-dihedral group

S2n = ⟨x, y | x2n−1

= y2 = 1, y−1xy = x2n−2−1⟩ (n ≥ 4)

when p = 2.

Most of our notation is standard and will not be repeated here. Basic definitions and
results on groups can be found in [9]. For subgroup lattice concepts we refer the reader to
[6].

2. Proofs of the main results

Proof of Theorem 1.1. Let G be a birdcage group. Then all maximal subgroups of G
are cyclic of prime power order. It follows that G is either cyclic or a minimal non-cyclic
group. In the first case we get G ∼= Cpn or G ∼= Cpq, where p, q are distinct primes and n is
a positive integer. By using Theorem A, in the second case we get:

a) G ∼= C2
p - is a birdcage group,

b) G ∼= Q8 - is not a birdcage group,
c) G ∼= ⟨a, b | ap = bq

m

= 1, b−1ab = ar⟩ - is a birdcage group if and only if n = 1 since
it contains cyclic maximal subgroups of order pqn−1; thus we have the birdcage group
Cp ⋊ Cq.

Hence the birdcage groups are of type Cpn , Cpq, C
2
p or Cp ⋊ Cq, as desired. □
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Proof of Theorem 1.2. Let G be a minimal non-birdcage group. Then all maximal
subgroups of G are of type Cpn , Cpq, C

2
p or Cp ⋊ Cq by Theorem 1.1. We distinguish the

following two cases:

Case 1. G has no cyclic maximal subgroups

It follows that the maximal subgroups of G are of type C2
p or Cp ⋊ Cq and therefore G is a

CP1-group. Then Theorem B shows that:

a) If G is nilpotent, then it is a p-group of exponent p; we get

G ∼= C3
p or G ∼= Hep,

the groups a) and b) in Theorem 1.2.;
b) If G is solvable and non-nilpotent, then it is a nontrivial semidirect product of a p-

group P of exponent p and a cyclic group Q; since P is a birdcage group, we obtain
P ∼= C2

p , implying that

G ∼= C2
p ⋊ Cq,

the group c) in Theorem 1.2.;
c) If G is non-solvable, then G ∼= A5, which is not a minimal non-birdcage group.

Case 2. G has cyclic maximal subgroups

It follows that G is one of the groups in Theorem C.
Assume first that G = P × K1, where P and K1 are as in item a) of Theorem C,

and let |P | = pm. Since P is a birdcage group, we have m ≤ 3. For m = 0, we get
K1 ∈ {Cq2r, Cqrs}, where q, r and s are distinct primes. For m ≥ 1, we infer that G has a
cyclic maximal subgroup of order pm−1|K1|. Since this must be of type Cpn or Cpq, we have
the next possibilities:

– m = 1, that is P = Cp, and K1 ∈ {Cq2 , Cqr},
– m = 2, that is P = Cp2 or P = C2

p , and K1 = Cq,

– m = 3, that is P ∈ {Q8, D8, Cp × Cp2 ,M(p3)}, and K1 = 1,

where q, r ̸= p are distinct primes and p ̸= 2 for P = M(p3). These lead to the groups d),
e) and f) in Theorem 1.2.

Assume now that G = (K2 ⋊ P ) × K1, where P , K1 and K2 are as in item b) of
Theorem C.

If K1 ̸= 1, then G has a proper non-nilpotent subgroup which is isomorphic to
K2 ⋊ P . Since this is contained in a maximal subgroup of G, it must be of type Cq ⋊ Cp

and we get

G ∼= (Cq ⋊ Cp)× Cr,

the group g) in Theorem 1.2 (again, p, q and r are distinct primes).
If K1 = 1, then G = K2 ⋊ P is non-nilpotent. From Theorem C, we also know

that P has a cyclic maximal subgroup P1. Then K2P1 is a maximal subgroup of G and so
either K2P1

∼= Cpq or K2P1
∼= Cq ⋊ Cp. These lead to

G ∼= Cq ⋊ Cp2 or G ∼= Cq ⋊ C2
p ,

i.e. to the groups h) and i) in Theorem 1.2.
Finally, assume that G = (P ⋊K2)×K1 with P , K1 and K2 as in item c) of Theorem

C.
If K1 ̸= 1, then G has a proper non-nilpotent subgroup isomorphic to P ⋊ K2.

Again, this must be of type Cp ⋊ Cq and we get

G ∼= (Cp ⋊ Cq)× Cr,

a group of type g) in Theorem 1.2.
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If K1 = 1, then G = P ⋊K2 is non-nilpotent and P is a Sylow p-subgroup of G.
Since P is contained in a maximal subgroup of G, we infer that it must be of type C2

p or

Cpn . If P ∼= C2
p , it follows that q = |K2| is a prime and we obtain

G ∼= C2
p ⋊ Cq,

a group of type c) in Theorem 1.2. If P ∼= Cpn , it follows that P1 = Φ(P ) is the unique
subgroup of order pn−1 in P , implying that CP (K2) = P1. Then P1K2 is a maximal subgroup
of G of order pn−1|K2|, and we find that n = 2 and q = |K2| is a prime. Consequently,

G ∼= Cp2 ⋊ Cq or G ∼= C2
p ⋊ Cq,

the groups j) and c) in Theorem 1.2.
This completes the proof. □

3. Conclusions and further research

All previous results show that the study of groups whose Hasse diagram satisfies a
certain property is an interesting aspect of subgroup lattice theory. Clearly, it can success-
fully be extended to other significant lattices/posets associated to a group. This will surely
constitute the subject of some further research.

Finally, we formulate an open problem related to the above results.

Open problem. Study the finite groups whose Hasse diagram of normal subgroups is an
unbranched graph1.

We note that this class of groups includes groups whose normal subgroup lattices are
chains and, in particular, simple groups.
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