
U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 3, 2010                                                      ISSN 1454-234x 

DISCRETE RESISTIVE MODELS FOR MULTI-RATE 
ANALYSIS OF INTEGRATED ANALOG CIRCUITS 

Cǎtǎlina-Gabriela POPESCU1 

Circuitele neliniare excitate cu semnale multiton sunt analizate cu metoda 
variabilelor multiple de timp, deoarece analiza tradiţionalǎ este greoaie. Aceastǎ 
metodǎ transformǎ ecuaţiile algebrice diferenţiale ce descriu circuitele neliniare 
excitate cu semnale multiton în ecuaţii cu derivate parţiale. Pentru a rezolva aceste 
ecuaţii sunt folosite circuite resistive dsicrete pentru elementele dinamice de circuit. 
Lucrarea propune noi circuite companion pentru circuitele excitate cu semnale 
multiton, generate cu algoritmul trapezelor. 

For the nonlinear circuits with widely-separated time scales it is used the 
analysis in  multi-time variables because the traditional analysis is very difficult. By 
applying this approach the differential algebraic equations describing the nonlinear 
analog circuits driven by multi-tone signals are transformed into multi-time partial 
differential equations. In order to solve these equations, associated discrete resistive 
equivalent circuits (companion models) for the dynamic circuit elements are used. 
This paper propose new companion models for multi-rate analysis of integrated 
analog circuits, generated by trapezoidal algorithm. 

Keywords: companion models, multiple time variables, trapezoidal algorithm, 
integrated circuits 

1. Introduction 

The RF-IC applications are, in general, strongly nonlinear and have carrier 
frequencies into the GHz-range, with modulated signals in the kHz-range. Due to 
these peculiarities simulating such systems with traditional SPICE-like integration 
algorithms that work with differential-algebraic equations (DAEs) becomes 
computationally expensive. The integration time-step must be small enough to 
accurately capture the fast component and obtaining information about the slowly 
component needs a large number of time-steps. In these circumstances finding the 
steady-state by brute force, that starts with an arbitrary initial condition and 
integrates the system until the transient components vanish, becomes prohibitive 
[1- 4, 6, 7, 12]. Shooting methods adjust the guess initial condition at the end of 
the period using a nonlinear solver (usually Newton-Raphson) and integrate by 
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transient simulation. When signals with widely separated rates are involved, 
reaching steady-state needs a large number of time steps. Consequently, shooting 
cannot handle efficiently circuits driven by multi-tone signals, being definitely a 
single tone algorithm [5]. The finite-difference time-domain technique (FDTD) 
discretizes the differential equations over a period yielding a system of algebraic 
equations, which are solved simultaneously to find solutions in all time points of 
the discretization network. FDTD method usually converges slower than shooting 
method [8]. Another approach for the steady state simulation is harmonic balance 
method (HB) that operates in the frequency domain. It computes the steady state 
response as the solution of a nonlinear algebraic equation system where the signal 
is represented by its truncated Fourier series. Because of the multidimensional 
Fourier transform availability, HB is a natural multi-tone algorithm, but if the 
circuit is strongly nonlinear, the number of Fourier coefficients needed to describe 
the unknown waveform accurately is large and therefore the method can be 
efficiently used for weakly or mildly nonlinearities only [3, 12].  

2. The equations for dynamic elements  

In this paper are represented the companion models for the dynamic circuit 
elements, generated by trapezoidal algorithm for the multi-rate analysis. For 
simplicity, it is consider the two time case. 

The characteristics of the nonlinear elements are approximated by 
piecewise-linear continuous curves and for the numerical integration the implicit 
trapezoidal algorithm is used.  

The characteristic equation for a linear inductor is 
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Using the formula for trapezoidal algorithm the equation (1,a) becomes 
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The voltage expression for a nonlinear inductor, using the trapezoidal 
algorithm, is:  
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For (k+1) iteration, the expression is  
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is a voltage source with known value from previous time step, dL  is the 

incremental inductance and )( )(
),(

k
jiL sΦ is the flux in origin.  

 
Fig.1. The nonlinear inductor characteristic approximated by piecewise-linear continuous curve 

 
The current expression using the trapezoidal algorithm, for a linear capacitor, is: 
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where the current source 
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has a known value from the previous step. 
Using the trapezoidal algorithm for numerical integration, the expression 

for the current through a voltage-controlled nonlinear capacitor, has the 
expression: 
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is a current source with a known value from the previous step and )( )(
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the charge  in origin as it shows in Fig. 2. 

 
 Fig. 2. The nonlinear capacitor characteristic approximated by piecewise-linear continuous curve 
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3. Discrete resistive models for dynamic circuits elements 

The discrete resistive circuits generated by these equations (1)-(4) are 
represented in Fig. 3 for a linear inductor, in Fig. 4 for a current controlled 
nonlinear inductor, in Fig. 5 for a linear capacitor and in Fig. 6 for a voltage-
controlled nonlinear capacitor. 

 
Fig. 3. The discrete resistive model for linear inductor.  

 
Fig. 4. The discrete resistive model for nonlinear inductor. 

 
Fig. 5. The discrete resistive model for linear capacitor. 

 
Fig. 6. The discrete resistive model for nonlinear capacitor. 
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4. Example 

Consider the nonlinear circuit shown in Fig. 7: 

 
Fig. 7. A nonlinear circuit 

 
Using the equivalent discrete resistive model for each element from the circuit 

for iteration (k+1), the equivalent circuit  is represented in Fig. 8. 
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If it is used for numerical integration the trapezoidal algorithm, the 
following data have the expressions: 
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Fig. 8. The equivalent discrete resistive circuit  

5. Conclusions 

Using the procedure with multiple time variables to describe multirate 
behavior, the differential algebraic equations describing the nonlinear analog 
circuits driven by multi-tone signals are transformed into multi-time partial 
differential equations. 

The discrete resistive circuits associated with a numerical implicit 
integration algorithm like the trapezoidal one or one of Gear algorithms are used 
to model the dynamic elements. Approximating the characteristics of the 
nonlinear elements by piecewise-linear continuous curves, in each grid point a 
new formulation for the modified nodal equations in two time variables can be  
obtained. Using the companion models for the dynamic circuit elements we can 
generate an efficient algorithm to solve MPDE. 
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The main advantage of the multi-time approach consists in improvements 
in simulation speed compared to Differencial Algebric Equations-based methods, 
because the simulation result can be numerically represented using far fewer 
points than in one time variable, while containing all the information to recover 
the original signal.  

Associated discrete resistive equivalent circuits (companion models) for 
the dynamic circuit elements are used in order to solve the multi-time partial 
differential equations. The discrete resistive equivalent circuits are depending on 
the implicit algorithm used for the numerical integration. So, it is important to use 
a accurate algorithm. The trapezoidal algorithm (the second order Adams- 
Moulton method) is one of the second order, so it is more accurate than the first 
order algorithms. 
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