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CONSIDERATIONS ABOUT KALMAN FILTRATION 

APPLIED TO SURFACE RECONSTRUCTION METHODS 
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Lucrarea descrie posibilitatea evitării unor situaţii neplăcute care apar in 
procesarea datelor experimentale, in particular vizând aplicaţia de reconstrucţie de 
suprafaţă si anume situaţiile particulare in care funcţiile sau derivate ale lor trec 
prin valori extreme. Oricare ar fi cauza erorilor, fie ca sunt generate  de sistemul 
măsurat in cazuri particulare, fie ca sunt generate de cazuri neacoperite de teorie 
sau chiar de teorie in sine rezultatul este blocarea algoritmului, obţinerea de date 
eronate  sau propagare incontrolabilă de erori. 

  
This paper describes the possibility to avoid some critical situations which 

can arise in experimental data processing, more precisely in applications of surface 
reconstruction, spotting the particular situations where functions or there 
derivatives pass by extreme values. No matter which is the error source, either they 
are generated by the measured system in some particular cases, either they are 
generated by special cases uncovered by the theory or even generated by the theory 
itself, the consequences are the  failure of the algorithm, the obtaining of strange 
data values or the  propagation of incontrollable errors . 

 
Keywords: Kalman, filtration, surface reconstruction, recursion, numerical  
                    processing. 
 
 

1. Introduction 
 

In the 60’s R.E. Kalman has published an article, a very famous one, 
where he described a recursive solution for solving the problems of discrete data 
filtration. Since this article, mainly because of the great evolution that had place in 
the domain of numerical data processing, the Kalman filtration has been the 
subject of an intense research and development of various applications.  

Main applications in industry has been developed for systems with 
continuous data acquisition based on a sequence of observations of a system state 
to provide accurate continuously updated information about evolution of different 
parameters. 
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2. Theoretical considerations 
 
Presuming that there exists a system that can be described by a m 

dimensional vector that is measured at time intervals k = 0, 1, 2, ...., each 
observation being affected by noise, for each measurement we have: 

 
 kkk vxHZ +⋅=  (1) 
where:  
Zk are the measurable unit; 
vk are the random values of the measurement; 
xk is the state of the system at the step k; 
H is the observation matrix (a link between the observed and the true process). 

 
Formulated this way the problem cannot be solved. What is missing is a 

link between the current state xk and the xk-1 state.  
To solve this problem, we can presume that the link between two 

successive states is a linear function and that there exists an additional vector, 
“noise”,  that is equivalent to the dynamical system uncertainities.  

The Kalman filtration is trying to solve the general problem to estimate a 
state „x” of a time dependent discrete process that is ruled by a differential linear 
equation like: 

 111 −−− +⋅+⋅= kkkk wuBxAx  (2) 
 

The variables wk and vk are presumed to be independent of each other and 
to have a normal probability distribution. 

The A matrix (n × n dimension) in the differential equation (2) makes the 
link between the state of the system k - 1 and the state of the system k, besides of 
any link function or process noise. In a normal way, in a real process, the A 
matrix can be modified at each step of iteration. Anyway, it can be considered that 
the A matrix is constant without diminishing the generalization of the problem.  

The B matrix (n × l dimension) is correlated to the optional control value 
of the process lRu ∈  at the state x of the system.  

The H matrix (m × n dimension) in the measure equation (equation 1) is 
correlated to the kZ  measure. Practically, the H matrix can also be modified at 
each step. 

The Kalman filter is estimating a process using a feedback form: the filter 
is estimating the process state at a given time and than is obtaining a feedback like 
a noisy measurement. More, the equations of the Kalman filtering are divided in 
two groups: time dependent equations and measurement dependent equations.  
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The time dependent equations can be used to make predictions (time 
predictions) starting with the current state and errors estimations to obtain 
estimations for the next step of the process.  

The equations that depends of the measuring process result can be 
considered resposible of the system feedback, for example, by incorporating a 
new measure in a measure estimation to obtain a better estimation for the next 
step.  

The time dependent equations can be considered prediction equations.  
The measure dependent equations can be considered correction equations.  
 
 

3. Solving the differential equation of the surface height 
 

From the illumination equation: 
 ( ) 0, =− sIyxE   (3) 
where: 
E is the measured reflectance map 
Is is the the iluminaton 
 
can be obtained the approximate equation: 
 

 ( )( ) ( ) ( )( ) ( ) ( )( ) 0,
,

,,, 111 =⋅−+ −−− yxZ
yxdZ

dfyxZyxZyxZf nnn  (4) 

 
The above equation can be rewritten as: 

 
 ( ) ( ) ( )( )),(,, 11 yxZfKyxZyxZ nnnn −− −+=   (5) 

 
where Kn has to satisfy three conditions: 

-   Kn is approximate equal with the inverse of ( ) ( )( )yxZ
yxdZ

df n ,
,

1− ;       (I) 

 

-   Kn approaches zero when ( ) ( )( )yxZ
yxdZ

df n ,
,

1−  approaches zero;        (II) 

 
-   Kn approaches zero when ( )yxZ n ,  approaches zero.                         (III) 
 

The operators involved in Kn definition has been identified like: 
- a constant, having unique value and non zero, which is used to avoid divi - 



D. E. Mihai, E. Strajescu 
 
62

ding by zero, Wx,y; 
- the anticipation operator                

 ( ) ( )( )[ ]2
, ,, yxZyxZE nn
yx −=δ   (6) 

 
- from equation (5) and condition (I): 
 

 ( ) ( )( )yxZ
yxdZ

dfM n
yx ,

,
1

,
−=   (7) 

 
With these three elements can be found many Kn functions which can 

comply to all the three conditions from above. 
The best known function is: 
 

 2
,,,

,,

yx
n

yxyx

yx
n

yxn

MSW
MS

K
⋅+

⋅
=   (8) 

 
The above function gives very good results and has been implemented in 

many algorithms but is quite inefficient from the point of view of system 
resources. Even it represents a general possibility to solve the problems described 
above (chapter 2), the whole solution is difficult to implement in an industrial 
system. 

Because at moment of screening or of various manipulations the surface 
suffers in few times normalizations, we preferred to rewrite the equation (5) and 
to work on a “surface” already normalized. We used the quotes referring to the 
surface because at the moment of calculations in fact the surface is not yet 
calculated, however the first and the successive approximations are also 
normalized. From the view point of screening and graphical manipulations this 
trick has not any importance, but it reduces quantity of operations and avoid 
manipulations of big numbers and powers of big numbers. During the tests we 
observed an important diminution of execution times. 

Equation (5) rewritten looks like (we kept the same notations like above): 
 

                                    ( ) ( ) n
n

n
nn

KW
yxzfyxZyxZ *

1
1 )),((,,

+
−=

−
−           (9) 

 
Obviously, K* does not comply anymore with the condition (I), but by 

rewriting the equation in essence the things are the same and the generality of the 
solution is not affected in any way.  

In this conditions it is possible to write: 
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                                                    yx

n
yxn MK ,

,* ⋅
α

δ
=                     (10) 

 

where α is an integer above 1. Good results has been obtained  for α = 2. 
 With this algorithm (and the C++  ) code can be easily viewed bellow in 
the table 1: 

 Table 1. 
for(i=0;i<width;i++){ 
   for(j=0;j<height;j++){ 
            Zn[i][j]= 0.0;  
            Zn1[i][j]= 0.0; 
 Si[i][j] = 0.0; 
 Si1[i][j]= 0.01;    
   } 
} 
 for(t=1;t<=Ival;t++){ 
  for(i=0;i<width;i++){ 
   for(j=0;j<height;j++){  
    if(j-1 < 0 || i-1 < 0)  
      p = q = 0.0; 
    else { 
          p = Zn1[i][j] - Zn1[i][(j-1)]; 
          q = Zn1[i][j] - Zn1[i-1][j];  
    } 
    pq = 1.0 + p*p + q*q; 
    PQs = 1.0 + Ps*Ps + Qs*Qs; 
    Eij = Ll[i][j][0]; 
    fZ = -1.0*(Eij - MAX(0.0,(1+p*Ps+q*Qs) / 
(sqrt(pq)*sqrt(PQs)))); 
    dfZ = -1.0*((Ps+Qs)/(sqrt(pq)*sqrt(PQs))-(p+q)* 
(1.0+p*Ps+q*Qs)/(sqrt(pq*pq*pq)*sqrt(PQs))); 
    Y = fZ + dfZ*Zn1[i][j]; 
    K = Si1[i][j]*dfZ/2; 
    Si[i][j] = (1.0 - K*dfZ)*Si1[i][j];  
    Zn[i][j] = Zn1[i][j] – fZ/(Wn + K); 
}  
} 
  for(i=0; i<width; i++)   { 
    for(j=0; j<height; j++)   { 
   Zn1[i][j] = Zn[i][j]; 
   Si1[i][j] = Si[i][j];    }} 

- see note 1  
 
 
 
 
 
 
 
 
 
 
 
- see note 2 
 
- see note 3 
 
 
 
 
 
- see note 4 
 
 
 
 
 
- see note 5 
 
 
 
 
 
- see note 6 
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Notes: 
1. This sequence of code initialize all variables, surface heights to zero, the 
estimated values to zero, the intermediate values to non zero. 
2. This sequence of code show that the image of the borders p and q are 
considered to be zero, for all the other points are approximated from neighbors. 
3. This sequence of code initialize the measure anticipation from the values table.  
4. This sequence of code calculates fz and dfz ; 
5. This sequence of code estimates heights ; 
6. This sequence of code transfers heights back to the value table for processing. 
 

 
Fig. 1. Synthetic image 

 
A numerical application of the above algorithm for surface reconstruction 

of the synthetic image from the fig. 1 (320 × 240 pixels) is shown bellow.  
 
Stage 1: RGB filtering for input data preparation in Kalman filtration. The mean 
RGB value before the filtration is 76. The mean value after the filtration is 68. 
The mean values has been converted to the integers because of the RGB format. 
 
Stage 2: The process variables have been initialized to the shown values: the 
initial surface heights to zero, the estimated values to zero, the anticipation 
operator to 0.01. 
 
Stage 3: The algorithm has been run to the prepared image (after the RGB 
filtration) and bellow will be presented only the statistical parameters of the first 5 
steps (for space and relevance reasons), all the other steps are following the same 
trends and only getting the surface approximation better and better. The values 
shown bellow were collected after a full cycle completion. 
 Step 1:  
  The mean value of the anticipation operator: 0.009999; 
  The mean value of the surface heights: - 0.8124; 
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  The maximum height: 0.0809; 
  The minimum height: - 0.8256; 
  Skewness: - 0.0233. 
 Step 2: 
  The mean value of the anticipation operator: 0.009999; 
  The mean value of the surface heights: - 1.6218; 
  The maximum height: 0.1775; 
  The minimum height: - 1.6483; 
  Skewness: - 0.02315. 
 Step 3: 
  The mean value of the anticipation operator: 0.009998; 
  The mean value of the surface heights: - 2.4301; 
  The maximum height: - 2.4699; 
  The minimum height:  0.2754; 
  Skewness: - 0.02301. 
 Step 4: 
  The mean value of the anticipation operator:  0.009998; 
  The mean value of the surface heights: - 3.24; 
  The maximum height: 0.3712; 
  The minimum height: - 3.2937; 
  Skewness: - 0.02311. 
 Step 5: 
  The mean value of the anticipation operator: 0.009998; 
  The mean value of the surface heights: - 4.0461; 
  The maximum height: 0.4723; 
  The minimum height: - 4.1123. 
  Skewness: - 0.02296. 
 
Stage 4: The surface heights are transfered back to the heights array. The surface 
is now ready for further calculations.  

 
Fig. 2. Surface reconstruction 
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The final result of the reconstruction can be observed in fig. 2. 
 

4. Conclusions 
 
The Kalman filtration implementation for the data that result in the surface 

measurement and illumination processing of a surface, can help to avoid the 
particular situations where functions or their derivatives are experimenting 
extreme. Either generated by particular positions of light source and CCD sensor, 
or generated by surface particularities, the extremes of functions and their 
derivatives lead to errors generated by the computer, to the algorithm freezing, or, 
even worse, to a unreal surface, very rough and very far from what had to be 
reconstituted.  

The proposed function has been tested with an algorithm used for 
reconstruction of surfaces from images acquired from a single camera. The 
algorithm has been tested against well known algorithms and proved itself to be 
competitive from point of view of the quality of reconstructed surface and more 
important from point of view of execution times. The functions and the Kalman 
filtration implementation is mainly useful because by a calculation trick can solve 
difficult problems, in other ways impossible to be solved. 
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