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CASCADE REFRIGERATION SYSTEMS  

Horaţiu POP1, Michel FEIDT2, Gheorghe POPESCU3, Valentin APOSTOL4, 
Cristian Gabriel ALIONTE5 

 

Lucrarea propune un model matematic destinat optimizării instalaţiilor 
frigorifice cu comprimare mecanică de vapori în cascadă dublă. Optimizarea unei 
instalaţii frigorifice presupune găsirea regimului funcţional optim, caracterizat de 
un coeficient de performanţă frigorifică maxim. Pentru elaborarea modelului 
matematic ciclurile termodinamice inversate corespunzătoare celor două cascade, 
superioară, şi respectiv, inferioară, sunt considerate exo- şi endo-ireversibile. Pe 
baza modelului matematic s-a efectuat un studiu de optimizare, în urma căruia s-au 
obţinut o infinitate de regimuri optime de funcţionare, dintre care, doar unul singur 
este caracterizat de un coeficient de performanţă frigorifică maxim maximorum. 

 
This paper proposes a mathematical model devoted to the optimization of 

conventional double cascade refrigeration systems. The optimization involves 
finding the optimum operation regime corresponding to a maximum coefficient of 
performance COP. The thermodynamic cycles belonging to the top and bottom 
cascades, respectively, are of reversed endo- and exo-irreversible type. An 
optimization analysis is performed. An infinity of optimum operation regimes are 
obtained but only one of them leads to a maximum-maximorum COP. 

Keywords: conventional double cascade refrigeration systems, irreversible  
                   processes, optimal operation regime, coefficient of performance. 

1. Introduction 

Conventional cascade refrigeration systems are obtained by coupling two 
different single stage vapor compression refrigeration systems. The two 
refrigeration systems are thermally coupled through an intermediate condenser-
evaporator heat exchanger. Being a more economical solution than the multiple 
stages vapor compression refrigeration systems, the conventional cascade 
refrigeration systems are usually used to obtain low temperatures (-50÷-90)°C,   
[1, 2]. 
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The optimization of a refrigeration system involves finding the optimum 
operation regime, corresponding to a maximum coefficient of performance 
( COP ) [3÷8]. A maximum COP  means minimum energy consumption, for an 
imposed cooling load. Starting from this objective function, for almost all 
refrigeration systems with mechanical vapor compression, the optimal 
performance is obtained for a certain distribution of heat exchangers 
conductances, on one hand, and for certain values of temperature differences 
between the working fluid and heat sources, on the other hand. 

Thus, this paper presents a mathematical model, which aims to find the 
optimum operating regime of a conventional double cascade refrigeration system 
when the cooling load is imposed. The temperature – entropy (T-S) diagram of the 
generalized thermodynamic cycle of this refrigeration system is shown in Fig.1. 

 

 
Fig.1. The generalized thermodynamic cycle of the conventional double 

cascade refrigeration system in temperature – entropy (T-S) diagram 
 
 There are many papers that deal with the optimization of real cascade 
refrigeration systems. The approach differs from author to author, by using 
different thermodynamic analysis methods like the entropy generation 
minimization method [3, 4] and finite time thermodynamics techniques [5÷8]. 
Some authors considered in their optimization method different working fluids, 
aiming for optimal condensing temperature at the intermediate heat exchanger [9] 
or for optimum pairs of working fluids [10]. 

2. Mathematical model 

To develop the mathematical model the following hypotheses are considered: 
the operation regime of the double cascade refrigeration systems is stationary; 
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thermodynamic cycles are exo- irreversible due to the heat exchange at finite 
temperature differences and endo-irreversible due to the internal irreversibilities; 
the losses between the cold and hot parts of the machine are not taken into 
account; the intermediary heat exchanger that ensures the thermal coupling of the 
two cascades is adiabatically insulated; the heat transfer is conductive - 
convective. 

Considering the average temperatures of working fluids in the three heat 
exchangers of the conventional double cascade refrigeration system, FT  and 'CT  
for the low temperature stage (BT cycle) and 'FT  and CT  for the high temperature 
stage (HT cycle). The low and high source temperatures, SFT  and SCT , 
respectively, are constant. Thus, the temperature differences in the heat 
exchangers can be written: 
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 Energy and entropy balance equations, for both high and low temperature 
cascades are used, as follows:  
Heat balance equations: 

High temperature cascade: 
for the condenser: CCC TKQ Δ⋅=              (2) 

for the evaporator: iii TKQ Δ⋅=                         (3) 
Low temperature cascade: 

for the condenser: iii TKQ Δ⋅=                                             (4) 
for the evaporator: FFF TKQ Δ⋅=                                               (5) 
Equations of energy balance per cycles: 

High temperature cascade: iCHT QQP −=                      (6) 

Low temperature cascade: FiBT QQP −=                               (7) 
where HTP  and BTP  are the compressor power input in the two cascades. 

By summing up relations (6) and (7), the total consumed power is 
obtained: 
 FCFiiCBTHTT QQQQQQPPP −=−+−=+=  (8) 
Entropy balance equations for endo-irreversible cycles: 
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Low temperature cascade: 0=++−
′
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 In the above eqs., FK , iK , and CK  are the heat exchangers conductances 
for the low temperature cascade evaporator, intermediate heat exchanger 
(condenser-evaporator) and high temperature cascade condenser, respectively, 
while the terms iHS  and iBS , in the entropy balance equations, are the entropy 
sources dues to the internal irreversibilities of the HT and BT cycles, respectively. 

The conventional double cascade energetic coefficient of performance can 
be defined as: 

 
T

F
P
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energyconsumed
energyusefulCOP ==
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""  (11) 

Thus, the objective function of this optimization model is the 
maximization of the COP . For an imposed cooling load ( .ctQF = ), the 
maximization of COP  involves, as observed in equation (11), the minimization of 
the total power input. Thus, the expression of the total consumed power ( )TP , eq. 
(8), will be processed bellow. From eq. (5), FT  can be expressed as 

F

F
SFF K

QTT −= . Using FT  together with eqs. (4) and (1), in eq. (10), after some 

algebra it results: 
 ( ) iiBCF KSATT +−=′′ 1  (12) 

In eq. (12) the following notation was used ⎟⎟
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 If in eq. (12) one considers eq. (1), it results the temperature difference 
between the two working fluids in the intermediate condenser-evaporator heat 
exchanger, as follow: 
 ( )[ ]{ } 'FiiBi TKSAT ⋅−+−=Δ 111  (13) 
 Combining eqs. (2), (3), (8) and (12), one finds: 
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 Using eq. (1) and (2), eq. (8) can be written as follows: 
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 Thus, based on eqs. (14) and (15), the total power consumption is 
expressed as: 
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After mathematical processing, eq. (16) can be written as: 

FSCT QETP −⋅=                                                  (17) 
where:  
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Knowing that ( )FKfA = , from eq. (18) it results that ( )FiC KKKfE ,,= . 
As seen from eqs. (17) and (18), at imposed FQ , SFT , SCT , iHS , iBS , the 

minimum of TP  is obtained when the expression E  is minimum. 
 If we impose a constant value of the overall heat exchanger conductance, 
i.e. .ctKKKK FCiT =++= , then iK  can be expressed as: 

FCTi KKKK −−=                                                (19) 
By substituting the eq. (19) into eq. (17), it results that ( )FC KKfE ,= . 

The optimal values of FK  ( FoptK ) and CK  ( CoptK ), for which expression E  

reaches a minimum, will be found as solutions of eqs. 0=
∂
∂

FK
E  and 0=

∂
∂
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E . 

Thus, eq. 0=
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E , after mathematical processing, becomes: 
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Solving 
FK

A
∂
∂  and 

F
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∂
∂ , from eq. (19), and replacing them in eq.(20) 

gives: 
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 If A  is substituted in eq. (21), after mathematical processing it results:  
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 Next, 0=
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E  is computed, giving:  
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 From relation (19), 1−=
∂
∂

C

i
K
K . With this relation, eq. (23) becomes: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
⋅+⋅=

iiB
iH

Copti KSA
S

KK
11111                              (24) 

From relation (24) it results: ⎥
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 Combining eqs. (22) and (25), after mathematical processing it is obtained: 
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If eqs. (22) and (26) are substituted in eq. (19) it results FoptK :  
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where iBiHi SSS += . 
Starting from eq. (19) and using eqs. (26) and (27), ioptK  is found as:  

)( CoptFoptTiopt KKKK +−=                                       (28) 

If eqs. (17) and (18) are substituted in eq. (11), dividing by FQ  and using 
the optimal heat exchanger conductances values, it results the maximum 
coefficient of performance: 
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The optimum temperature difference for lower cascade evaporator is 
obtained from relationship (5), corresponding to FoptK : 

FoptFFopt KQT =Δ                                            (30) 
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Similarly, the optimum temperature difference for the upper cascade 
condenser results by combining eqs. (2), (8), (11) and (17) for FoptK , CoptK  and 

maxCOP  values: 
( ) CoptFCopt KCOPQT 11 max +⋅=Δ                               (31) 

Under these conditions, it is found the optimal operating regime, 
characterized by: 
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In other words, the optimum operating variables are obtained for a given 
set of parameters, which generally represents the initial data in the design work. 

3. Optimization study  

In order to see how the mathematical model proposed in this paper 
provides reliable results, a conventional double cascade refrigeration system was 
considered, whose operating conditions are characterized by the following 
variable values: the cooling load 10000100 ÷=FQ W; cold source temperature: 

200=SFT K; hot source temperature: 308=SCT K; overall heat exchanger 
conductance: 1300=TK W/K; evaporating temperature for high stage (HT cycle): 

247='FT K; internal entropy sources, corresponding to the BT cycle 
50.SiB = W/K and to the HT cycle 70.SiH =  W/K, respectively. 
A computer program was developed according to this mathematical 

model. Parts of the results are presented below (Figs. 2÷4). 
Figure 2 presents the optimum heat exchanger conductances distribution 

function of the cooling load. It is noted that once the cooling load increases, at its 
low values )2000100( ÷∈FQ W, CoptK  strongly decreases and FoptK  strongly 

increases, while ioptK  increases slowly. Next, for values of 

)100002000( ÷∈FQ W, the heat exchanger conductances distribution tends to 
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respect the principle of equipartition [11, 12]. Over 43300=FQ W the 
equipartition of exchanger conductances distribution is established. 
 

 
Fig.2.  Optimum heat exchanger conductances as function of the cooling load 

 
Figure 3 shows the variation of the maximum coefficient of performance, 

corresponding to the optimum distribution of heat exchangers conductances 
( FoptK , ioptK  and CoptK ), function of the cooling load. Each value of the 
coefficient of performance is a maximum value for an imposed set of variables. 
Also, it can be observed that there are an infinity of operating regimes at 
maximum COP , but there is only one operating regime characterized by an 
maximum-maximorum COP  ( 181.COPmax

max = [-], corresponding to 
2400=FQ W). 
Based on the same thermodynamic analysis method, the existence of a 

maximum-maximorum energetic coefficient of performances operating regime 
was also obtained in case of the optimization of power plants [13]. 

Figure 4 shows the variation of the the optimum temperature differences at 
the low temperature stage evaporator ( FoptTΔ ), at the high temperature stage 

condenser ( CoptTΔ ), and between the two working fluids in the intermediate 

condenser-evaporator heat exchanger ( ioptTΔ ) respectively, with respect to the 

cooling load. On can observe that all three temperature differences FoptTΔ , 

ioptTΔ  and CoptTΔ , respectively, increase once the cooling load increases. It 
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results that ioptTΔ  is larger then FoptTΔ  and that CoptTΔ  is greater than ioptTΔ . 
For the operating regime with the maximum-maximorum COP  the optimal 
values are: 795.TFopt =Δ K, 67.Tiopt =Δ K and 89.TCopt =Δ K. 
 

 
Fig.3. Maximum COP  as function of the cooling load 

 

 
Fig.4 Optimum temperature differences as function of the cooling load 
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                                      (a)                                                                           (b) 

Fig. 5 Influence of iBS  and iHS  on maximum COP  as a function of the cooling load 

(a) influence of iBS ; (b) influence of iHS . 
 

Figures 5 (a) and 5 (b) present the influence of the internal irreversibility 
sources, iBS  and iHS , on maximum COP  as a function of the cooling load. It 
results that the refrigeration system, only in a endo-irreversible case ( 0>iBS ; 

0>iHS ), has an operating regime for which COP is maximum– maximorum. In 

this case max
maxCOP , values decrease with the increase in the internal irreversibility 

sources, corresponding to an increasing cooling load. Thus, the mathematical 
model proposed in this paper confirms the real operating case, where the internal 
irreversibilities increase with the increasing of the cooling load [1, 2]. 

Comparing the influence of iBS  (Fig. 5 a) with the influence of iHS  (Fig. 
5 b), it results that the two internal irreversibility sources have a symmetric 
influence on the maximum COP  performance. Thus, both internal irreversibility 
sources of the two stages cycle in a conventional cascade refrigeration system 
have the same influence on the operating regime. 

4. Conclusions 

The paper has presented a mathematical model, which aims to find the 
optimum operating regime of a conventional double cascade refrigeration system 
for imposed cooling load ( .ctQF = ) and overall heat exchanger conductance 
( .ctKT = ). The main hypotheses of the mathematical model are the following: 
stationary operating regime; exo- and endo-irreversible thermodynamic cycles, 
due to the heat exchange at finite temperature differences and due to the internal 
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irreversibilities, respectively; no heat losses between the cold and hot ends of the 
system; adiabatic thermal coupling in the intermediary heat exchanger; conductive 
- convective heat transfer between the working fluid and heat sources. 
Generalized thermodynamic cycle of the conventional cascade system is presented 
in Fig. 1. 

The search for the optimum operating regime involves finding the optimal 
constructive parameters (heat exchanger conductances distribution) and functional 
parameters (temperature differences between the working fluids and the heat 
sources) for which the coefficient of performance (COP ) is maximum. 

A computer program was developed according to the mathematical model. 
Some results are presented in the paper. Optimum parameter values are obtained 
for a specified set of variables which represent the initial set of data for the design 
activity. 

For the imposed set of variables ( 10000100( ÷∈FQ )W; 200=SFT K; 
308=SCT K; 1300=TK W/K; 50.SiB = W/K and 70.SiH = W/K), in Fig. 2 is 

presented the optimal distribution of the heat exchanger conductances ( CoptK , 

FoptK  and ioptK ) which leads to a maximum coefficient of performance. If 

)100002000( ÷∈FQ W, the heat exchanger conductances distribution tends to 
respect the principle of equipartition. Over 43300=FQ W the equipartition of 
exchanger conductances distribution is established. 

From Fig. 3 it results that there is an infinity of operating regimes at 
maximum COP , but there is only one operating regime characterized by an 
maximum-maximorum COP  ( 181.COPmax

max = [-] for 2400=FQ W). Maximum 
COP , in imposed cooling load conditions, corresponds to an economical 
operating regime, characterized by a minimum power consumption. 

The optimal temperature differences ( FoptTΔ , CoptTΔ  and ioptTΔ ), 
between working fluid and heat sources, between the working fluids in the 
intermediate condenser-evaporator heat exchanger, increase with the increase in 
the cooling load; ioptTΔ  experiences a greater increase than FoptTΔ  and CoptTΔ  

is greater than ioptTΔ  (Fig. 4); for the maximum-maximorum COP  operating 

regime their optimal values are: 795.TFopt =Δ K, 67.Tiopt =Δ K and 

89.TCopt =Δ K. 
The results (Figs. 2÷4) point out that all constructive and functional 

parameters are directly and evenly (Fig. 5) influenced by the internal 
irreversibility sources ( iBS  and iHS ) corresponding to the two stages of the 
conventional cascade refrigeration system. Thus, it results that in order to obtain a 
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correct information using the here presented mathematical model it is very 
important to appreciate the correct values of the internal irreversibility sources. 

The results obtained by this mathematical model are in good concordance 
with the real operating regimes where the internal irreversibilities increase with 
the increase of the cooling load. 

The mathematical model proposed in this paper does not take into 
consideration the properties of the working fluids corresponding to high and low 
temperature stages. In real operating conditions, besides irreversibilities dues to 
the imperfections of the thermodynamic processes, the pair of working fluids has 
a major influence on the conventional double cascade refrigeration system COP . 
In these conditions, future work will be conducted in this direction for completing 
and improving the here proposed mathematical model. 

R E F E R E N C E S 

[1]. G. Popescu, V. Apostol, S. Porneală Al. Dobrovicescu, E.E. Vasilescu, C. Ioniţă, 
Refrigeration equipments and systems, PRINTECH Ed., Bucharest, 2005. 

[2]. M. Feidt, Thermodynamics and energetic optimization of systems and processes (in 
Romanian), BREN Ed., 2001. 

[3]. E.B. Ratts, J.S. Brown, A generalized analysis for cascading single fluid vapor compression 
refrigeration cycles using an entropy generation minimization method, Int. J. Refrigeration, 
V23 (5), pp. 353-365, 2000. 

[4]. Al. Dobrovicescu, D. Stanciu, E.E. Vasilescu, I. Oprea, Analysis of the real behavior and 
optimization of gas turbine cycle, U.P.B. Sci. Bull., Series D, Vol. 70, No.3, pp. 103-116, 
2008. 

[5]. Y. Goth and M. Feidt, Recherches des conditions optimales de fonctionnement des pompes a 
chaleur où machines a froid associées a un cycle du Carnot endoréversible, C.R. Acad. Sci., 
Paris, Tomme 303 , serie 2, nr.1 ,pp. 19-24, 1986. 

[6] L. Chen, Y. Bi, F. Sun, C. Wu, A generalized model of a combined refrigeration cycle and its 
performance, Int. J Thermal Sciences, V 38 (8), pp. 712-718, 1999. 

[7]. Jameel-ur-Rehman K., Syed M.Z., Thermodynamic optimization of finite time compression 
refrigeration systems, Energy Conversion and Management, V 42 (12), pp. 1457-1475, 2001  

[8]. B. Agnew, S.M. Ameli, A finite time analysis of a cascade refrigeration system using 
alternative refrigerants, Applied Thermal Engineering, V 24 (17-18), pp. 2557-2565, 2004 

[9]. T.S. Lee, C.H. Liu, T.W. Chen, Thermodynamic analysis of optimal condensing temperature 
of cascade – condenser in CO2 / NH3 cascade refrigeration systems, Int. J Refrigeration, V29 
(7), pp. 1100-1108, 2006.  

[10]. H.M. Getu, P.K Bansal, Thermodynamic analysis of an R744-R717 cascade refrigeration 
system, Int. J. Ref., V 31 (1), pp. 45-54, 2008. 

[11] A. Bejan, D. Tondeur, Equipartition, optimal allocation, and the constructal approach to 
predicting organization in nature, Rev. Gen. Thermique, V 37 (3), pp. 165–180, 1998. 

[12] A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge Univ. Press, 
Cambridge, UK, 2000. 

[13] V. Radcenco, E.E. Vasilescu, G. Popescu, V. Apostol, New approach to thermal power plants 
operation regimes maximum power versus maximum efficiency, Int. J. Thermal Sciences, 
Vol. 46 (12), pp. 1259-1266, 2007. 


