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GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL
EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

M. Eshaghi Gordji1, H. Khodaei2, R. Khodabakhsh3

The aim of this paper is to find the general solution of a mixed type
quartic, cubic and quadratic functional equation

f(x + ky) + f(x− ky) = k2f(x + y) + k2f(x− y) + 2(1− k2)f(x)

+
k2(k2 − 1)

6
(f(2y) + 2f(−y)− 6f(y))

(k ∈ Z−{0,±1}) in the class of functions between real vector spaces and to obtain
the generalized Hyers-Ulam stability problem for the equation in non-Archimedean
spaces.
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1. Introduction

In 1897, Hensel [9] has introduced a normed space which does not have the
Archimedean property. It turned out that non-Archimedean spaces have many nice
applications [13, 20, 22, 23].

A non-Archimedean field is a field K equipped with a function (valuation)
| . | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and
|r + s| ≤ max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for
all n ∈ N. An example of a non-Archimedean valuation is the function | . | taking
everything but 0 into 1 and |0| = 0. This valuation is called trivial.

Definition 1.1. Let X be a vector space over a scalar field K with a non–Archimedean
non-trivial valuation | . |. A function ‖ . ‖ : X → R is a non–Archimedean norm
(valuation) if it satisfies the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;
(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;
(NA3) ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X (the strong triangle inequal-

ity).
Then (X, ‖ . ‖) is called a non–Archimedean space.
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Remark 1.1. Thanks to the inequality

‖xm − xl‖ ≤ max{‖x+1 − x‖ : l ≤  ≤ m− 1} (m > l)

a sequence {xm} is Cauchy if and only if {xm+1 − xm} converges to zero in a non–
Archimedean space. By a complete non–Archimedean space we mean one in which
every Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers.
A key property of p-adic numbers is that they do not satisfy the Archimedean axiom:
”for x, y > 0, there exists n ∈ N such that x < ny.”

Example 1.1. Let p be a prime number. For any nonzero rational number x = a
b pr

such that a and b are coprime to the prime number p, define the p-adic absolute
value |x|p := p−r. Then | . |p is a non-Archimedean norm on Q. The completion of
Q with respect to | . |p is denoted by Qp and is called the p-adic number field.

Note that if p > 3, then |2n| = 1 in for each integer n.
The concept of stability of a functional equation arises when one replaces a functional
equation by an inequality which acts as a perturbation of the equation. In 1940,
Ulam [21] posed the first stability problem. In the next year, Hyers [10] gave an
affirmative answer to the question of Ulam. Hyers theorem was generalized by Aoki
[2] for additive mappings and by Rassias [16] for linear mappings by considering
an unbounded Cauchy difference. The concept of the Hyers-Ulam-Rassias stability
originated from Rassias paper [16] for the stability of functional equations (see also
[8, 17, 18, 19]).

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) (1)

is related to a symmetric bi–additive function [1, 12]. It is natural that this equa-
tion is called a quadratic functional equation. In particular, every solution of the
quadratic equation (1) is said to be a quadratic function. It is well known that a
function f between real vector spaces X and Y is quadratic if and only if there exists
a unique symmetric bi-additive function B1 such that f(x) = B1(x, x) for all x ∈ X.
The bi-additive function B1 is given by

B1(x, y) =
1
4
(f(x + y)− f(x− y))

for all x, y ∈ X. In the paper [5], Czerwik proved the Hyers–Ulam–Rassias stability
of the equation (1).

Jun and Kim [11] introduced the following functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x) (2)

and they established the general solution and the generalized Hyers–Ulam–Rassias
stability for functional equation (2). They proved that a function f between real
vector spaces X and Y is a solution of (2) if and only if there exits a unique function
C : X×X×X −→ Y such that f(x) = C(x, x, x) for all x ∈ X, and C is symmetric
for each fixed one variable and is additive for fixed two variables. The function C is
given by

C(x, y, z) =
1
24

(f(x + y + z) + f(x− y − z)− f(x + y − z)− f(x− y + z))
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for all x, y, z ∈ X. It is easy to see that the function f(x) = cx3 satisfies functional
equation (2), so it is natural to call (2) the cubic functional equation and every
solution of the cubic functional equation (2) is said to be a cubic function.

Lee et. al. [14] considered the following functional equation

f(2x + y) + f(2x− y) = 4f(x + y) + 4f(x− y) + 24f(x)− 6f(y) (3)

In fact, they proved that a function f between two real vector spaces X and Y is a
solution of (3) if and only if there exists a unique symmetric bi-quadratic function
B2 : X × X −→ Y such that f(x) = B2(x, x) for all x. The bi-quadratic function
B2 is given by

B2(x, y) =
1
12

(f(x + y) + f(x− y)− 2f(x)− 2f(y))

for all x, y ∈ X. It is easy to show that the function f(x) = dx4 satisfies the functional
equation (3), which is called the quartic functional equation (see also [4]).

In 2007, Moslehian and Rassias [15] proved the generalized Hyers–Ulam sta-
bility of the Cauchy functional equation and the quadratic functional equation in
non–Archimedean normed spaces.

Eshaghi Gordji and Khodaei [6], have obtained the generalized Hyers–Ulam–
Rassias stability for a mixed type of cubic, quadratic and additive functional equa-
tion. In addition the generalized Hyers–Ulam–Rassias stability for cubic and quar-
tic functional equation in non-Archimedean space has been investigated by Eshaghi
Gordji and Bavand Savadkouhi [7].

In this paper, we deal with the following mixed type quartic, cubic and qua-
dratic functional equation for fixed integers k 6= ±1,

f(x + ky) + f(x− ky) = k2f(x + y) + k2f(x− y) + 2(1− k2)f(x)

+
k2(k2 − 1)

6
(f(2y) + 2f(−y)− 6f(y))

(4)

It is easy to see that the function f(x) = dx4+cx3+bx2 is a solution of the functional
equation (4).

The main purpose of this paper is to establish the general solution of Eq. (4)
and investigate the generalized Hyers-Ulam stability for Eq. (4) in non-Archimedean
spaces.

2. Functional equations deriving from quartic, cubic and quadratic
functions

We here present the general solutions of (4).

Theorem 2.1. Let both X and Y be real vector spaces. A function f : X → Y
satisfies (4) for all x, y ∈ X if and only if there exist a unique symmetric bi-quadratic
function B2 : X ×X −→ Y, a unique function C : X ×X ×X −→ Y and a unique
symmetric bi-additive function B1 : X ×X −→ Y such that

f(x) = B2(x, x) + C(x, x, x) + B1(x, x)

for all x ∈ X, and that C is symmetric for each fixed one variable and is additive
for fixed two variables.
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Proof. Let f satisfies (4). We decompose f into the even part and odd part by
setting

fe(x) =
1
2
(f(x) + f(−x)), fo(x) =

1
2
(f(x)− f(−x))

for all x ∈ X. It is clear that f(x) = fe(x) + fo(x) for all x ∈ X. It is easy to show
that the functions fe and fo satisfy (4). Now, let g, h : X → Y be functions defined
by

g(x) = fe(2x)− 16fe(x), h(x) = fe(2x)− 4fe(x)

for all x ∈ X. We show that the functions g and h are quadratic and quartic,
respectively.

Interchanging x with y in (4) and then using fe(−x) = fe(x), we have

fe(kx + y) + fe(kx− y) = k2fe(x + y) + k2fe(x− y)

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(y)

(5)

for all x, y ∈ X. Letting x = y = 0 in (5), we have fe(0) = 0. Putting y = x + y in
(5), gives

fe((k + 1)x + y) + fe((k − 1)x− y) = k2fe(2x + y) + k2fe(−y)

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(x + y)

(6)

for all x, y ∈ X. Replacing y by −y in (6), we obtain

fe((k + 1)x− y) + fe((k − 1)x + y) = k2fe(2x− y) + k2fe(y)

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(x− y)

(7)

for all x, y ∈ X. Adding (6) to (7), we get

fe((k + 1)x + y) + fe((k + 1)x− y) + fe((k − 1)x + y) + fe((k − 1)x− y)

= k2(fe(2x + y) + fe(2x− y)) +
2k2(k2 − 1)

6
(fe(2x)− 4fe(x))

+ 2(1− k2)(fe(x + y) + fe(x− y)) + 2k2fe(y)

(8)

for all x, y ∈ X. From the substitution y = kx + y in (5), we have

fe(2kx + y) + fe(y) = k2fe((k + 1)x + y) + k2fe((k − 1)x + y)

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(kx + y)

(9)

for all x, y ∈ X. Replacing y by −y in (9), we get

fe(2kx− y) + fe(−y) = k2fe((k + 1)x− y) + k2fe((k − 1)x− y)

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(kx− y)

(10)
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for all x, y ∈ X. Adding (9) to (10), we obtain

fe(2kx + y) + fe(2kx− y) = k2(fe((k + 1)x + y) + fe((k + 1)x− y)

+ fe((k − 1)x + y) + fe((k − 1)x− y))

+ 2(1− k2)(fe(kx + y) + fe(kx− y))

+
2k2(k2 − 1)

6
(fe(2x)− 4fe(x))− 2fe(y)

(11)

for all x, y ∈ X. It follows from (11) using (5) and (8) that

fe(2kx+y) + fe(2kx− y)

= k2[k2(fe(2x + y) + fe(2x− y)) +
2k2(k2 − 1)

6
(fe(2x)− 4fe(x))

+ 2(1− k2)(fe(x + y) + fe(x− y)) + 2k2fe(y)]

+ 2(1− k2)[k2fe(x + y) + k2fe(x− y)

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(y)]

+
2k2(k2 − 1)

6
(fe(2x)− 4fe(x))− 2fe(y)

(12)

for all x, y ∈ X. If we replace x by 2x in (5), we get that

fe(2kx + y) + fe(2kx− y) = k2fe(2x + y) + k2fe(2x− y)

+
k2(k2 − 1)

6
(fe(4x)− 4fe(2x)) + 2(1− k2)fe(y)

(13)

for all x, y ∈ X. It follows from (12) and (13) that

k2[k2(fe(2x + y) + fe(2x− y)) +
2k2(k2 − 1)

6
(fe(2x)− 4fe(x))

+ 2(1− k2)(fe(x + y) + fe(x− y)) + 2k2fe(y)]

+ 2(1− k2)[k2fe(x + y) + k2fe(x− y)

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(y)]

+
2k2(k2 − 1)

6
(fe(2x)− 4fe(x))− 2fe(y)

= k2fe(2x + y) + k2fe(2x− y) +
k2(k2 − 1)

6
(fe(4x)− 4fe(2x))

+ 2(1− k2)fe(y)

(14)

for all x, y ∈ X. Also, putting y = 0 in (5), we get

fe(kx) = k2fe(x) +
k2(k2 − 1)

12
(fe(2x)− 4fe(x)) (15)

for all x ∈ X. Setting y = x in (5), we get

fe((k + 1)x) + fe((k − 1)x) = k2fe(2x) +
k2(k2 − 1)

6
(fe(2x)− 4fe(x))

+ 2(1− k2)fe(x)
(16)
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for all x ∈ X. Putting y = kx in (5), we obtain

fe(2kx) =k2(fe((k + 1)x)) + fe((k − 1)x)) +
k2(k2 − 1)

6
(fe(2x)− 4fe(x))

+ 2(1− k2)fe(kx)
(17)

for all x ∈ X. Letting y = 0 in (13), we have

fe(2kx) = k2fe(2x) +
k2(k2 − 1)

12
(fe(4x)− 4fe(2x)) (18)

for all x ∈ X. It follows from (17) and (18) that

k2(k2 − 1)
12

(fe(4x)− 4fe(2x)) = k2(fe((k + 1)x)) + fe((k − 1)x))

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(kx)− k2fe(2x)

(19)

for all x ∈ X. Now, using (15), (16) and (19), we are lead to

k2(k2 − 1)
12

(fe(4x)− 4fe(2x))

= k2[k2fe(2x) +
k2(k2 − 1)

6
(fe(2x)− 4fe(x)) + 2(1− k2)fe(x)]

+ 2(1− k2)[k2fe(x) +
k2(k2 − 1)

12
(fe(2x)− 4fe(x))]

+
k2(k2 − 1)

6
(fe(2x)− 4fe(x))− k2fe(2x)

(20)

for all x ∈ X. Finally, if we compare (14) with (20), then we conclude that

fe(2x+ y)+ fe(2x− y) = 4fe(x+ y)+4fe(x− y)+2(fe(2x)− 4fe(x))− 6fe(y) (21)

for all x, y ∈ X. Replacing y by 2y in (21), we get

fe(2x + 2y) + fe(2x− 2y) = 4fe(x + 2y) + 4fe(x− 2y)

+ 2(fe(2x)− 4fe(x))− 6fe(2y)
(22)

for all x, y ∈ X. Interchanging x with y in (21), we obtain

fe(2y +x)+ fe(2y−x) = 4fe(y +x)+4fe(y−x)+2(fe(2y)− 4fe(y))− 6fe(x) (23)

for all x, y ∈ X, which implies that

fe(x+2y)+ fe(x− 2y) = 4fe(x+ y)+4fe(x− y)+2(fe(2y)− 4fe(y))− 6fe(x) (24)

for all x, y ∈ X. It follows from (22) and (24) that

fe(2(x + y))− 16fe(x + y) + fe(2(x− y))− 16fe(x− y)

= 2(fe(2x)− 16fe(x)) + 2(fe(2y)− 16fe(y))

for all x, y ∈ X. This means that

g(x + y) + g(x− y) = 2g(x) + 2g(y)

for all x, y ∈ X. So the function g : X → Y defined by g(x) = fe(2x) − 16fe(x) is
quadratic.
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To prove that h : X → Y defined by h(x) = fe(2x) − 4fe(x) is quartic, we
have to show that

h(2x + y) + h(2x− y) = 4h(x + y) + 4h(x− y) + 24h(x)− 6h(y) (25)

for all x, y ∈ X. Replacing x and y by 2x and 2y in (21), respectively, we obtain

fe(2(2x + y)) + fe(2(2x− y)) = 4fe(2(x + y)) + 4fe(2(x− y))

+ 2(fe(4x)− 4fe(2x))− 6fe(2y)
(26)

for all x, y ∈ X. But, since g(2x) = 4g(x) for all x ∈ X, with g : X → Y is the
quadratic function defined above, thus we see that

fe(4x) = 20fe(2x)− 64fe(x) (27)

for all x ∈ X. Hence, according to (26) and (27), we get

fe(2(2x + y)) + fe(2(2x− y)) = 4fe(2(x + y)) + 4fe(2(x− y))

+ 32(fe(2x)− 4fe(x))− 6fe(2y)
(28)

for all x, y ∈ X. By multiplying both sides of (21) by 4, we get that

4fe(2x + y) + 4fe(2x− y) = 16fe(x + y) + 16fe(x− y)

+ 8(fe(2x)− 4fe(x))− 24fe(y)
(29)

for all x, y ∈ X. If we subtract the last equation from (28), we arrive at

fe(2(2x + y))− 4fe(2x + y) + fe(2(2x− y))− 4fe(2x− y)

= 4(fe(2(x + y))− 4fe(x + y)) + 4(fe(2(x− y))− 4fe(x− y))

+ 24(fe(2x)− 4fe(x))− 6(fe(2y)− 4fe(y))

for all x, y ∈ X. This means that h satisfies the equation (25), so the function
h : X → Y is quartic. But, since, fe(x) = 1

12h(x) − 1
12g(x) for all x ∈ X, there

exist a unique symmetric bi-quadratic function B2 : X × X −→ Y and a unique
symmetric bi-additive function B1 : X ×X −→ Y such that h(x) = 12B2(x, x) and
g(x) = −12B1(x, x) for all x ∈ X (see [1, 14]). So

fe(x) = B2(x, x) + B1(x, x) (30)

for all x ∈ X. On the other hand, we show that the function fo : X → Y is cubic.
It follows from (4) and fo(−x) = −fo(x) that

fo(x + ky) + fo(x− ky) = k2fo(x + y) + k2fo(x− y) + 2(1− k2)fo(x)

+
k2(k2 − 1)

6
(fo(2y)− 8fo(y))

(31)

for all x, y ∈ X. Putting x = 0 in (31), to get fo(2y) = 8fo(y) for all y ∈ X, so we
get from (31) that

fo(x + ky) + fo(x− ky) = k2fo(x + y) + k2fo(x− y) + 2(1− k2)fo(x) (32)

for all x, y ∈ X. Setting x = x− y in (32), we have

fo(x + (k − 1)y) + fo(x− (k + 1)y) = k2fo(x) + k2fo(x− 2y)

+ 2(1− k2)fo(x− y)
(33)
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for all x, y ∈ X. Replacing y by −y in (33), gives

fo(x− (k − 1)y) + fo(x + (k + 1)y) = k2fo(x) + k2fo(x + 2y)

+ 2(1− k2)fo(x + y)
(34)

for all x, y ∈ X. Adding (33) to (34), we obtain

fo(x + (k − 1)y) + fo(x− (k − 1)y) + fo(x + (k + 1)y) + fo(x− (k + 1)y)

= k2(fo(x + 2y) + fo(x− 2y)) + 2k2fo(x)

+ 2(1− k2)(fo(x + y) + fo(x− y))

(35)

for all x, y ∈ X. Setting x = x + ky in (32), we get

fo(x + 2ky) + fo(x) = k2(fo(x + (k − 1)y) + fo(x + (k + 1)y)))

+ 2(1− k2)fo(x + ky)
(36)

for all x, y ∈ X. Replacing y by −y in (36), we have

fo(x− 2ky) + fo(x) = k2(fo(x− (k − 1)y) + fo(x− (k + 1)y)))

+ 2(1− k2)fo(x− ky)
(37)

for all x, y ∈ X. Adding (36) to (37), one gets

fo(x + 2ky) + fo(x− 2ky)

= k2[fo(x + (k − 1)y) + fo(x + (k + 1)y) + fo(x− (k − 1)y)

+ fo(x− (k + 1)y)] + 2(1− k2)(fo(x + ky) + fo(x− ky))− 2fo(x)

(38)

for all x, y ∈ X. Using (32), (35) and (38), we lead to

fo(x + 2ky) + fo(x− 2ky)

= 4k2(1− k2)(fo(x + y) + fo(x− y)) + (6k4 − 8k2 + 2)fo(x)

+ k4(fo(x + 2y) + fo(x− 2y))

(39)

for all x, y ∈ X. Replacing y by 2y in (32), we get

fo(x + 2ky) + fo(x− 2ky) = k2(fo(x + 2y) + fo(x− 2y)) + 2(1− k2)fo(x) (40)

for all x, y ∈ X. If we compare (39) with (40), then we conclude that

fo(x + 2y) + fo(x− 2y) = 4(fo(x + y) + fo(x− y))− 6fo(x) (41)

for all x, y ∈ X. Replacing x by 2x in (41), gives

fo(2(x + y)) + fo(2(x− y)) = 4(fo(2x + y) + fo(2x− y))− 6fo(2x) (42)

for all x, y ∈ X, which by considering fo(2x) = 8fo(x) and (42), gives

fo(2x + y) + fo(2x− y) = 2fo(x + y) + 2fo(x− y)12fo(x)

for all x, y ∈ X, this means that fo is cubic. So

fo(x) = C(x, x, x) (43)

for all x ∈ X, that C is symmetric for each fixed one variable and is additive for
fixed two variables [11].

Hence, according to (30) and (43), we obtain that

f(x) = fe(x) + fo(x) = B2(x, x) + C(x, x, x) + B1(x, x)
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for all x ∈ X. The proof of the converse is trivial. ¤

3. Generalized Hyers–Ulam stability in non-Archimedean spaces

Throughout this section, assume that G is an additive group and X is a
complete non-Archimedean space. Before taking up the main subject, for f : G ×
G → X, we define the difference operator

Df(x, y) =f(x + ky) + f(x− ky)− k2f(x + y)− k2f(x− y) + 2(k2 − 1)f(x)

− k2(k2 − 1)
6

(f(2y) + 2f(−y)− 6f(y))

(k ∈ Z− {0,±1}) for all x, y ∈ G.

Theorem 3.1. Let ϕ : G×G → [0,∞) be a function such that

lim
n→∞

ϕ(2nx, 2ny)
|2|2n

= 0 = lim
n→∞

1
|2|2n

ϕ̃(2n−1x) (44)

for all x, y ∈ G, and

ϕ̃q(x) = lim
n→∞max{ 1

|2|2j
ϕ̃(2jx) : 0 ≤ j < n} (45)

exists for all x ∈ G, where

ϕ̃(x) :=
1

|k2(k2 − 1)| max{max{|12k2|ϕ(x, x), |12(k2 − 1)|ϕ(0, x)}
, max{|6|ϕ(0, 2x), |12|ϕ(kx, x)}}

(46)

for all x ∈ G. Suppose that an even function f : G → X with f(0) = 0 satisfies the
inequality

‖Df(x, y)‖ ≤ ϕ(x, y) (47)

for all x, y ∈ G. Then there exist a quadratic function Q : G → X such that

‖f(2x)− 16f(x)−Q(x)‖ ≤ 1
|2|2 ϕ̃q(x) (48)

for all x ∈ G. If

lim
i→∞

lim
n→∞max{ 1

|2|2j
ϕ̃(2jx) : i ≤ j < n + i} = 0 (49)

then Q is the unique quadratic function satisfying (48).

Proof. Interchanging x with y in (47) and then using the evenness of f , we obtain

‖f(kx + y) + f(kx− y)− k2f(x + y)− k2f(x− y) + 2(k2 − 1)f(y)

− k2(k2 − 1)
6

(f(2x)− 4f(x))‖ ≤ ϕ(y, x)
(50)

for all x ∈ G. Setting y = 0 in (50), we have

‖2f(kx)− 2k2f(x)− k2(k2 − 1)
6

(f(2x)− 4f(x))‖ ≤ ϕ(0, x) (51)
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for all x ∈ G. Putting y = x in (50), we get

‖f((k + 1)x) + f((k − 1)x)− k2f(2x) + 2(k2 − 1)f(x)

− k2(k2 − 1)
6

(f(2x)− 4f(x))‖ ≤ ϕ(x, x)
(52)

for all x ∈ G. Replacing x and y by 2x and 0 in (50), respectively, we obtain

‖2f(2kx)− 2k2f(2x)− k2(k2 − 1)
6

(f(4x)− 4f(2x))‖ ≤ ϕ(0, 2x) (53)

for all x ∈ G. Setting y = kx in (50) and using the evenness of f, it follows that

‖f(2kx)− k2f((k + 1)x)− k2f((k − 1)x) + 2(k2 − 1)f(kx)

− k2(k2 − 1)
6

(f(2x)− 4f(x))‖ ≤ ϕ(kx, x)
(54)

for all x ∈ G. It follows from (51)–(54) that

‖f(4x)− 20f(2x) + 64f(x)‖
≤ 1
|k2(k2 − 1)| max{max{|12k2|ϕ(x, x), |12(k2 − 1)|ϕ(0, x)}

, max{|6|ϕ(0, 2x), |12|ϕ(kx, x)}}
(55)

for all x ∈ G. According to (46) and (55), we obtain

‖f(4x)− 20f(2x) + 64f(x)‖ ≤ ϕ̃(x) (56)

for all x ∈ G. Let g : X → Y be a function defined by g(x) := f(2x)− 16f(x) for all
x ∈ G. From (56), we conclude that

‖g(2x)− 4g(x)‖ ≤ ϕ̃(x) (57)

for all x ∈ G. This implies that

‖g(x)− g(2x)
22

‖ ≤ 1
|2|2 ϕ̃(x) (58)

for all x ∈ G. Replacing x by 2n−1x in (58), we have

‖g(2n−1x)
22(n−1)

− g(2nx)
22n

‖ ≤ 1
|2|2n

ϕ̃(2n−1x) (59)

for all x ∈ G. It follows from (44) and (59) that the sequence {g(2nx)
22n } is Cauchy.

Since X is complete, we conclude that {g(2nx)
22n } is convergent. So one can define the

function Q : X → Y by Q(x) := limn→∞
g(2nx)

22n for all x ∈ G. It follows from (58)
and (59) by using induction that

‖g(x)− g(2nx)
22n

‖ ≤ 1
|2|2 max{ 1

|2|2j
ϕ̃(2jx) : 0 ≤ j < n} (60)
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for all n ∈ N and all x ∈ G. Taking n to approach infinity in (60) and using (45)
one gets (48). By (44) and (47), we obtain

‖DQ(x, y)‖ = lim
n→∞

1
|2|2n

‖Dg(2nx, 2ny)‖

= lim
n→∞

1
|2|2n

‖Df(2n+1x, 2n+1y)− 16Df(2nx, 2ny)‖

≤ lim
n→∞

1
|2|2n

max{‖Df(2n+1x, 2n+1y)‖, |16| ‖Df(2nx, 2ny)‖} = 0

for all x, y ∈ G. Therefore the function Q : G → X satisfies (4). Thus by Theorem
2.1, the function x Ã Q(2x)− 16Q(x) is quadratic.

If Q′ is another quadratic function satisfying (48), then

‖Q(x)−Q′(x)‖ = lim
i→∞

|2|−2i‖Q(2ix)−Q′(2ix)‖
≤ lim

i→∞
|2|−2i max{ ‖Q(2ix)− f(2ix)‖, ‖f(2ix)−Q′(2ix)‖ }

≤ 1
|2|2 lim

i→∞
lim

n→∞max{ 1
|2|2j

ϕ̃(2jx) : i ≤ j < n + i} = 0

for all x ∈ G. Therefore Q = Q
′
. ¤

Theorem 3.2. Let ϕ : G×G → [0,∞) be a function such that

lim
n→∞

ϕ(2nx, 2ny)
|2|4n

= 0 = lim
n→∞

1
|2|4n

ϕ̃(2n−1x) (61)

for all x, y ∈ G, and

ϕ̃v(x) = lim
n→∞max{ 1

|2|4j
ϕ̃(2jx) : 0 ≤ j < n} (62)

exists for all x ∈ G, with ϕ̃(x) satisfies the equation (46) for all x ∈ G. Suppose
that an even function f : G → X with f(0) = 0 satisfies the inequality (47) for all
x, y ∈ G. Then there exist a quartic function V : G → X such that

‖f(2x)− 4f(x)− V (x)‖ ≤ 1
|2|4 ϕ̃v(x) (63)

for all x ∈ G. If

lim
i→∞

lim
n→∞max{ 1

|2|4j
ϕ̃(2jx) : i ≤ j < n + i} = 0 (64)

then V is the unique quartic function satisfying (63).

Proof. Similar to the proof Theorem 3.1, we have

‖f(4x)− 20f(2x) + 64f(x)‖ ≤ ϕ̃(x) (65)

for all x ∈ G. Let h : X → Y be a function defined by h(x) := f(2x)− 4f(x) for all
x ∈ G. From (65), we conclude that

‖h(2x)− 16h(x)‖ ≤ ϕ̃(x) (66)

for all x ∈ G. Which implies that

‖h(x)− h(2x)
24

‖ ≤ 1
|2|4 ϕ̃(x) (67)
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for all x ∈ G. Replacing x by 2n−1x in (67), we have

‖h(2n−1x)
24(n−1)

− h(2nx)
24n

‖ ≤ 1
|2|4n

ϕ̃(2n−1x) (68)

for all x ∈ G. It follows from (61) and (68) that the sequence {h(2nx)
24n } is Cauchy.

Since X is complete, we conclude that {h(2nx)
24n } is convergent. So one can define the

function V : X → Y by V (x) := limn→∞
h(2nx)

24n for all x ∈ G. It follows from (67)
and (68) by using induction that

‖h(x)− h(2nx)
24n

‖ ≤ 1
|2|4 max{ 1

|2|4j
ϕ̃(2jx) : 0 ≤ j < n} (69)

for all n ∈ N and all x ∈ G. Taking n to approach infinity in (69) and using (62)
one gets (63). By (61) and (47), we obtain

‖DV (x, y)‖ = lim
n→∞

1
|2|4n

‖Dh(2nx, 2ny)‖

= lim
n→∞

1
|2|4n

‖Df(2n+1x, 2n+1y)− 4Df(2nx, 2ny)‖

≤ lim
n→∞

1
|2|4n

max{‖Df(2n+1x, 2n+1y)‖, |4| ‖Df(2nx, 2ny)‖} = 0

for all x, y ∈ G. Therefore the function V : G → X satisfies (4). Thus by Theorem
2.1, the function x Ã V (2x) − 4V (x) is quartic. The rest of the proof is similar to
the proof of Theorem 3.1. ¤
Theorem 3.3. Let ϕ : G×G → [0,∞) be a function satisfies (44) for all x, y ∈ G,
and the limit

lim
n→∞max{ 1

|2|2j
ϕ̃(2jx) : 0 ≤ j < n}

exists for all x ∈ G, with ϕ̃(x) satisfies the equation (46) for all x ∈ G. Suppose
that an even function f : G → X with f(0) = 0 satisfies the inequality (47) for all
x, y ∈ G. Then there exist a quadratic function Q : G → X and a quartic function
V : G → X such that

‖f(x)−Q(x)− V (x)‖ ≤ 1
|48| max{ϕ̃q(x),

1
|2|2 ϕ̃v(x)} (70)

for all x ∈ G, where ϕ̃q(x) and ϕ̃v(x) are defined as in Theorems 3.1 and 3.2.
Moreover, if (49) holds, then Q is the unique quadratic function and V is the unique
quartic function satisfying (70).

Proof. By Theorem 3.1 and 3.2, there exists a quadratic function Q0 : G → X and
a quartic function V0 : G → X such that

‖f(2x)− 16f(x)−Q0(x)‖ ≤ 1
|2|2 ϕ̃q(x)

‖f(2x)− 4f(x)− V0(x)‖ ≤ 1
|2|4 ϕ̃v(x)

for all x ∈ G. So we obtain (70) by letting Q(x) = −1/12Q0(x) and V (x) =
1/12V0(x) for all x ∈ G.
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To prove the uniqueness property of Q and V, let Q′, V ′ : X → Y be another
quadratic and quartic functions satisfying (70). Let Q = Q − Q′ and V = V − V ′.
Hence

‖Q(x) + V (x)‖ ≤ max{‖f(x)−Q(x)− V (x)‖+ ‖f(x)−Q′(x)− V ′(x)‖}
≤ 1
|48| max{ϕ̃q(x),

1
|2|2 ϕ̃v(x)}

for all x ∈ G. Since

lim
i→∞

lim
n→∞max{ 1

|2|2j
ϕ̃(2jx) : i ≤ j < n + i}

= 0 = lim
i→∞

lim
n→∞max{ 1

|2|4j
ϕ̃(2jx) : i ≤ j < n + i}

for all x ∈ G. So
lim

n→∞
1

|2|4n
‖Q(2nx) + V (2nx)‖ = 0

for all x ∈ X. Therefore, we get V = 0 and then Q = 0, and the proof is complete. ¤
Theorem 3.4. Let ϕ : G×G → [0,∞) be a function such that

lim
n→∞

ϕ(2nx, 2ny)
|2|3n

= 0 (71)

for all x, y ∈ G and

ϕ̃c(x) = lim
n→∞max{ 1

|2|3j
ϕ(0, 2jx) : 0 ≤ j < n} (72)

for all x ∈ G, exists. Suppose that f : G → X is an odd function satisfying (47) for
all x, y ∈ G. Then there exist a cubic function C : G → X such that

‖f(x)− C(x)‖ ≤ | 3
4k2(k2 − 1)

|ϕ̃c(x) (73)

for all x ∈ G. If

lim
i→∞

lim
n→∞max{ 1

|2|3j
ϕ(0, 2jx) : i ≤ j < n + i} = 0

then C is the unique cubic function satisfying (73).

Proof. Putting x = 0 in (47) and then using oddness of f, we get

‖k2(k2 − 1)
6

(f(2y)− 8f(y))‖ ≤ ϕ(0, y)

for all y ∈ G. Which implies that

‖f(x)− f(2x)
23

‖ ≤ | 3
4k2(k2 − 1)

|ϕ(0, x) (74)

for all x ∈ G. Replacing x by 2n−1x in (74), we have

‖f(2n−1x)
23(n−1)

− f(2nx)
23n

‖ ≤ | 3
23n−1k2(k2 − 1)

|ϕ(0, 2n−1x) (75)

for all x ∈ G. It follows from (71) and (75) that the sequence {f(2nx)
23n } is Cauchy.

Since X is complete, we conclude that {f(2nx)
23n } is convergent. So one can define the
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function C : X → Y by C(x) := limn→∞
f(2nx)

23n for all x ∈ G. It follows from (74)
and (75) by using induction that

‖f(x)− f(2nx)
23n

‖ ≤ | 3
4k2(k2 − 1)

|max{ 1
|2|3i

ϕ(0, 2ix) : 0 ≤ i < n} (76)

for all n ∈ N and all x ∈ G. By taking n to approach infinity in (76) and using (72)
one obtains (73). By (71) and (47), one gets

‖DC(x, y)‖ = lim
n→∞

1
|2|3n

‖Df(2nx, 2ny)‖ ≤ lim
n→∞

ϕ(2nx, 2ny)
|2|3n

= 0

for all x, y ∈ G. Therefore the function C : G → X satisfies (4). Thus by Theorem
2.1, the function x Ã C(x) is cubic. The rest of the proof is similar to the proof of
Theorem 3.1. ¤

Now, we are ready to prove the main theorem concerning the stability problem
for the equation (4).

Theorem 3.5. Let ϕ : G×G → [0,∞) be a function satisfies (44) for all x, y ∈ G,
and the limits

lim
n→∞max{ 1

|2|2j
ϕ̃(2jx) : 0 ≤ j < n}, lim

n→∞max{ 1
|2|3j

ϕ(0, 2jx) : 0 ≤ j < n}

exists for all x ∈ G, with ϕ̃(x) satisfies the equation (46) for all x ∈ G. Suppose that
a function f : G → X with f(0) = 0 satisfies the inequality (47) for all x, y ∈ G.
Then there exist a quadratic function Q : G → X, a cubic function C : G → X and
a quartic function V : G → X such that
‖f(x)−Q(x)− C(x)− V (x)‖
≤ 1
|2|3 max{| 3

k2(k2 − 1)
|max{ϕ̃c(x), ϕ̃c(−x)}

,
1
|12| max{max{ϕ̃q(x),

1
|2|2 ϕ̃v(x)}, max{ϕ̃q(−x),

1
|2|2 ϕ̃v(−x)}}}

(77)

for all x ∈ G, where ϕ̃q(x), ϕ̃c(x) and ϕ̃v(x) are defined as in Theorems 3.1, 3.2 and
3.4. If

lim
i→∞

lim
n→∞max{ 1

|2|2j
ϕ̃(2jx) : 0 ≤ j < n}

= 0 = lim
i→∞

lim
n→∞max{ 1

|2|3j
ϕ(0, 2jx) : i ≤ j < n + i}

then Q is the unique quadratic function, C is the unique cubic function and V is the
unique quartic function satisfying (77).

Proof. Let fo(x) = 1
2(f(x)− f(−x)) for all x ∈ G. Then

‖Dfo(x, y)‖ ≤ 1
|2| max{ϕ(x, y), ϕ(−x,−y)}

for all x, y ∈ G. From Theorem 3.4, it follows that there exists a unique cubic
function C : G → X satisfying

‖fo(x)− C(x)‖ ≤ | 3
8k2(k2 − 1)

|max{ϕ̃c(x), ϕ̃c(−x)} (78)
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for all x ∈ G. Also, let fe(x) = 1
2(f(x) + f(−x)) for all x ∈ G. Then

‖Dfe(x, y)‖ ≤ 1
|2| max{ϕ(x, y), ϕ(−x,−y)}

for all x, y ∈ G. From Theorem 3.3, it follows that there exist a quadratic function
Q : G → X and a quartic function V : G → X satisfying

‖fe(x)−Q(x)− V (x)‖
≤ 1
|96| max{max{ϕ̃q(x),

1
|2|2 ϕ̃v(x)}, max{ϕ̃q(−x),

1
|2|2 ϕ̃v(−x)}} (79)

for all x ∈ G. Hence, (77) follows from (78) and (79). The rest of the proof is
trivial. ¤
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