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GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL
EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

M. Eshaghi Gordjit, H. Khodaei?, R. Khodabakhsh?

The aim of this paper is to find the general solution of a mized type
quartic, cubic and quadratic functional equation

fl@+ky) + fl@—ky) =k flz+y) +kflx —y) +2(1 — k°) f(x)

N k(%_l)(f@y) +2f(~y) — 6/(y))

(k € Z—{0,+1}) in the class of functions between real vector spaces and to obtain
the generalized Hyers-Ulam stability problem for the equation in non-Archimedean
spaces.
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1. Introduction

In 1897, Hensel [9] has introduced a normed space which does not have the
Archimedean property. It turned out that non-Archimedean spaces have many nice
applications [13, 20, 22, 23].

A non-Archimedean field is a field K equipped with a function (valuation)

| . | from K into [0,00) such that |r| = 0 if and only if » = 0, |rs| = |r||s|, and
Ir + s| < max{|r|,|s|} for all r,s € K. Clearly |1| = | — 1| = 1 and |n| < 1 for
all n € N. An example of a non-Archimedean valuation is the function | . | taking

everything but 0 into 1 and |0] = 0. This valuation is called trivial.

Definition 1.1. Let X be a vector space over a scalar field K with a non—Archimedean
non-trivial valuation | . |. A function || . || : X — R is a non—Archimedean norm
(valuation) if it satisfies the following conditions:

(NA1) ||z|| =0 if and only if x = 0;

(NA2) ||rz|| = |r|||z]| for allr € K and x € X

(NA3) ||z + y|| < max{|z],|yl|} for all x,y € X (the strong triangle inequal-
ity).
Then (X, || . ||) is called a non—Archimedean space.
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Remark 1.1. Thanks to the inequality
lm — ail) < max{ay — o, 1< g<m—1)  (m>1)

a sequence {xy,} is Cauchy if and only if {xm+1 — Tm} converges to zero in a non-
Archimedean space. By a complete non—-Archimedean space we mean one in which
every Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers.
A key property of p-adic numbers is that they do not satisfy the Archimedean axiom:
"for x,y > 0, there exists n € N such that z < ny.”

Example 1.1. Let p be a prime number. For any nonzero rational number x = §p"
such that a and b are coprime to the prime number p, define the p-adic absolute
value |x|p == p~". Then | . |, is a non-Archimedean norm on Q. The completion of
Q with respect to | . |, is denoted by Q, and is called the p-adic number field.

Note that if p > 3, then |2"| =1 in for each integer n.
The concept of stability of a functional equation arises when one replaces a functional
equation by an inequality which acts as a perturbation of the equation. In 1940,
Ulam [21] posed the first stability problem. In the next year, Hyers [10] gave an
affirmative answer to the question of Ulam. Hyers theorem was generalized by Aoki
[2] for additive mappings and by Rassias [16] for linear mappings by considering
an unbounded Cauchy difference. The concept of the Hyers-Ulam-Rassias stability
originated from Rassias paper [16] for the stability of functional equations (see also
8, 17, 18, 19]).

The functional equation

fl@+y)+ fle—y) =2f(x) +2f(y) (1)
is related to a symmetric bi-additive function [1, 12]. It is natural that this equa-
tion is called a quadratic functional equation. In particular, every solution of the
quadratic equation (1) is said to be a quadratic function. It is well known that a
function f between real vector spaces X and Y is quadratic if and only if there exists
a unique symmetric bi-additive function Bj such that f(x) = By(z,x) for all z € X.
The bi-additive function Bj is given by

Biw.y) = {(fz +4) ~ fz—y))

for all z,y € X. In the paper [5], Czerwik proved the Hyers—Ulam—Rassias stability
of the equation (1).
Jun and Kim [11] introduced the following functional equation

fRx+y)+ f2z—y)=2f(z+y) +2f(x —y) + 12f(2) (2)
and they established the general solution and the generalized Hyers—Ulam—-Rassias
stability for functional equation (2). They proved that a function f between real
vector spaces X and Y is a solution of (2) if and only if there exits a unique function
C: X xXxX — Y such that f(z) = C(z,z,z) for all z € X, and C is symmetric
for each fixed one variable and is additive for fixed two variables. The function C is
given by

Olw,y,2) = g(F@+y+2) 4 fw—y—2) = fla+y—2) — fz—y+2)
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for all z,y,z € X. It is easy to see that the function f(z) = cz® satisfies functional
equation (2), so it is natural to call (2) the cubic functional equation and every
solution of the cubic functional equation (2) is said to be a cubic function.

Lee et. al. [14] considered the following functional equation

fRr+y)+ f(2x —y) =4f(x +y) +4f(x —y) +24f(x) - 6f(y) (3)

In fact, they proved that a function f between two real vector spaces X and Y is a
solution of (3) if and only if there exists a unique symmetric bi-quadratic function
By : X x X — Y such that f(x) = By(z,x) for all z. The bi-quadratic function
By is given by

Bo(a,y) = 15(f(z +9) + flw— ) — 2f(z) — 2/(»))

for all 2,y € X. It is easy to show that the function f(x) = dz* satisfies the functional
equation (3), which is called the quartic functional equation (see also [4]).

In 2007, Moslehian and Rassias [15] proved the generalized Hyers—Ulam sta-
bility of the Cauchy functional equation and the quadratic functional equation in
non—Archimedean normed spaces.

Eshaghi Gordji and Khodaei [6], have obtained the generalized Hyers—Ulam—
Rassias stability for a mixed type of cubic, quadratic and additive functional equa-
tion. In addition the generalized Hyers—Ulam—Rassias stability for cubic and quar-
tic functional equation in non-Archimedean space has been investigated by Eshaghi
Gordji and Bavand Savadkouhi [7].

In this paper, we deal with the following mixed type quartic, cubic and qua-
dratic functional equation for fixed integers k # +1,

fl@+ky)+ fl@—ky) =k fz+y) + K flz —y) +2(1 - k) f(2)

v (@
+ I 1 (0y) 1279~ 67)

It is easy to see that the function f(z) = dz*+cx®+bz? is a solution of the functional
equation (4).

The main purpose of this paper is to establish the general solution of Eq. (4)
and investigate the generalized Hyers-Ulam stability for Eq. (4) in non-Archimedean
spaces.

2. Functional equations deriving from quartic, cubic and quadratic
functions

We here present the general solutions of (4).

Theorem 2.1. Let both X and Y be real vector spaces. A function f : X — Y
satisfies (4) for all x,y € X if and only if there exist a unique symmetric bi-quadratic
function By : X x X — Y, a unique function C : X x X x X — Y and a unique
symmetric bi-additive function B : X x X — Y such that

f(z) = By(z,z) + C(z,z,x) + Bi(z,x)

for all x € X, and that C is symmetric for each fixed one variable and is additive
for fixed two variables.
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Proof. Let f satisfies (4). We decompose f into the even part and odd part by
setting
1 1

fe(z) = 5 (f(2) + f(=2)), folx) = S (f(x) = f(—x))

for all x € X. It is clear that f(z) = fe(x) + fo(x) for all x € X. It is easy to show
that the functions f. and f, satisfy (4). Now, let g,h : X — Y be functions defined
by

9(x) = fe(22) —16fc(x),  h(z) = fe(2z) — 4fc(7)
for all x € X. We show that the functions g and h are quadratic and quartic,

respectively.
Interchanging x with y in (4) and then using fe(—z) = fe(z), we have

folkz 4+ 19) + fo(kx —y) = kK*folz + y) + B2 fo(z — )
2.2 (5)
D 1 0) — @) + 200 - )1 0)

for all z,y € X. Letting z =y = 0 in (5), we have f.(0) = 0. Putting y =z + y in
(5), gives

fe((k + 1)$ + y) + fe((k - 1)1’ - y) = k2f€(2$ + y) + sze(_y)

- (6)
P (o) — 4ful@) + 200~ ) fule )

for all x,y € X. Replacing y by —y in (6), we obtain

fe((k + 1)33 - y) + fe((k - 1)37 + y) = k2fe(2$ - y) + sze(y)

oy (7)
: (k6 D (f.(20) = 4£.@) + 201~ #) fula — )

for all 7,y € X. Adding (6) to (7), we get
S+ Dz +9) + fol(k+ D — )+ fo((k = Dz +y) + fol(k — Dz —y)
= (fu(2n ) + fol2e - ) + 2D (o)~ agute) ©)
+2(1 = K (fe(z +y) + fe(z — ) + 2K fe(y)
for all 7,y € X. From the substitution y = kz + v in (5), we have

fe(Qkﬂi + y) + fe(y) = k2fe((k + 1)55 + y) + k2f€((k - 1).T + y)
K2 (k2 — 1) ) (9)
+ 6 (fe(zx) _4fe($))+2(1 —k )fe(kx-i-y)
for all x,y € X. Replacing y by —y in (9), we get

fe(2kx - y) + fe(*y) = k;2fe((k + 1)$ - y) + sze((k - 1)$ - y)

). (10)
) 0) — 4fu(o) +200 K)ol — )
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for all z,y € X. Adding (9) to (10), we obtain
Fe(2kx +y) + fe(2he —y) = K (fe((k + Dz +y) + fe((k + )z —y)
+fe((k =Dz +y) + fe((k =)z —y))

+ 21— K2)(felka + ) + folkz — y))
2(1.2
+ 222D G 00) — af(w)) ~ 28e(0)

for all x,y € X. It follows from (11) using (5) and (8) that
fe(2k$+y) + fe(Qkx - y)

= R+ ) + 1o ) + 2 (o) g (w))

+2(1 = B (fe(z +y) + felz —y)) + 2k fe(y)]
+2(1 = B)[K* felz + y) + K fe(z — y)

2(1.2 _
+ k(k(jl)(fe(gx) —4fo(z)) + 201 — k) fo(y)]
2(1.2
2’“(’21)@6(2@ —4f.(x)) - 2/.(y)

for all x,y € X. If we replace = by 2z in (5), we get that
fekx +y) + fo(2kz —y) = K2 fe(22 + y) + K2 fe(22 — y)

2(1.2
D) (1 42) — afu2m) + 201 - K1 (0)
for all z,y € X. It follows from (12) and (13) that
2(1.2
R (fe(2m +y) + fe(22 — ) + %(’;”(fe(m) — Afe(x))
+2(1 = K)(fe(z + ) + felz — ) + 2k* fe(y)]

+2(1 — B[k folz + y) + K fo(z — 9)

2(1.2
k (k6 1) (fe(22) —4Afe(x)) +2(1 — kQ)fe(l/)]
2(1.2
%(kfil)( [o(2) — Af.(2)) — 2/.(y)

k2(k2 - 1)
6

= K fe(2x +y) + K fe(2x —y) +
+2(1 = k) fe(y)
for all x,y € X. Also, putting y = 0 in (5), we get

2(1.2 _
fethke) = 1) + 8 (1 00) —ag(o))

for all z € X. Setting y = z in (5), we get

(fe(4$) - 4fe(2x)>

Follk + 1)2) + fo((k — 1)) = k2 fo(22) + k2(k26_ 1)

+2(1 — k%) fo(x)

(fe(22) — 4fe(x))

(11)

(13)

(14)

(15)

(16)
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for all x € X. Putting y = kz in (5), we obtain
k2(k2 - 1)

fe(2kx) =k*(fe((k +1)2)) + fe((k — 1)z)) + 5

+2(1 = k) fe(kx)
for all z € X. Letting y = 0 in (13), we have

2012
fol2he) = K2 (20) +

for all z € X. It follows from (17) and (18) that

k2(k? —1)
12

(fe(2x) _4fe(x)) (17)

(fe(dx) — 4fc(2x)) (18)

(fe(4z) — Afe(23)) = K> (fo((k + 1)z)) + fe((k — 1)z))

2(1.2 _
k(kGI)(fe(Qaf) — 4fe(2)) + 2(1 = k) fe(kz) — K fo(22)

for all z € X. Now, using (15), (16) and (19), we are lead to

k2(k2 - 1)
12

= k2 [k%f.(2x) +

(fe(4x) - 4fe(2$))

E2(k% —1)
6

+2(1 — K?)[K% fo(z) +

212
SO (1(22)  47.) ~ 2o (20)

for all z € X. Finally, if we compare (14) with (20), then we conclude that
fe(2x ‘|‘y) + fe(Qx - y) = 4fe(*73 +y) +4fe(x - y) + 2(fe(2$) _4fe(x)) - 6f6(y) (21)
for all x,y € X. Replacing y by 2y in (21), we get
fe(2x + 2y) + fe(Zl‘ - 2y) = 4fe(x + 2y) + 4fe(x - 2y)
+ 2(f€(2$) - 4fe(£)) - 6fe(2y)
for all z,y € X. Interchanging = with y in (21), we obtain
feRy+a)+ fe(2y — ) = Afe(y+ ) +4fe(y —2) +2(fe(2y) —4fe(y)) —6fe(z) (23)
for all x,y € X, which implies that
fe(z+2y) + fe(z —2y) = Afe(z+y) +4fe(z —y) +2(fe(2y) — 4fe(y)) —6fe(z) (24)
for all z,y € X. It follows from (22) and (24) that
fe(Q(x + y)) - 16fe(x + y) + fe(2(x - y)) - 16f6($ - y)
= 2(fe(2$) - 16fe($)) + 2(f6(2y) - 16fe(y))
for all x,y € X. This means that
9(z +y) +g(x—y) =29(x) + 29(y)

for all z,y € X. So the function g : X — Y defined by g(z) = f.(22) — 16 fc(z) is
quadratic.

(fe(Qx) - 4fe(x)) + 2(1 - k2)fe<$)]

k2(k? — 1)
12

(20)

(fe(22) — 4fe(x))]

+

(22)
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To prove that h : X — Y defined by h(z) = fe(22) — 4fc(z) is quartic, we
have to show that

h(2z 4+ y) + h(2z —y) = 4h(xz + y) + 4h(z — y) + 24h(x) — 6h(y) (25)
for all x,y € X. Replacing = and y by 2z and 2y in (21), respectively, we obtain
Je22z +y)) + [e(2(2z — y)) = 4fe(2(z + y)) + 4fe(2(z — y))
+ 2(fe(4x) - 4fe(2x)) - 6fe(2y)

for all z,y € X. But, since g(2z) = 4g(x) for all x € X, with g : X — Y is the
quadratic function defined above, thus we see that

fe(dz) = 20f(2x) — 64 fc(x) (27)
for all € X. Hence, according to (26) and (27), we get
fe(22z +y)) + [e(2(22 — y)) = 412z +y)) + 4fe(2(z —y))

(26)

28
+32(1.(20) — 4, (x) — 6.20) )

for all x,y € X. By multiplying both sides of (21) by 4, we get that
4fe(2$ + y) + 4fe(2x - y) = 16fe($ + y) + 16fe(x - y) (29)

+ 8(f6(2$) - 4fe(x)) - 24fe(y)

for all x,y € X. If we subtract the last equation from (28), we arrive at

fe(2(2x + y)) - 4fe(256 + y) + fe(2(21: - y)) - 4fe(2x - y)
= 4(fe2(z +y)) —4fe(z +y)) + 4(fe(2(x — y)) — 4fe(z — y))
+ 24(fe(21:) - 4fe(x)) - 6(f6(2y) - 4fe(y))
for all z,y € X. This means that h satisfies the equation (25), so the function
h: X — Y is quartic. But, since, f.(z) = 5h(z) — 59(z) for all z € X, there
exist a unique symmetric bi-quadratic function Bs : X x X — Y and a unique
symmetric bi-additive function B; : X x X — Y such that h(z) = 12Bs(x, z) and
g(x) = =12B4(z,z) for all x € X (see [1, 14]). So
fe(x) = Ba(z,x) + Bi(x, x) (30)

for all x € X. On the other hand, we show that the function f, : X — Y is cubic.
It follows from (4) and f,(—x) = —f,(x) that
fol@ + ky) + folz — ky) = k> fo(a +y) + K fo(z — y) + 2(1 — k?) fo(z)
K2(k2 — 1) (31)

+ T(fo(zy) —8fo(y))

for all z,y € X. Putting x = 0 in (31), to get f,(2y) = 8f,(y) for all y € X, so we
get from (31) that

folz +ky) + folw — ky) = K folz +y) + K folz —y) +2(1 — k) fo(z)  (32)
for all x,y € X. Setting z = x — y in (32), we have
folz + (k= 1Dy) + folz — (k+1)y) = k2fo($) + szo(x - 2y)

Lol ) fole — ) (3
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for all x,y € X. Replacing y by —y in (33), gives
folw = (k= 1)) + folz + (k+ 1)y) = k> fo(x) + K fo(x + 2y)
+2(1 = k) folz +y)
for all z,y € X. Adding (33) to (34), we obtain
Jolz + (k= 1)y) + folx — (k = D)y) + fo(z + (k+ 1)y) + fo(z — (k + 1)y)
= k> (folz + 2y) + folz — 2y)) + 2k* fo() (35)
+2(1 = k) (folz +y) + folz —y))
for all x,y € X. Setting x = = + ky in (32), we get
folx +2ky) + fo(a) = K*(folz + (k — y) + fo(z + (k + 1)y)))

) (36)
+2(1 = k%) folz + ky)
for all x,y € X. Replacing y by —y in (36), we have
Folx = 2ky) + folx) = K (fo(z — (k = 1)y) + fo(z — (k + 1)y))) (37

+ 2(1 - kz)fo(x - ky)
for all x,y € X. Adding (36) to (37), one gets
fo(x + Zky) + fo(‘r - Qky)
= k*[fo(x + (k= 1)y) + folz + (k + Dy) + folz — (k - 1)y) (38)
+ folr = (k+ D) +2(1 = K)(folw + ky) + folz — ky)) — 2fo(2)
for all z,y € X. Using (32), (35) and (38), we lead to
fo(-r + Qky) + fo(x - 2k7y)
= 4K*(1 = k) (fo(w +y) + folz — ) + (6k" — 8k” + 2) fo(x) (39)
+ k4(fo(x + 2y) + fo(a: - 2y))
for all x,y € X. Replacing y by 2y in (32), we get
folw + 2ky) + fola — 2ky) = k*(folx +2y) + folw — 29)) +2(1 = k) fo(x)  (40)
for all x,y € X. If we compare (39) with (40), then we conclude that
fo(x + Qy) + fo(x - 22/) = 4(fo(x + y) + fo(m - y)) - 6fo(x) (41)
for all x,y € X. Replacing x by 2z in (41), gives
f0(2($ + y)) + fo(Q(x - y)) - 4(fo(233 + 3/) + fo<2x - y)) - 6f0(2.%') (42)
for all z,y € X, which by considering f,(2x) = 8f,(z) and (42), gives
fo(Q-T + y) + f0(2$ - y) = 2f0(l‘ + y) + 2fo($ - y)12f0(m)
for all x,y € X, this means that f, is cubic. So

folz) = C(z,x, 2) (43)

for all x € X, that C is symmetric for each fixed one variable and is additive for
fixed two variables [11].
Hence, according to (30) and (43), we obtain that

f($) = fe(x) + fo(m) = B2($a1:) + C(ZL',ZE,Z‘) + Bl(l‘,l’)
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for all x € X. The proof of the converse is trivial. O

3. Generalized Hyers—Ulam stability in non-Archimedean spaces

Throughout this section, assume that G is an additive group and X is a
complete non-Archimedean space. Before taking up the main subject, for f : G x
G — X, we define the difference operator

Df(z,y) =f(x +ky) + f(x — ky) — K f(z +y) — K> f(x —y) + 2(k* — 1) f ()

212
B o)+ 21(-) - 670)

(k€ Z—{0,£1}) for all z,y € G.
Theorem 3.1. Let ¢ : G x G — [0,00) be a function such that

(2, 2%y) o
nan;O TR 0= nhigo |2‘2ng0(2 x) (44)
for all x,y € G, and
@q(z) = lim max{——@(2/z): 0<j<n} (45)
T

exists for all x € G, where

5 1
o(x) = m max{ max{|12/~c2\g0(x, z), [12(k* — 1)]p(0,2)} (46)

;max{|6]¢(0, 22), [12|@(kz, 2) }}

for all x € G. Suppose that an even function f: G — X with f(0) = 0 satisfies the
nequality

IDf (@, y)ll < oz, y) (47)
for all x,y € G. Then there exist a quadratic function Q) : G — X such that
1
1/ (22) —16f(2) — Q(z)] < W@q(ﬂﬂ) (48)
forallz € G. If
1 )
llirgogl_)ngo max{wcﬁ@]x) ci<j<n+i}=0 (49)

then Q is the unique quadratic function satisfying (48).
Proof. Interchanging = with y in (47) and then using the evenness of f, we obtain

1 (kz +y) + f(ka —y) — K> f(z +y) — K2 f(z — y) +2(k* = 1)f (y)
2012 (50)
WD (120 ar @) < oty )
for all z € G. Setting y = 0 in (50), we have

R -1)

o (f2x) —4f(@)] < ¢(0,2) (51)

12 (k) — 2k f ()
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for all z € G. Putting y = z in (50), we get

1F((k + )a) + F((k = Do) — k> f(22) +2(k* — 1) f(2)

212 (52)
_ Ll)(f@x) —4f(@))| < ¢(z,7)

for all z € G. Replacing = and y by 2z and 0 in (50), respectively, we obtain

k2(k%2 —1)
6
for all x € G. Setting y = kx in (50) and using the evenness of f, it follows that

(k) = K2 F((k + 1)) — K2 (k= 1))+ 200 = 1) (k)
D (o) — ap(a)] < ol ) "
for all € G. Tt follows from (51)~(54) that
I(4r) — 207(22) + 641 w)]

max{max{|12k?|¢(z, ), |12(k* — 1)|¢(0, )} (55)

|12 (2kz) — 2k f (22) — (f (4) — 4f 2))|| < #(0, 2) (53)

1
= 2z 1))
 maxc{|6]p(0, 2x), [12]ip(ker, 2)}}

for all x € G. According to (46) and (55), we obtain

[f(4z) —20f(22) + 64 (z)| < &(z) (56)

for all z € G. Let g : X — Y be a function defined by g(z) := f(2x) — 16f(x) for all
x € G. From (56), we conclude that

lg(2x) — 4g(z)|| < ¢() (57)
for all z € G. This implies that

( x)

lg(x) — I < |2<P( x) (58)

|2
for all z € G. Replacing x by 2" !z in (58), we have

g2 la) o2

27T $(2"'x) (59)

H — |2|2n

for all z € G. It follows from (44) and (59) that the sequence {% (2227;9”)} is Cauchy.

Since X is complete, we conclude that {< (222“”1)} is convergent. So one can define the

function @ : X — Y by Q(z) := lim,, % for all z € G. It follows from (58)
and (59) by using induction that

loto) - 2550 < o

max{i.gé(ij) :0<j<n} (60)
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for all n € N and all € G. Taking n to approach infinity in (60) and using (45)
one gets (48). By (44) and (47), we obtain

1DQ(x, y)|| = lim —5|[Dg(2"x, 2"y)|

n—o0 |2\
— 1' |2|2n |Df(2" a, 27 y) — 16D f(272, 2™y ||
< lin max{||D (2" z, 2" y)||,|16] || Df(2"x,2"y)|} = 0

1m |2|2

for all z,y € G. Therefore the function @ : G — X satisfies (4). Thus by Theorem
2.1, the function =z ~» Q(2x) — 16Q(x) is quadratic.
If @' is another quadratic function satisfying (48), then

Q) - Q@) = Jim 2] #]Q(2x) — @ (2')|
< Jim 2] 2 max{ [Q(2'z) — f(2'a)]| |£(2') - Q2] }

1 .
lim lim max{| |2] P(2z): i<j<n+i}=0

‘ |2 ’LHOO n—oo

for all 2 € G. Therefore Q = Q'. O
Theorem 3.2. Let ¢ : G x G — [0,00) be a function such that
. ¢(2n$72n ) 1 n—1
A o = 0= i o e ) (61)

forall xz,y € G, and

1 )
Pp(x) = lim max{|2|4j<,5(23x) : 0<j<n} (62)
exists for all x € G, with ¢(x) satisfies the equation (46) for all x € G. Suppose
that an even function f : G — X with f(0) = 0 satisfies the inequality (47) for all
x,y € G. Then there exist a quartic function V : G — X such that

1
1f(2z) —4f(z) = V(z)| < W@(m) (63)

forallx € G. If
lim nh_)ngomax{’ T@@(w’x) ci<j<n+i}=0 (64)

then V' is the unique quartic function satisfying (63).

Proof. Similar to the proof Theorem 3.1, we have

1/ (4x) = 20f (2z) + 64 (2)|| < () (65)
for all z € G. Let h: X — Y be a function defined by h(z) := f(2x) — 4f(x) for all
x € G. From (65), we conclude that

17(22) — 16h(z)|| < (z) (66)
for all x € G. Which implies that

() — M2

29 < et (67)
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for all z € G. Replacing x by 2" !z in (67), we have

h(2" 1z) h(2” ) 1
H 24(n—1) H — ’2|4n

P(2" ') (68)

for all z € G. It follows from (61) and (68) that the sequence {h2247;x } is Cauchy.
Since X is complete, we conclude that { i } is convergent. So one can define the

function V : X — Y by V(z) := lim, h(24n 2 for all z € G. It follows from (67)
and (68) by using induction that

) = "l < e

= B(2x): 0<j<n) (69)

for all n € N and all z € G. Taking n to approach infinity in (69) and using (62)
one gets (63). By (61) and (47), we obtain

|DV (2,y)]| = lim ,2|4nuDh< "z,2"y)|
= lim ,2|4n\|Df<2"“a: 2"+ ly) — 4D f (2", 2"y)||
< Jim o max{||Df(2" "z, 2" )|, [4] | DF(2"z, 2"y)|[} = 0

for all z,y € G. Therefore the function V : G — X satisfies (4). Thus by Theorem
2.1, the function = ~» V(2z) — 4V (x) is quartic. The rest of the proof is similar to
the proof of Theorem 3.1. ]

Theorem 3.3. Let ¢ : G X G — [0,00) be a function satisfies (44) for all z,y € G,
and the limit

lim max{——=3(27z): 0<j <n}

n—o9 21777
exists for all x € G, with ¢(x) satisfies the equation (46) for all x € G. Suppose
that an even function f : G — X with f(0) = 0 satisfies the inequality (47) for all
x,y € G. Then there exist a quadratic function QQ : G — X and a quartic function
V.G — X such that

1

1f(2) = Qz) = V(x)|| < |48| |2|2<pv( )} (70)

for all x € G, where ¢4(x) and py(z) are defined as in Theorems 3.1 and 3.2.
Moreover, if (49) holds, then Q) is the unique quadratic function and V is the unique
quartic function satisfying (70).

max{@,(z),

Proof. By Theorem 3.1 and 3.2, there exists a quadratic function @y : G — X and
a quartic function Vy: G — X such that

1 (22) =16 () — Qo(x)[| < |2|285q(56)
122) = 41(2) = Vo(a)]| < 7800
for all z € G. So we obtain (70) by letting Q(z) = —1/12Qo(z) and V (z)

1/12Vy(z) for all z € G.
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To prove the uniqueness property of @ and V, let Q. V' X — Y be another
quadratic and quartic functions satisfying (70). Let Q = Q — Q" and V =V — V.
Hence

1Q(x) + V(2)|| < max{[|f(z) — Q(z) = V()| + [ f(z) = Q'(x) = V'(z)|]}
< g (@), (o)
for all z € G. Since

1 .
lim lim max{—@(2'z) : i <j<n+i}

1—00 N—00 ’2|2j

=0= lim lim max{ G(2z): i<j<n+i}

1—00 N—00 |2‘4J
for all x € G. So
1Q(2"x) + V(2"z)|| =0

lim —
noo [2[4n

for all z € X. Therefore, we get V = 0 and then @ = 0, and the proof is complete. [
Theorem 3.4. Let ¢ : G x G — [0,00) be a function such that
2%y, 2"
i P22, 2"y)

= 1
for all x,y € G and
1 ,

Pe(x) = lim max{wgo(()ﬂjx) : 0<j<n} (72)
for all x € G, exists. Suppose that f: G — X is an odd function satisfying (47) for
all x,y € G. Then there exist a cubic function C' : G — X such that

3
_ < |l T 5
1@ = C@) < | gz 1#:(&) (73)
forallx € G. If

lim lim max{ 0,272): i<j<n+i}=0

1—00 N—00 WSO
then C' is the unique cubic function satisfying (73).
Proof. Putting = 0 in (47) and then using oddness of f, we get
|| K*(k* —1)
6
for all y € G. Which implies that

150) — L5200 < 1o

21z in (74), we have

(f(2y) = 8f (W)l < ¢(0,y)

0,z) (74)

for all x € G. Replacing x by

fE ) ) 3
I 23(n—1)  93n HS‘an—lkz(kQ_l)W(

for all z € G. It follows from (71) and (75) that the sequence {< (237;@} is Cauchy.

2
Since X is complete, we conclude that {f (223?)} is convergent. So one can define the

0,2" 1) (75)
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function C : X — Y by C(x) = limy_0e {52 for all z € G. Tt follows from (74)
and (75) by using induction that
f(2mx) 3
— < |
1) - L < ey

——(0,2'z) : 0<i<n} (76)

for all n € N and all € G. By taking n to approach infinity in (76) and using (72)
one obtains (73). By (71) and (47), one gets

1 - p(2"z, 2"y)
——||Df(2"z,2" < lim —————=
for all z,y € G. Therefore the function C': G — X satisfies (4). Thus by Theorem

2.1, the function z ~» C(z) is cubic. The rest of the proof is similar to the proof of
Theorem 3.1. O

IDC(,y)l| = lim. 0

Now, we are ready to prove the main theorem concerning the stability problem
for the equation (4).

Theorem 3.5. Let ¢ : G X G — [0,00) be a function satisfies (44) for all z,y € G,
and the limits

lim max{ (272): 0<j <nl, lim max{ (0,272): 0<j<n}

exists for all x € G, with ¢(x) satisfies the equation (46) for all x € G. Suppose that
a function f: G — X with f(0) = 0 satisfies the inequality (47) for all x,y € G.
Then there exist a quadratic function Q : G — X, a cubic function C : G — X and
a quartic function V : G — X such that

1/ () = Qx) — Cx) = V(2)||

1 3 - .
< Wmax{]m‘ max{@.(x), c(—x)} (77)
, |112| max{max{pq(x), |21295v($)}> max{@q(—), ‘21’295“(_37)}}}

for all x € G, where p4(x), pe(x) and ¢,(z) are defined as in Theorems 3.1, 3.2 and
3.4. If

lim lim max{ (29z): 0<j<n}

o0 noo XU g7 ¥

1 .

=0= lim lim max{——=¢(0,2°2): i <j<n+i}
1—00 N—00 |2‘3J

then Q) is the unique quadratic function, C is the unique cubic function and V is the

unique quartic function satisfying (77).

Proof. Let f,(z) = 1(f(z) — f(—x)) for all z € G. Then

1D o, 9)] < |;|max{so(fv,y)790(ﬂf, )

for all x,y € G. From Theorem 3.4, it follows that there exists a unique cubic
function C : G — X satisfying

1fole) = @I < gz moc{e(o). 2o} (78)
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for all z € G. Also, let f.(z) = 3(f(z) + f(—x)) for all 2 € G. Then

11 (2 9)]| < uﬂmax{wm,y),w(—x,—y)}

for all z,y € G. From Theorem 3.3, it follows that there exist a quadratic function
Q@ : G — X and a quartic function V : G — X satisfying

[fe(z) = Q(z) = V()]

1 (@), SRR I (79)
< 9] max{max{p,(x), W%(az)}, max{@,(—z), W%(_x)}}
for all z € G. Hence, (77) follows from (78) and (79). The rest of the proof is
trivial. o
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