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DISCRETE RESISTIVE MODELS FOR MULTI-RATE
ANALYSIS OF INTEGRATED ANALOG CIRCUITS

Citilina-Gabriela POPESCU!

Circuitele neliniare excitate cu semnale multiton sunt analizate cu metoda
variabilelor multiple de timp, deoarece analiza traditionald este greoaie. Aceastd
metodd transformd ecuatiile algebrice diferentiale ce descriu circuitele neliniare
excitate cu semnale multiton in ecuatii cu derivate partiale. Pentru a rezolva aceste
ecuatii sunt folosite circuite resistive dsicrete pentru elementele dinamice de circuit.
Lucrarea propune noi circuite companion pentru circuitele excitate cu semnale
multiton, generate cu algoritmul trapezelor.

For the nonlinear circuits with widely-separated time scales it is used the
analysis in multi-time variables because the traditional analysis is very difficult. By
applying this approach the differential algebraic equations describing the nonlinear
analog circuits driven by multi-tone signals are transformed into multi-time partial
differential equations. In order to solve these equations, associated discrete resistive
equivalent circuits (companion models) for the dynamic circuit elements are used.
This paper propose new companion models for multi-rate analysis of integrated
analog circuits, generated by trapezoidal algorithm.

Keywords: companion models, multiple time variables, trapezoidal algorithm,
integrated circuits

1. Introduction

The RF-IC applications are, in general, strongly nonlinear and have carrier
frequencies into the GHz-range, with modulated signals in the kHz-range. Due to
these peculiarities simulating such systems with traditional SPICE-like integration
algorithms that work with differential-algebraic equations (DAEs) becomes
computationally expensive. The integration time-step must be small enough to
accurately capture the fast component and obtaining information about the slowly
component needs a large number of time-steps. In these circumstances finding the
steady-state by brute force, that starts with an arbitrary initial condition and
integrates the system until the transient components vanish, becomes prohibitive
[1- 4, 6, 7, 12]. Shooting methods adjust the guess initial condition at the end of
the period using a nonlinear solver (usually Newton-Raphson) and integrate by
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transient simulation. When signals with widely separated rates are involved,
reaching steady-state needs a large number of time steps. Consequently, shooting
cannot handle efficiently circuits driven by multi-tone signals, being definitely a
single tone algorithm [5]. The finite-difference time-domain technique (FDTD)
discretizes the differential equations over a period yielding a system of algebraic
equations, which are solved simultaneously to find solutions in all time points of
the discretization network. FDTD method usually converges slower than shooting
method [8]. Another approach for the steady state simulation is harmonic balance
method (HB) that operates in the frequency domain. It computes the steady state
response as the solution of a nonlinear algebraic equation system where the signal
is represented by its truncated Fourier series. Because of the multidimensional
Fourier transform availability, HB is a natural multi-tone algorithm, but if the
circuit is strongly nonlinear, the number of Fourier coefficients needed to describe
the unknown waveform accurately is large and therefore the method can be
efficiently used for weakly or mildly nonlinearities only [3, 12].

2. The equations for dynamic elements

In this paper are represented the companion models for the dynamic circuit
elements, generated by trapezoidal algorithm for the multi-rate analysis. For
simplicity, it is consider the two time case.

The characteristics of the nonlinear elements are approximated by
piecewise-linear continuous curves and for the numerical integration the implicit
trapezoidal algorithm is used.

The characteristic equation for a linear inductor is
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Using the formula for trapezoidal algorithm the equation (1,a) becomes
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The voltage expression for a nonlinear inductor, using the trapezoidal
algorithm, is:
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dor(t,t)  Opr(tut) O (t,t
uL(tl>t2): (DLC(ZI 2)= (/)L(l 2)+ (DL(I 2) (2,3)
t 811 8t2

For (k+1) iteration, the expression is
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is a voltage source with known value from previous time step, L; is the

incremental inductance and @ (s((l.k}) )is the flux in origin.
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Fig.1. The nonlinear inductor characteristic approximated by piecewise-linear continuous curve

The current expression using the trapezoidal algorithm, for a linear capacitor, is:
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where the current source
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Jaij) =JC(19J—1)+Jc(l—Lj)juc(ld—l)%“c(’—ld) (3.d)
has a known value from the previous step.
Using the trapezoidal algorithm for numerical integration, the expression
for the current through a voltage-controlled nonlinear capacitor, has the
expression:
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the charge in origin as it shows in Fig. 2.
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Fig. 2. The nonlinear capacitor characteristic approximated by piecewise-linear continuous curve
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3. Discrete resistive models for dynamic circuits elements

The discrete resistive circuits generated by these equations (1)-(4) are
represented in Fig. 3 for a linear inductor, in Fig. 4 for a current controlled
nonlinear inductor, in Fig. 5 for a linear capacitor and in Fig. 6 for a voltage-
controlled nonlinear capacitor.
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Fig. 3. The discrete resistive model for linear inductor.
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Fig. 4. The discrete resistive model for nonlinear inductor.
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Fig. 5. The discrete resistive model for linear capacitor.
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Fig. 6. The discrete resistive model for nonlinear capacitor.
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4. Example

Consider the nonlinear circuit shown in Fig. 7:
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Fig. 7. A nonlinear circuit

Using the equivalent discrete resistive model for each element from the circuit
for iteration (k+1), the equivalent circuit is represented in Fig. 8.
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If it is used for numerical integration the trapezoidal algorithm, the
following data have the expressions:
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Fig. 8. The equivalent discrete resistive circuit
5. Conclusions

Using the procedure with multiple time variables to describe multirate
behavior, the differential algebraic equations describing the nonlinear analog
circuits driven by multi-tone signals are transformed into multi-time partial
differential equations.

The discrete resistive circuits associated with a numerical implicit
integration algorithm like the trapezoidal one or one of Gear algorithms are used
to model the dynamic elements. Approximating the characteristics of the
nonlinear elements by piecewise-linear continuous curves, in each grid point a
new formulation for the modified nodal equations in two time variables can be
obtained. Using the companion models for the dynamic circuit elements we can
generate an efficient algorithm to solve MPDE.
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The main advantage of the multi-time approach consists in improvements
in simulation speed compared to Differencial Algebric Equations-based methods,
because the simulation result can be numerically represented using far fewer
points than in one time variable, while containing all the information to recover
the original signal.

Associated discrete resistive equivalent circuits (companion models) for
the dynamic circuit elements are used in order to solve the multi-time partial
differential equations. The discrete resistive equivalent circuits are depending on
the implicit algorithm used for the numerical integration. So, it is important to use
a accurate algorithm. The trapezoidal algorithm (the second order Adams-
Moulton method) is one of the second order, so it is more accurate than the first
order algorithms.
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