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INTEREST COMMUNITY DETECTION BASED ON
HETEROGENEOUS GRAPH NEURAL NETWORK AND
TEMPORAL CONVOLUTIONAL NETWORK

Pei CAO ", Yongyi LIN 2, Leilei SHI 3, Miaomiao LI*

Effectively dividing community structures aids in optimizing resource
allocation. However, users with low activity pose challenges for direct interest
extraction. Additionally, user interests migrate over time. Therefore, this paper
proposes an interest community detection algorithm that leverages heterogeneous
graph neural network (HGNN) and temporal convolutional network (TCN). Initially,
a Latent Dirichlet Allocation (LDA) model extracts interest sets from multi-user
generated content. Subsequently, HGNN dynamically learns node features. TCN
then models the event propagation process to track user interests. Finally, interest
communities are delineated based on user labels. Experiments verify the
effectiveness of the proposed algorithm.

Keywords: community division, LDA, heterogeneous graph neural networks,
temporal

1. Introduction

Social networks have become an important platform for communication
and interaction in modern society. With the rapid development of social networks,
their complexity and size are constantly increasing. In this context, community
structure, as an important feature of social networks, has attracted increasing
attention from researchers. Communities are usually defined as a set of nodes in a
network that have denser connections among themselves than with other nodes [1-
3]. Community structure reflects the close relationships and interest similarities
among users in the network, which is very important for understanding the
organizational structure and function of the network.
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A community is a set of nodes that appear in clusters within social
networks, characterized by varying degrees of connections between these nodes
[4]. It is generally accepted that relationships within the same community are
closer, while relationships between different communities are sparser. Community
detection is a key task in social network analysis, aiming to identify and divide the
community structure in the network. Accurate community detection can provide
support for many practical applications, such as personalized recommendations,
information propagation analysis, and public opinion monitoring [5]. However,
the dynamics and complexity of social networks pose enormous challenges to
community detection. In particular, for new users or users with low activity, it is
difficult to directly extract their interest features due to the limited content they
generate. Moreover, user interests migrate over time, making it even more
difficult to identify communities.

To address these issues, researchers have proposed various methods of
community detection. Among them, methods based on user-generated content
analysis have received widespread attention [6-9]. These methods extract user
interest features by analyzing text, images, and other content posted by users, and
then perform community division. However, these methods still have limitations
in dealing with data sparsity and dynamic changes in interests.

Recently, advances in deep learning technology have led to significant
improvements in community detection methods using graph neural networks. [10-
12]. Graph neural networks can effectively learn high-order features of nodes and
capture complex network structure information. At the same time, temporal
convolutional networks have performed excellently in processing time-series data,
providing the possibility for modeling dynamic changes in user interests. [13]

Based on this context, this paper presents an interest community detection
algorithm that uses heterogeneous graph neural networks (HGNN) in conjunction
with temporal convolutional networks (TCN). The algorithm first extracts interest
sets from multi-user generated contents using the Latent Dirichlet Allocation
(LDA) topic model, then uses HGNN to dynamically learn node features. Next,
TCN is used to model the event propagation process and realize user interest
tracking. Finally, interest communities are divided according to user labels to
achieve the discovery of overlapping and non-overlapping communities.

The main contributions of this paper are as follows:

1) This paper proposes a novel community detection framework that
combines HGNN and TCN, which can effectively handle data sparsity and
dynamic changes in interests.

2) This paper designs an LDA-based interest extraction method that can
extract potential interests from diverse user-generated content.

3) This paper proposes an interesting evolution tracking method based on
TCN that can capture dynamic changes in user interests.
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4) This paper conducts extensive experiments on the LFR benchmark
network and four commonly used real network datasets to verify the effectiveness
of the proposed algorithm.

The structure of this paper is arranged as follows: Section II reviews
relevant literature and related work; Section III elaborates on the proposed
algorithm; Section IV presents and analyzes experimental results; finally, Section
V concludes the paper and outlines directions for future research.

2. Related work

The concept of community was first introduced by Newman and Girvan [1]
in 2002, sparking significant interest in community detection among scholars.
Through extensive research and experimentation, researchers have proposed
numerous community detection algorithms. These community detection
algorithms can be approximately classified into traditional community detection
algorithms and those based on deep learning.

Current mainstream traditional community detection algorithms can be
precisely summarized as hierarchical clustering [2,3], modularity optimization
[4,5], label propagation [6-8], spectral clustering [9] and information theory [10]
algorithms. Hierarchical clustering algorithm is an unsupervised machine learning
method, which includes top-down split hierarchical clustering method and
bottom-up agglomerative hierarchical clustering method. It divides the dataset
into multiple hierarchical clusters to reflect the structure and similarity of the data.
Modularity optimization algorithm originated from the modularity function
proposed by Girvan and Newman [4], which measures the strength of network
community structure. A higher modularity value indicates a more distinct
community structure and better community quality.

Li et al. [5] combined modularity optimization with genetic algorithms to
detect community structures using a defined local search operator. The Label
Propagation Algorithm (LPA), first proposed by Raghavan et al. [6], updates
unlabeled node labels based on the labeled node information. In this algorithm,
each node is initially assigned a unique label, which is iteratively updated to adopt
the most frequent label among its neighboring nodes until the system reaches
convergence. Finally, nodes with the identical label are classified as the same
community. Variants such as the parallel LPA [7] and the COPRA algorithm [§],
which incorporates label membership, further improve the accuracy of this
approach. While traditional community detection methods have proven effective
for many network analysis tasks, they often struggle with scalability on large-
scale networks and cannot easily incorporate node attributes or temporal
dynamics. Additionally, most traditional algorithms require hand-crafted features
and predefined similarity metrics, limiting their ability to capture complex,
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hierarchical community structures. Deep learning approaches address these
limitations by automatically learning effective representations and allowing for
more flexible integration of multiple data modalities.

Deep learning-based community detection methods include deep neural
network, deep graph embedding and graph neural networks (GNNs) [14,15]. Deep
neural networks excel at constructing and capturing global relationships, with
convolutional neural networks, autoencoders, and generative adversarial networks
being the most commonly used models in community detection [16,17]. Deep
graph embedding maps network nodes to a low-dimensional vector space while
preserving the underlying structural properties and topological relationships of the
original network. [12]. GNNs [18] iteratively aggregate feature information from
local neighborhoods of the graph, enabling node information to propagate through
the graph after transformation and aggregation. Bruna et al. [19] introduced a
graph neural network-based approach for addressing the challenge of data-driven
community detection. Zhang et al. [20] extended the Gumbel Softmax [21]
method and proposed a new neural network community detection method.

However, for some new users or users with low activity, there are few
user-generated contents on social networks. In the process of community division,
it 1s difficult to directly extract user interests, and user interests will change with
time. To solve these problems, this paper proposes a novel community detection
algorithm that integrates HGNN and TCN to identify interest-based communities.
Firstly, the LDA topic model is applied to extract user interests. Next, the HGNN
is leveraged to capture high-order features. Then, the TCN is employed to track
the evolution of user interests. Finally, interest communities are categorized based
on user tags.

3. The HGNN-TC method

The modeling for interest community detection method, which is based on
a HGNN and a TCN, is depicted in Fig. 1. Firstly, the LDA topic model is
employed to analyze the content generated by the user and extract their potential
interest. Secondly, the HGNN is utilized to dynamically learn and update node
features to obtain high-order features. Subsequently, the TCN is applied to model
the event propagation process and facilitate user interest tracking. Finally, the
interest communities are categorize based on user tags.

3.1 User interest extraction

In this paper, the LDA document topic generation model is employed to
generate user interests. The LDA model is a hierarchical three-layer Bayesian
probabilistic model that incorporates documents, topics, and words as distinct
generative layers. By training on document data through unsupervised learning, it
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effectively extracts latent topic structures from large-scale document collections
and textual corpora. The LDA model posits that documents consist of multiple
topics, with each topic comprising a distinct distribution of words. The model
represents each document as a multinomial distribution over topics, while each
topic is characterized by a multinomial distribution over words. Through this
hierarchical structure, it generates both topics and their associated word labels,
effectively capturing underlying user interests. Fig. 2 shows the LDA topic
generation model.

Heterogeneous Graph construction
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Fig. 1. Modeling of HGNN-TC

Suppose document D contains K topics and N words. The modeling
process is as follows:

1) Sample the document D with Dirichlet distribution using parameter
o to generate the document-topic distribution 6, .

2) Sample from the document-topic polynomial distribution &, to
generate topic Z, , for the nth word in document D.

3) Sample the topic Z,, with a Dirichlet distribution using parameter f
to generate the topic-word distribution ¢, .

4) Sample from the topic-word multinomial distribution ¢, , and finally
generate the word @, , .

From the above modeling process, it is evident that the LDA model adds a
layer of Dirichlet prior to both the document-topic distribution and topic-word
distribution, skillfully avoiding the overfitting problem caused by the increase of
the user corpus. In addition, the simple and convenient Gibbs Sampling algorithm
is used to obtain the topic posterior distribution of feature words through
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continuous iterative sampling. Then the label set K = {kl,kz,---,kq} of document

D is obtained, where q denotes the number of labels.

me[l,M]
nell,N,]

o

ke[l,K]
Fig. 2. LDA Topic Generation Mode

3.2 Heterogeneous graph neural network module

HGNN module can be divided into two main components: heterogeneous
graph construction module and interaction representation module. The interaction
representation module comprises four sub-modules: heterogeneous cross-
attention, message passing, information aggregation and target edge
representation. In this paper, user reaction records to events are restated as graph
structures, where connections to interests are added to the response record and
reformulated as heterogeneous graph data. Before using the HGNN to extract
features, the sequence of user experience events needs to be converted into a
heterogeneous graph data type.

3.2.1 Heterogeneous graph building blocks

Three entity types are selected as nodes: users, events and tags.
S :{sl,sz,---,sn} represents the set of users, where n represents the number of

users. E={e,e,,--,e,} represents the set of events with m denoting the number

of events. K = {kl,kz,- ‘.,kq} represents the set of labels, where ¢ is the number of

labels. Two types of edges: (Event-Label) and (User-Event) are contained.
The (Event-Label) edge, denoted as (E—K)={ek ek, -}, represents

the relationship between events and labels, indicating the labels associated with
each event. For example, e1k; indicates that the first event contains label x.

The (User-Event) edge, denoted as (S—E)={(s,e,.7.).(8€,:7i00) "} »

represents the relationship between users and events, indicating the sequence of
events experienced by users. For example, siex+1 indicates that the first user
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experienced the x+1-th event. And 71, »+1 indicates whether the user is interested in
the event, with 1 for interested and O for not interested. The PyTorch Geometry
library is used to construct heterogeneous graphs, and the general process is
shown in Fig. 3.

( Event propagation data O
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Fig. 3. Heterogeneous Graph Construction Process Diagram

Let's consider a small example with 2 users(s1 and s2), 3 events(ei, e2 and
e3) , and 3 labels (k1 ="Music", k2 -"Sports" , and k3 = "Technology") . The
example scenario are as follow: Event e is a "Jazz Concert" tagged with label £
(Music). Event e; is a "Basketball Game" tagged with label k> (Sports). Event e3 is
a "Tech Conference" tagged with label k3 (Technology). There are two users with
different interaction patterns. User s1 experienced events e; and e3; he was
interested in e; , but not in e3. User 5o experienced events e> and e3, and was
interested in both.

The (Event-Label) Edge (£ - K) can be described as follow:

etki: The Jazz Concert is tagged with Music

exk> : The Basketball Game is tagged with Sports

e3 k3 : The Tech Conference is tagged with Technology

The (User-Event) Edges with Interest Indicators (S - E) can be described
as follow:

sie1, r1,1=sie1,1: User 1 experienced the Jazz Concert and was interested

sie3, ri3= s1e3,0: User 1 experienced the Tech Conference but wasn't
interested

s2e2, r2p= szez,1: User 2 experienced the Basketball Game and was
interested

s2e3, r3= sze3,l: User 2 experienced the Tech Conference and was
interested
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3.2.2 Interaction representation module

Firstly, the node features within the heterogeneous graph are mapped to a
high-dimensional space as inputs to the interaction representation module. Then,
the Heterogeneous Graph Transformer (HGT) algorithm [22] is employed to
obtain the features of each node in the heterogeneous graph. HGT is a specialized
HGNN that adapts transformer architectures to heterogeneous graphs,
emphasizing type-aware attention, temporal dynamics, and scalability. The
specific steps of the HGT algorithm include heterogeneous mutual attention,
message passing, target aggregation, and target edge representation. This paper
takes the attention calculation, message passing, and target aggregation of event
node e as an example. The update principles for user node s and label node £ are
analogous to those for event node e.

Step 1: Heterogeneous mutual attention

In heterogeneous graphs, the neighbors of a node can be different types of
nodes, and the distribution and length of the representation vectors for these nodes
may vary. And a node may be connected to neighboring nodes through multiple
types of edges, each carrying distinct information. Heterogeneous graphs calculate
the importance of neighboring nodes through heterogeneous mutual attention.

This paper considers event node e as the target node, with user node s and
label node £ as its neighboring nodes. The weights between them are calculated
using a triplet relationship. (s, (s-e), e) represents node s pointing to node e
through edge (s-e), and (k, (k-e), e) represents node k pointing to node e through
edge (k-e). The target node e is mapped to a vector Q(e), while its neighboring
nodes s and k are mapped to vectors K(s) and K(k), respectively. The attention
calculation process for the h-head of the edge (s-e) is as follows:

Attention,, ., (s —e) = Softmax( [| ATT —head'(s—e)) o
iel1,h]
A A A His(s—e)e
ATT — head'(s—¢) = (K' (s)W./" O (e)T)D% @
K'(s)= K - Linear' (H"™"[s]) 3)
0 (e)=0- Linear' (H" " [e]) )

As shown in (3) and (4), each distinct node type in the heterogeneous
graph corresponds to a unique linear projection to maximize the simulation of
distribution differences. When calculating the output ATT-head'(s-e) of the i-th
head in multi-head attention, the input feature vectors H(/-1) [s] and H(/-1) [e] of
the /-th layer are first transformed into Key vectors and Query vectors through K-
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Linear’ and Q-Linear’ according to the types of nodes s and e. Then the importance
of node s to node e is calculated based on the weight matrix W;;’_TZ) related to the

lu<s,(s—e),e>

i

where ... represents a learnable parameter that quantifies the relative

type of edge. Finally, is used to adjust the importance level through,

importance of various types of < node, edge, neighbor node > triples in

. . :
heterogeneous graphs. ﬁ is used to balance the effect of vector dimensions on
the result. After completing the single head attention calculation, all /4 attention
heads are connected together.

Step 2: Message passing

Message passing involves transferring information from the source node to
the target node, and its computation process runs in parallel with heterogeneous
mutual attention computation. To mitigate the distributional disparities among
distinct node types, the edge meta-relationship is integrated into the message
passing process.

Message,, ., (s—e)= | MSG—head'(s—e) )

ie[1,h]

MSG ~head' (s —e) = M ~ Linear' (H" "[sDW,"; ©

MSG-head'(s-e) represents the output of the i-th header during message
passing. M-Linear’ maps the representation vector H(I-1)[s] of its /-1st layer to an
information vector based on the type of node s. Since two types of nodes may be
connected by multiple types of edges, the information vector also needs to be

transformed by the matrix W(?l_f .

Step 3: Information aggregation

After completing the above calculation and transmission, it is necessary to
aggregate the neighbor nodes s and k with different feature distributions to the
target node e. Then the updated vectors are connected by residuals after linear
projection. Finally, by concatenating with the initial target node vector, the feature
H(D)[e] of the target node is calculated by the /-th layer HGT is obtained. The
calculation process is shown in (7) and (8).

When aggregating neighboring node information, the information vectors
of neighboring nodes with different feature distributions are first weighted and

. . (O] .
summed, as shown in (7). Next A-Linear maps H [e] to the representation space
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corresponding to node type of e. Then we concatenate it with the representation
vector H(/-1)[e] of e in the /-1 layer to obtain the representation vector H(/)[e] of

the /-th layer. The calculation is shown in (8).
0

H [e]= . E(-IJBV(E)(Al‘tenz‘ion or (8 —e) Message,, .. (s —e)) %)
HOle] = 6(A— LinearH" [e]) + H'[e] ®)

Step 4: Target edge representation

In order to more accurately represent the features of the edge (User-Label),
this paper uses the updated user node feature H(/)[s] and label feature H(/)[k] to
concatenate the feature H[s-k] of the edge (User-Label).

Hls~k]=[H"[s}; H k] ©)
3.3 Interest evolution tracking module

The interest evolution tracking module uses a TCN to model the
serialization of user label changes. TCN, an improvement over the convolutional
neural network (CNN), contains three basic modules: causal convolution, dilated
convolution and residual connection. Causal convolution ensures that the
modeling process is sequential, whereby the output at any given time step is
dependent solely on the current and preceding inputs. Dilated convolution
increases the receptive field using a certain input interval, allowing each
convolution to cover a larger range of information. Residual connection enables
information to pass across layers, which solves the gradient problem in deep
network training.

The TCN infrastructure is shown in Fig. 1, with a convolution kernel 4/=3
and expansion factor d= [1, 2, 4] [23]. The input of TCN is the feature of the
(User-Label) edge updated by the interactive characterization module, and the

output is the user interest state matrix P’. After linear mapping and softmax

function, a two-dimensional vector is obtained to represent the probabilities of
user interest and disinterest in the label. The calculation formula is as follows:

P’ = Soft max(Linear(P’)) (10)
3.4 Interest community division

Based on the calculation result P’ of the interest evolution tracking

module, the label with the highest probability of user interest at time ¢ is selected
as the user label. Users sharing the identical label are aggregated into an interest
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community set C = {CI,CZ,...,C q}, where ¢ denotes the number of communities.

At this point, the division of non-overlapping communities can be achieved.

By selecting the top n tags with the highest interest probability for users at
time ¢ as user labels and subsequently classifying users with the same labels into
the same interest community, it is possible to achieve the division of overlapping
communities.

4. Experiments

To evaluate the efficacy of our proposed algorithm, comparative analyses
against four established methods (GCN [24], GAT [25], GraphSAGE [26], and
LCFS [27]) are conducted on both the LFR benchmark network and four widely-
adopted real-world networks (Karate, Football, Polbooks, and DBLP).

The performance of the proposed algorithm is evaluated using Precision,
Recall, and their harmonic mean (F1-score). The true community membership of
node v is denoted as C;, while the community detection algorithm assigns it to
community D;, then

—|prg
Precision= 1)

D]

DA
Recall=—— (12)
C]

Precisi R

Fl—score - 2x r ecision x Re call 13
Precision+ Recall

A single metric, either Precision or Recall, cannot effectively reflect the
performance of an algorithm. In some cases, an increase in Precision may reduce
Recall, and vice versa. Therefore, this paper comprehensively adopted both
metrics and their harmonic mean, the F1-score, to verify the effectiveness of the
algorithm. The F1-score ranges from 0 to 1, where higher values indicate superior
accuracy in identifying overlapping nodes by the algorithm.

4.1 Experiments on simulated network data sets

Both the node degree and community size in the LFR benchmark network
follow a power-law distribution. The LFR benchmark is a commonly used tool
for testing community discovery algorithms. The parameters of the LFR network
generation program are presented in Table 1.

In this experiment, the parameters are configured as follows: n=5000,
k=10, kmax=50, with the mu value ranging from [0.1, 0.5] in steps of 0.05,
totaling 10 values, while other parameters are set by default. The parameter mu
represents the mixed proportion, defined as the ratio of external links (connections
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between a node and nodes outside its community) to the node's total degree. For
example, when mu = 0.2, 80% of a node's connections are intra-community while
20% are inter-community links. The higher the mu, the greater the connection
ratio between nodes in and outside the community, making community discovery
more difficult. Conversely, a lower mu indicates a clearer community structure.

Table 1
The parameter of LFR
parameter meaning
n Number of nodes in the network
k Average degree of a node
mu Mixed parameter
kax Maximum degree of a node
Conin Minimum community size
Chnax Maximum community size
4 Power rate distribution index of node degree
t Power rate distribution index of community size

Each experiment is replicated 5 times per dataset, with the mean values
reported as the final results and illustrated in Fig. 4.
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Fig. 4. Experimental results on the LRF dataset

When mu=0.05, although there are differences in the experimental results
of the five algorithms, the values of F1 score, Precision, and Recall are all high,
indicating good performance of the algorithms. As the mixing coefficient mu
increases, the community structure becomes more complex, leading to varying
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degrees of performance degradation across all five algorithms. Among them,
GCN and GAT algorithms exhibit the most significant performance degradation.
When mu>0.35, the performance of the GCN algorithm rapidly decreases, with F1
score and Precision approaching 0 and Recall values below 0.5.

The performance of the proposed algorithm, along with GraphSAGE and
LCFS algorithms, remains relatively stable. They maintain good performance
across different mu values, with Fl-score, Precision, and Recall wvalues
consistently above 0.7. When mu<0.3, LCFS algorithm performs well. The
proposed algorithm yields marginally lower Fl-score, Precision, and Recall
values compared to the LCFS algorithm. When mu=0.3, the Precision and Recall
values of our algorithm are slightly lower than that of GraphSAGE. At mu = 0.5,
our algorithm exhibits marginally lower Precision than GraphSAGE. After
mu>0.3, the values of Fl-score, Precision and Recall of this algorithm are
generally the highest. It can be seen that our algorithm performs normally in
simple networks but excels in complex networks.

As mu increases, our algorithm's performance decreases the slowest and
fluctuates the least, with almost no noticeable decline in Precision, Recall, and F1-
score. Tables 2 and 3 present the absolute decreases and decline rates,
respectively, of Precision, Recall, and F1-score metrics across all five algorithms.

Table 2
The decline values of the Precision, Recall and F1-score
Algorithm Precision Recall F1-score
GCN 0.86 0.54 0.88
GAT 0.56 0.20 0.55
GraphSAGE 0.13 0.09 0.13
LCFS 0.20 0.30 0.25
Our algorithm 0.12 0.06 0.09
Table 3
The decline rates of the Precision, Recall and F1-score
Algorithm Precision Recall Fl-score
GCN 98.4% 55.1% 97.4%
GAT 58.9% 19.9% 57.8%
GraphSAGE 12.9% 9.4% 13.6%
LCFS 20.4% 29.9% 25.5%
Our algorithm 12.6% 6.2% 9.5%

The minimal decline in performance metrics as x4 increases demonstrates
superior robustness to community structure blurring compared to baseline
methods. This stability can be attributed to the complementary nature of our
hybrid approach. While HGNN effectively captures complex heterogeneous
relationships between users and content, TCN provides temporal resilience by
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modeling interest evolution patterns that remain detectable even as community
boundaries become less distinct.

4.2 Experiments on real network data sets

Comparative experiments were conducted on four widely recognized real-
world datasets: Karate, Football, Polblogs, and DBLP. The data summaries for the
four networks are provided in Table 4. The experimental results of the five
algorithms on these four data sets are illustrated in Fig. 5.

Table 4
The information of four Data sets information
Data set Nodes Edges Community
Karate 34 78 2
Football 115 616 12
Polblogs 1490 19090 2
DBLP 17725 105781 4

On the Karate dataset, the GCN algorithm achieves the highest F1-score
and Recall values, while the LCFS algorithm has the highest Precision, nearly 1.
Our algorithm, GraphSAGE, and GAT perform similarly. On the Football dataset,
our algorithm and GAT algorithm perform best, with our algorithm having the
highest Fl-score and Precision values, and GAT algorithm having the highest
Recall values. On the Polbooks dataset, the GraphSAGE algorithm has
experienced overfitting. Our algorithm demonstrates comparable performance to
LCFS, achieving similarly high values across all three metrics: Fl-score,
Precision, and Recall. On the DBLP dataset, our algorithm has the highest F1
score and Recall values, while the GCN algorithm has the highest Precision.

EEN GCN  mN GraphSAGE W Our algorithm
GaT 1 LCFs

mEN GCN  EN GraphSAGE  mEm Our algorithm
GAT 1 LCFs

°
°

P.R.F Value
P,R,F Value

°

00
Fl-score Recall Precision Fl-score Recall Precision

(a) Karate (b) Football
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GAT 1 LCFS GAT 1 LCFS

08+ el 081

P.R.F Value
P,R,F Value

Fl-score Recall Precision Fl-score Recall Precision

(c) Polbooks (d) DBLP
Fig. 5. Experimental results on real network dataset

Our algorithm achieves the highest Fl-score on the Football and DBLP
datasets, slightly lower than LCFS on Polbooks dataset, and second only to GCN
on Karate dataset. This demonstrates that our algorithm has good performance on
both simple and complex datasets, with particularly strong performance on
complex networks. Our algorithm can effectively balance Precision and Recall to
make the community division more reasonable.

The mean and variance of the three performance indicators (F1-score,
Precision, and Recall) for the five algorithms across the four data sets are shown
in Table 5 and Table 6.

Table 5
The mean of the Precision, Recall and F1-score on the four data sets
F1-score Recall Precision
GCN 0.82 0.82 0.87
GAT 0.76 0.78 0.82
GraphSAGE 0.81 0.83 0.86
LCFS 0.80 0.78 0.85
Our algorithm 0.84 0.84 0.86
Table 6
The variance of the Precision, Recall and F1-score on the four data sets
F1-score Recall Precision
GCN 0.013 0.012 0.002
GAT 0.031 0.028 0.018
GraphSAGE 0.023 0.019 0.009
LCFS 0.005 0.017 0.015
Our algorithm 0.005 0.007 0.003

Our algorithm has the highest mean F1-score and Recall, and the second-
highest mean Precision. The variance of our algorithm's F1-score and Recall is the
highest, and the variance of its Precision is the second lowest, significantly lower
than those of other algorithms.

The advantage of marginal performance stems from our integration of
temporal dynamics and interest in tracking mechanisms absent in purely structural
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approaches. This underscores the importance of incorporating time-evolving user
interests when detecting communities in dynamic social networks.

5. Conclusion and future work

This paper proposes an interest community discovery algorithm based on
the HGNN and TCN to address the challenges posed by "cold start users",
specifically the difficulty in directly extracting user interests and tracking interest
evolution. First, the LDA model is used to extract multi-user interests, forming an
interest set. Next, a HGNN dynamically learns node features to obtain higher-
order features. Then, a TCN is used to model the event propagation process,
achieving user interest tracking. Finally, the interest communities are divided
according to the user labels. This method can effectively discover both non-
overlapping and overlapping communities.

While the proposed algorithm shows promising results, there are several
directions for future research:

1) Scalability: As social networks continue to grow in size and complexity,
further work is needed to optimize the algorithm's performance on large-scale
networks (e.g., parallel computing, graph sampling).

2) Real-time processing: Developing techniques for real-time community
detection and interest tracking could enhance the algorithm's applicability in
dynamic social media environments (e.g., incremental learning procedures,
efficient index structures).

3) Multi-modal data integration: Incorporating diverse types of user-
generated content (e.g., images, videos) could provide richer insights into user
interests and community structures.

4) Interpretability: Enhancing the interpretability of the model's decisions
could provide valuable insights for network analysts and improve trust in the
algorithm's outputs. We can develop visualization tools that highlight temporal
patterns in interest evolution.

5) Privacy preservation: As community detection often involves sensitive
user data, developing privacy-preserving techniques for interest extraction and
community discovery is an important area for future work. We can develop
privacy-aware interest representations that intentionally obscure individual-
identifying information while preserving community-level patterns.

6) Cross-platform analysis: Extending the algorithm to handle data across
diverse social media platforms would facilitate a holistic analysis of user interests
and community structures across different online environments.

7) Adaptive learning: Developing mechanisms for the algorithm to
adaptively adjust its parameters based on changing network dynamics could
further improve its performance and robustness. We can design reinforcement
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learning frameworks to optimize community detection strategies based on quality
metrics.

In conclusion, this paper presents a significant step forward in addressing
key challenges in community detection within social networks. By combining
advanced machine learning techniques with a deep understanding of social
network dynamics, our approach offers a powerful tool for elucidating significant
community structures. As social networks continue to evolve and shape our digital
interactions, the development of sophisticated community detection algorithms
will remain a crucial area of research, with far-reaching implications for fields
such as social science, marketing, and information dissemination.
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