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A DUAL-MODALITY HUMAN FEATURE RECOGNITION 

METHOD USING MATCHED LAYER FUSION 

Ke DENG 1, Jiawei MO* 2, Rongping HUANG 3 

The objective of this paper is to present a recognition method based on the 

fusion of two human features, namely gait and face, within a matching layer. Space-

temporal biometric features with differentiation in human contour maps are obtained 

by gait feature extraction network in order to resolve the issue that facial recognition 

technology is difficult to recognize the target subject with high accuracy under the 

condition of having interfering objects on the face or longer detection distance. A 

facial feature extraction network is employed to obtain fine-grained features of the 

face in order to enhance the immunity of the network to the conditions where the 

contour of the target subject is affected by interfering objects. Facial features are 

fused with gait features at the matching layer for information fusion in order to 

achieve complementarity between the two modal biometrics. The experimental results 

show that the method proposed in the paper has higher recognition accuracy 

compared to the gait or facial feature recognition methods in unimodal mode. 
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1. Introduction 

Facial recognition technology has become an important research topic [1] 

in the field of identification in recent years. Facial recognition is a common 

identification technology that is employed in a variety of contexts, including access 

control, online payment and system login, and numerous other fields [2]. The using 

of facial recognition techniques for the purpose of identification offers a number of 

advantages, including the ability to perform the identification process without direct 

contact, in a covert manner, at a high rate of speed, and with a high degree of 

efficiency. Nevertheless, the efficacy of facial recognition is constrained by the 

actual distance between the camera and the face. In numerous recognition 

application scenarios, it is not feasible to recognize the target subject at a greater 

distance. Furthermore, when the face is obstructed by an occluding object (e.g., 

when the target subject is wearing a mask or the brim of a hat is positioned too low, 

blocking the eyebrows, etc.), the accuracy of recognition is likely to be lower than 

that required by the application. 

Gait is a biological trait that describes the manner in which an individual 

walk. Gait features can be observed at greater distances than facial features and do 
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not require the cooperation of the target [3]. Currently, the majority of gait 

recognition methods use contour-based gait recognition networks [4]. The target's 

silhouette is susceptible to distortion due to the presence of external factors such as 

objects being carried or loose clothing. When the contour of the target subject is 

obscured by interfering with objects, the accuracy of gait recognition is 

significantly reduced. 

A recognition method based on the fusion of two modal features, gait and 

face, in a matching layer is proposed in this paper. The feature fusion through the 

matching layer achieves the effect of complementary information. For the 

extraction of the gait feature, a global-local space-temporal feature extraction 

module is constructed. Furthermore, the local feature extraction module employs a 

fine-grained feature extraction strategy and a complementary mask-based multi-

scale random band segmentation approach to enhance the correlation between each 

local feature. The global information extracted by the global feature extraction 

module is employed to enhance the resilience of the gait feature extraction network. 

2. Related work 

2.1. Facial features recognition 

The advancement of deep learning theory has led to a significant 

enhancement in the accuracy of facial recognition technology, rendering it one of 

the most prevalent forms of biometrics. Chan et al [5]. proposed a deep learning 

network, PCA-Net, with a simple structure. This network employs a PCA filter to 

filter the features of interfering objects, thereby reducing the influence of these 

objects on facial recognition. Schroff et al [6]. proposed Face-Net, which introduces 

a ternary loss function. This allows the extracted features to demonstrate the 

property of smaller intra-class distances and larger class-to-class spacing. This 

makes facial features easier to distinguish. Li et al [7]. introduced adversarial 

generative networks into facial recognition for repairing the disturbed region, but 

the effect of repairing the detailed features of the face is average. Amos et al [8]. 

constructed the Open-face code base for facial recognition, which greatly facilitated 

the development of facial recognition. Practice has shown that unimodal-based 

facial recognition techniques are prone to inaccuracy when attempting to identify 

targets that are distant or obscured by masks. 

2.2. Gait features recognition 

There are two broad categories of gait recognition techniques, depending on 

the form of the input data: those based on skeleton features and those based on 

human contour features. The majority of skeletal feature-based recognition methods 

[9-12] are based on the human pose estimation algorithm [13], which takes the 

detected human skeletal node information as input data. Although this method is 

highly resistant to interfering objects, there are certain errors in the skeleton data 
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extraction process, resulting in lower recognition accuracy than the human contour-

based recognition method. Human silhouette feature-based recognition methods 

use the human silhouette set as input data to learn useful space-temporal 

representations of gait. The form of characterization of gait features can be further 

divided into global feature characterization and local feature characterization. For 

example, Chao et al [14]. proposed Gait-Set, which treats the entire human body as 

a single entity and employs 2D convolution to extract feature representations of 

contour images. In their study, Lin et al [15]. employed 3D convolution for the 

extraction of space-temporal features from contour images in gait sequences. 

Although the global-based feature characterization method has the advantages of 

low computation and high accuracy, the method can easily ignore the local fine-

grained features of human posture as the network becomes deeper and deeper. Fan 

et al [16]. proposed Gait-Part to extract a more fine-grained gait representation by 

horizontally segmenting the contours in the sequence set. Zhang et al [17]. divided 

the entire gait profile into four localities and subsequently used 2D convolution to 

extract fine-grained local features. Although the method based on local gait 

characterization can effectively capture local fine-grained gait information, it does 

not learn the correlation between different local features and also requires a 

predefined segmentation strategy for a specific dataset, which results in a model 

that is less effective and versatile for facial recognition when there are interfering 

objects influencing it. 

2.3. Multi-modal feature recognition 

The existing human body recognition based on multimodal fusion is 

generally a variety of human features that are fused at different levels and then 

recognized. Depending on the level of fusion, this can be divided into four main 

categories: fusion at the data level, fusion at the feature level, fusion at the matching 

level and fusion at the decision level [18]. The primary objective of multimodal 

fusion is to diminish the disparate characteristics between modalities, thereby 

facilitating complementarity, while maintaining the distinctiveness of each 

modality's semantics and enhancing the efficacy of multimodal human body 

recognition [19]. Soltani et al [20]. spliced and fused multiple fingerprint images at 

the data layer to achieve fingerprint fusion recognition at the data layer. Soleymani 

et al [21]. employed an enhanced Fisher classifier for serial feature fusion. The 

research of Wang et al [22]. proposed a feature layer fusion strategy that is based 

on typical correlation analysis. Muthukumaran et al [23]. used a classifier-based 

decision fusion approach, where the matching distances of the face and iris 

classifiers are considered as a two-dimensional feature vector, which is then 

classified as true or false using classifiers such as Fisher's Discriminant Analysis or 

Neural Networks with Radial Basis Functions (RBFNN). Mustafa et al [24]. 

proposed a transform-based matching layer fusion method for synthetics the final 
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fused scores after normalization the different modal scores to the same interval. 

Given that gait is a human feature represented in the form of a video, and that face 

is a human feature represented in the form of an image, the fusion in the pixel layer 

as well as in the feature layer is subject to incompatibility of features, which in turn 

makes it difficult for the network to be trained and learnt effectively. The matching 

layer fusion can better balance the difficulty of raw information and data 

processing, maximum the complementary fusion of human features from different 

modalities and improve the stability and training efficiency of the network. 

Therefore, this paper employs a transform-based matching layer fusion method to 

integrate the gait and facial feature data. 

3. Methods 

The principle flow of the dual-modality human feature recognition method 

proposed in the paper is shown in Figure 1. The model comprises two distinct 

branches: a gait feature extraction network and a facial feature extraction network. 

 

 Fig. 1. Procedure of the proposed method. 

 

The gait feature extraction network is employed to achieve accurate long-

range recognition of the target subject and to enhance the gait single branch's 

immunity to occlusions to a certain extent via a multi-scale random band 

segmentation strategy based on complementary masks. The facial feature extraction 

network is used to extract fine-grained facial features to complement the gait 

features. This integration enhances the model's resilience to interference when the 

gait profile is obstructed. The distance matrix, derived from gait and facial 

branching, is normalization at the matching layer, after which information fusion is 

performed. Finally, based on the fused distance matrix, Rank-1 evaluation metrics 

are used to obtain the final recognition results. 
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3.1. Facial feature extraction network 

The paper uses the Face-Net [5] method to construct this network and 

Mobile-Nets [25] as the backbone network to extract facial features. The network 

used to extract facial features consists of a batch input layer and a Mobile-Nets 

backbone network. Next, a compact linear mapping layer is used to obtain the facial 

features and a ternary loss function is used for training. The input features  𝐼 ∈
𝑅𝑐1×ℎ1×𝑤1 are obtained through a batch input layer, where ℎ × 𝑤 denotes the size 

of each frame. The Mobile-Nets backbone network was then used to extract 

distinguishable facial features 𝐹 ∈ 𝑅𝑐2×ℎ2×𝑤2. Finally, a compact linear mapping 

layer is used to extract the D-dimensional facial features 𝐹𝑓𝑎𝑐𝑒  ,the calculation 

process is shown in equation (1). 

 𝐹𝑓𝑎𝑐𝑒 = 𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑙𝑎𝑦𝑒𝑟(𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑠(𝐼))  (1) 

3.2. Gait feature extraction network 

The 3D convolutional block simultaneously extracts space-temporal 

features of the gait sequence, thus simplifying the previous process of extracting 

temporal and spatial features separately. Furthermore, it preserves the complete gait 

periodicity features to a certain extent. LIN et al. proposed Gait-GL [26], a method 

that employs 3D convolution for the extraction of both global and local features. 

This approach involves the segmentation of the input features horizontally, 

allowing for the extraction of fine-grained features within each local region. 

HUANG et al. proposed 3D Local [27], which extracts the limb features of the 

target subject through adaptive scale 3D local convolution operation. Nevertheless, 

none of these methods is capable of effectively capturing the correlation 

information between neighboring local regions, which consequently limits the 

representation of local gait features. This paper proposes the corresponding global-

local space-temporal feature extractor, which has the structure of Fig. 2. The 

module employs a multi-scale random band segmentation strategy based on 

complementary masks and using 3D convolution to extract global gait space-

temporal features. This approach enables the effective extraction of correlation 

information between neighbor local features, the full excavation of global-local 

space-temporal features with differentiation and improve the model's immunity to 

occlusions. Finally, the gait feature aggregation module performs a pooling 

operation on the sequence information in the time dimension, resulting in the 

generation of the final gait features through the linear mapping layer. The input to 

the gait feature extraction network is assumed to be a series of contour sequences 

𝐼 ∈ 𝑅1×𝑓×ℎ×𝑤. Where the number of channels in the gait profile is 1 and f is the 

number of frames in the sequence. The associated global-local space-temporal 

feature extractor can be expressed in equation (2). 
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Fig. 2. Flow chart for recognizing indication value of pointer meters. 
 

 𝐹𝑟𝑔𝑙 = 𝐹𝑚𝑠−𝑏(𝐹𝑠𝑝(𝐹𝑚𝑠−𝑎(𝐹𝑚𝑠−𝑎(𝐼))))  (2) 

Where: 𝐹𝑟𝑔𝑙 ∈ 𝑅𝑐1×𝑡×
1

2
(ℎ×𝑤)

; Fsp denotes the spatial pooling operation, 

subsampled the features, keeps the channel and frame values constant, and reduces 

the product of height and width by 1/2. Fms-a and Fms-b denote the global-local 

feature extraction module for complementary mask-based multiscale stochastic 

band segmentation, where the former fuses global and local features by direct 

summation, and the latter splices global and local features in H-dimension to obtain 

fused features. The calculation process for Fms-a and Fms-b can be expressed as 

shown in equations (3) and (4). 

 𝐹𝑚𝑠−𝑎 = 𝐹𝑔𝑙𝑜𝑏𝑎𝑙(𝐼) + 𝐹𝑙𝑜𝑐𝑎𝑙(𝐼)  (3) 

 𝐹𝑚𝑠−𝑏 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑔𝑙𝑜𝑏𝑎𝑙(𝐼), 𝐹𝑙𝑜𝑐𝑎𝑙(𝐼))  (4) 

Where: Fglobal denotes the 3D convolution operation; Flocal denotes the more 

detailed representation of gait information in feature Fm and its complementary 

feature 𝐹𝑚
̅̅̅̅ , which have been extracted using weight-sharing 3D convolution after 

the random band mask has been applied. At the same time, the presence of 

complementary features enables the module to effectively extract the correlation 

information between neighboring local features and improve the network's 

immunity to occlusions. The equations from (5) to (8) represent the computational 

processes of Fglobal, Fm，𝐹𝑚
̅̅̅̅  and Flocal , respectively. 

 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = 3𝐷𝐶𝑜𝑛𝑣(𝐼)  (5) 

 𝐹𝑚 = 𝑊𝑚𝑎𝑠𝑘⨂𝐼  (6) 

 𝐹𝑚
̅̅̅̅ = (1 − 𝑊𝑚𝑎𝑠𝑘)⨂𝐼  (7) 

 𝐹𝑙𝑜𝑐𝑎𝑙 = 3𝐷𝐶𝑜𝑛𝑣(𝐹𝑚)⨁3𝐷𝐶𝑜𝑛𝑣(𝐹𝑚
̅̅̅̅ )  (8) 

The multi-scale random band mask Wmask and its complementary mask 

structure are shown in Fig. 3. In the height and width dimensions, the paper 

introduces an approach that enriches the diversity of input features by applying 
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multi-scale random band masking to the feature maps in order to simulate a real 

scenario where important local features of the human body are occluded. 

Concurrently, the presence of complementary features ensures that crucial gait 

feature information is not lost, thereby facilitating the model proposed in the paper 

to discern correlations between local features. 

 

Fig. 3. Complementary mask-based multi-scale random band segmentation approach. 

 

The gait feature aggregation module consists of a time pooling layer as well 

as a horizontal pyramid mapping layer proposed in the references [14], and the 

computational process is shown in Equation (9). 

 𝐹𝑔𝑎𝑖𝑡 = 𝐻ℎ𝑝𝑚(𝑇𝑡𝑝(𝐹𝑟𝑔𝑙))  (9) 

Where: Ttp denotes time pooling operation; Hhpm denotes the horizontal 

pyramid mapping operation; Fgait denotes the final gait feature data. 

3.3 Matching layer fusion method 

Feature fusion based on pixel or feature layers can result in incompatibility 

between the gait features and facial features, which in turn presents a challenge for 

the network in terms of training and learning effectively. The paper opts to conduct 

a complementary fusion of gait feature information with facial feature information 

at the matching layer. Given that the paper employs a dual-modality distance 

information fusion at the matching layer, it is only necessary to train the modal 

backbone network individually. Furthermore, the parallelize of model training can 

be achieved without decoupling each modal network simultaneously. Subsequently, 

following the convergence of each branch network, dual-modality fusion retrieval 

is conducted. The dual-modality human feature fusion retrieval mechanism, based 

on a matching layer, is illustrated in Fig. 4. 

During the testing phase, facial images are input into a trained facial 

recognition network in order to extract the facial features 𝐹𝑓𝑎𝑐𝑒. The gait profile is 

input into the gait feature extraction network, as outlined in the paper, in order to 

obtain the gait feature 𝐹𝑔𝑎𝑖𝑡 . The paper employs the Euclidean distance, as 
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illustrated in Equation 10, to quantify the similarity between the individual to be 

verified Vi, and the candidate Cj, in the facial and gait test sets. 

 

Fig. 4. Dual-modality human feature recognition structure using matched layer fusion. 

 𝑑(𝑉𝑖 , 𝐶𝑗) = √(𝑉𝑖 − 𝐶𝑗)2  (10) 

where: the person to be verified Vi denotes the individual waiting for an 

identity test and the subscript i is a positive integer; Candidate Cj denotes an 

individual with the same label as the person to be verified Vi in the comparison 

database, and the subscript j is a positive integer. Given that the distance magnitude 

between the individual to be verified and the candidate varies depending on the 

modality in question, it is necessary to normalization the distances in order to ensure 

that the impact of different modalities on the decision is balanced. This process is 

illustrated in Equation 11. 

 𝑑^(𝑉𝑖 , 𝐶𝑘) =
𝑑(𝑉𝑖,𝐶𝑘)

∑ 𝑑(𝑉𝑖,𝐶𝑗)𝑛
𝑗=1

 (11) 

The transform-based matching layer fusion method normalization the gait 

similarity distance and face similarity distance in order to obtain Dface and Dgait, 

respectively. Ultimately, as illustrated in Equation 12, the face and gait similarities 

are aggregated to derive the fusion metric Dfuse. 

 𝐷𝑓𝑢𝑠𝑒 = 𝐷𝑓𝑎𝑐𝑒 + 𝐷𝑔𝑎𝑖𝑡  (12) 

4. Experiments and results 

The proposed dual-modality human feature recognition methods are 

implemented using the Python and PyTorch deep learning network frameworks. 

4.1. Selected dataset 

Datasets CASIA-WebFace [28], CASIA-B [29] and CASIA-WebMaskedFace 
[30] were selected for analysis in this paper. 

CASIA-WebFace: This dataset is a common resource for facial recognition 

model training, comprising 494,414 facial images from 10,575 individuals. In order 

to facilitate the subsequent construction of the dual-modality dataset, the thesis will 
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select the subset consisting of the first 10,075 people in this dataset as the training 

set for the facial recognition model, and the subset consisting of the next 500 people 

as the test set for the facial recognition model. 

CASIA-B: This dataset is currently the most widely used gait dataset, 

comprising 124 subjects. Each subject comprised 11 angles, with each angle 

containing 10 sequences. Three walking states were identified for each sequence: 

the normal state (N), the state of carrying items (B), and the state of wearing loose 

clothing (C). In total, the dataset comprises 13,640(124×11×10) videos. The paper 

used contour sequences as gait input data, with the first 74 subjects as the training 

set and the next 50 subjects as the test set. The first 4 sequences in the normal state 

are kept in the candidate set as candidates (i.e., N1~N4) and the remaining 6 

sequences are kept in the set of persons to be verified (i.e., N5, N6, B1, B2, C1, 

C2). The dataset is employed as the training set for the gait recognition model and 

the test set for the dual-modality fusion model. The sequence of gait profiles is 

illustrated in Fig. 5. 

   

(a) the normal state 

(N conditions) 

(b) the state of carrying 

items 

(B conditions) 

(c) the state of carrying 

items 

(C conditions) 

Fig. 5. Sequence of gait profiles for each state. 
 

CASIA-WebMaskedFace: The dataset is based on CASIA-WebFace, and a 

mask masking effect was added to the facial images in the dataset using the 

MaskTheFace tool. This was done in order to mimic distractors. The effect is shown 

in Fig. 6.  
 

 
(a) medical surgical masks 

 
(b) medical surgical masks 

 
(c) N95 masks 

 
(d) N95 masks 

Fig. 6. Effectiveness of different types of masks in covering the face. 

 

The paper employed a random selection of mask types (e.g., medical 

surgical masks, N95 masks, etc.) to simulate the impact of masking. The final 500 

individuals from the CASIA-WebMaskedFace dataset were employed as the test 

dataset for the facial recognition model in the mask-wearing condition. 
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For the dual-modality fusion experiments, the dual-modality test dataset 

(test samples containing both gait and facial feature data) constructed in the paper 

was divided into two categories in order to correspond to the size of the CASIA-B 

gait dataset. In the first category, 50 subjects from the 500 test samples in CASIA-

WebFace were selected to form the face-unmasked dual-modality test dataset with 

the 50 test samples in CASIA-B. In the second category, 50 subjects were randomly 

selected from CASIA-WebMaskedFace and combined with the test set in CASIA-

B to form the face-masked of the dual-modality test dataset. Table 1 lists the 

statistics of the number of samples in each type of dataset. The dual-modality 

dataset constituting the thesis contains occluded facial pictures as well as gait 

contours. 
Table 1 

Statistics on the number of datasets. 

datasets training set test set 

CASIA-WebFace 10075 500 

CASIA-WebMaskedFace - 500 

CASIA-B 74 50 

CASIA-B+ WebFace - 50 

CASIA-B+ WebMaskedFace - 50 

4.2. Experimental parameter settings 

The facial feature extraction network uses Mobile-Nets network as a 

backbone network to extract facial features. During the training process, the paper 

uses the momentum-based Adam optimization process to train the entire end-to-end 

facial recognition network, with momentum set to 0.9, a cosine annealing learning 

rate strategy with a maximum learning rate of 1×10-3, a minimum learning rate of 

1×10-5, a total number of epochs of 100, and a batch size (Batch Size) of 96. The 

paper uses the Rank-1 evaluation metric for facial recognition accuracy in order to 

be consistent with the evaluation criteria in the field of gait recognition when testing 

the facial feature extraction network. 

The gait feature extraction network uses the Adam optimization process 

with weight decay set to 5×10-4. The MultiStepLR learning rate strategy is used with 

an initial learning rate of 1×10-4, a learning rate set to 1×10-5 after 7×104 iterations, a 

total number of iterations of 8×104, and a batch size (Batch Size) of 8×16, where m 

in the ternary loss is set to 0.2. 

4.3. Results 

Table 2 presents a comparison of the recognition accuracy of various gait 

feature extraction networks in the CASIA-B dataset. In the experiment of gait 

feature extraction networks, the network based on a correlated global-local space--

temporal feature extractor, as proposed in the paper, achieved 92.6% recognition 

accuracy in the CASIA-B dataset. Compared with the baseline network Gait-GL[26], 

it improves by 0.8 percentage points, especially by 1.6 percentage points when the 
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person to be verified is wearing loose clothing, indicating that the introduction of 

the complementary mask-based multi-scale random band segmentation strategy can 

sufficiently learn the correlation information between different local regions, and 

improve the network's immunity to interference for occluding objects to a certain 

extent, so that the model can be applied to more complex scenarios. 
Table 2 

Recognition accuracy of various gait feature extraction networks in the CASIA-B dataset 

datasets State N (%) State B (%) State C (%) Average values (%) 

Gait-Set 95.0 87.2 70.4 84.2 

Gait-Part 96.2 91.5 78.7 88.8 

Gait-GL 97.4 94.5 83.6 91.8 

3D-Local [27] 97.5 94.3 83.7 91.8 

Methods of this paper 97.5 95.2 85.2 92.6 

Table 3 illustrates the comparison of the recognition accuracy of facial 

feature extraction networks on the CASIA-WebFace and CASIA-WebMaskedFace 
[30] datasets under different conditions. 

Table 3 

Recognition accuracy of facial feature extraction networks under different conditions 

Resolution of facial images (pixels) CASIA-WebFace  (%) CASIA-WebMaskedFace  (%) 

72 × 72 92.34 88.54 

96 × 96 96.21 92.22 

112 × 112 98.71 95.67 

 

In the CASIA-WebFace dataset, the facial feature extraction network 

described in the paper achieves 98.71% accuracy in recognizing facial images with 

a resolution of 112×112 pixels. Nevertheless, as the resolution of the facial image 

decreases (the recognition distance increases), the accuracy of the recognition also 

decreases. A reduction in the resolution of the facial image to 72×72 pixels resulted 

in a decline in recognition accuracy to 92.34%, a decrease of 6.37 percentage points 

in comparison to the facial image resolution of 112×112 pixels. Compared to the 

unobscured face dataset CASIA-WebFace, the recognition accuracy of the facial 

feature extraction network in the CASIA-WebMaskedFace dataset with facial 

occlusion decreases by 3.04, 3.99, and 3.80 percentage points when the resolution 

of the facial image is 112×112 pixels, 96×96 pixels, and 72×72 pixels, respectively. 

The results demonstrate that the unimodal facial feature extraction network exhibits 

a notable decline in the accuracy of target subject recognition when the face is 

occluded. In light of the aforementioned limitations, this paper proposes a dual-

modality human feature recognition method. This approach is designed to address 

the issue of low recognition accuracy associated with unimodal facial feature 

extraction networks. 

Table 4 illustrates the recognition accuracy of the dual-modality human 

feature recognition network under different conditions. The experimental results 

obtained from CASIA-B+CASIA-WebFace demonstrate that the accuracy of the 
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dual-modality human feature recognition network has been enhanced from 92.6% 

to 99.16%. This represents an improvement of 15% compared to the original 

unimodal gait feature extraction network (The first row of data in Table 2 of this 

paper). Furthermore, the method demonstrates enhanced robustness with regard to 

recognition accuracy under C conditions. This approach mitigates the sensitivity of 

unimodal gait feature extraction networks to interfering objects that occlude the 

limbs, thus exploiting the complementary strengths of facial and gait features. From 

the experimental results of CASIA-B+CASIA-WebMaskedFace, it can be seen that 

the dual-modality human feature recognition network is still able to achieve 94.52% 

accuracy even at a long distance (when the facial image resolution is 72×72 pixels) 

and when the face is covered by a mask, which is an improvement of 5.98 

percentage points compared to the accuracy of the facial feature extraction network 

on the CASIA-WebMaskedFace dataset. 
Table 4 

Recognition accuracy of the dual-modality human feature recognition network under 

different conditions 

Datasets 
Resolution of  

facial images (pixels) 

State N 

(%) 

State B 

(%) 

State C 

(%) 

Average values 

(%) 

CASIA-B+ 

WebFace 

72 × 72 98.38 96.81 90.89 95.36 

96 × 96 98.96 98.15 93.92 97.01 

112 × 112 99.62 99.30 98.55 99.16 

CASIA-B+ 

WebMaskedFace 

72 × 72 98.12 96.44 89.00 94.52 

96 × 96 98.48 97.06 89.71 95.08 

112 × 112 98.44 96.99 91.42 95.62 

 

The bimodal human feature recognition method proposed in the paper, 

which employs a facial image resolution of only 72×72 pixels and no facial 

occlusion, exhibits an accuracy of 95.36%. This value represents a 3.04 percentage 

point improvement over the accuracy of the facial feature extraction network under 

identical conditions. The recognition accuracy of the proposed method in the paper 

is improved by 5.98 percentage points compared to the facial feature extraction 

network in the case of occluded faces and a facial image resolution of 72×72 pixels. 

The experimental results demonstrate that the incorporation of a gait feature 

extraction network into the model enables the effective recognition of a target 

wearing a mask over a long distance, effectively addressing the issue of the 

significant decline in accuracy of the unimodal recognition method in complex 

application scenarios. 

5. Conclusion 

The paper puts forth a dual-modality human feature recognition method 

based on matching layer fusion. By fusing gait features with facial features, it solves 

the problem that unimodal facial recognition methods in real scenarios are difficult 
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to accurately recognize targets with occluding objects on the face or at long 

distances. Concurrently, the resilience of the gait feature extraction network to 

alterations in appearance resulting from different wearing styles is enhanced by 

integrating facial and gait features in a complementary manner. In order to enhance 

the adaptability of the gait profile to occlusion and viewpoint changes, this paper 

proposes to design an associated global-local space-temporal feature extraction 

module for the gait feature extraction network. The experimental results show that 

the method is not only able to perform information fusion with high accuracy under 

typical conditions but is also able to accurately identify the target in the presence of 

occluding objects on the face or in distant scenes. 
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