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OPTIMIZATION OF CONVENTIONAL IRREVERSIBLE
CASCADE REFRIGERATION SYSTEMS

Horatiu POP', Michel FEIDT?, Gheorghe POPESCU®, Valentin APOSTOL",
Cristian Gabriel ALIONTE’

Lucrarea propune un model matematic destinat optimizarii instalatiilor
frigorifice cu comprimare mecanica de vapori in cascada dubld. Optimizarea unei
instalatii frigorifice presupune gasirea regimului functional optim, caracterizat de
un coeficient de performanta frigorifica maxim. Pentru elaborarea modelului
matematic ciclurile termodinamice inversate corespunzdtoare celor doud cascade,
superioard, §i respectiv, inferioard, sunt considerate exo- si endo-ireversibile. Pe
baza modelului matematic s-a efectuat un studiu de optimizare, in urma cdruia s-au
obtinut o infinitate de regimuri optime de functionare, dintre care, doar unul singur
este caracterizat de un coeficient de performantd frigorificd maxim maximorum.

This paper proposes a mathematical model devoted to the optimization of
conventional double cascade refrigeration systems. The optimization involves
finding the optimum operation regime corresponding to a maximum coefficient of
performance COP. The thermodynamic cycles belonging to the top and bottom
cascades, respectively, are of reversed endo- and exo-irreversible type. An
optimization analysis is performed. An infinity of optimum operation regimes are
obtained but only one of them leads to a maximum-maximorum COP.

Keywords: conventional double cascade refrigeration systems, irreversible
processes, optimal operation regime, coefficient of performance.

1. Introduction

Conventional cascade refrigeration systems are obtained by coupling two
different single stage vapor compression refrigeration systems. The two
refrigeration systems are thermally coupled through an intermediate condenser-
evaporator heat exchanger. Being a more economical solution than the multiple
stages vapor compression refrigeration systems, the conventional cascade
refrigeration systems are usually used to obtain low temperatures (-50+-90)°C,
[1,2].
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The optimization of a refrigeration system involves finding the optimum
operation regime, corresponding to a maximum coefficient of performance
(COP) [3+8]. A maximum COP means minimum energy consumption, for an
imposed cooling load. Starting from this objective function, for almost all
refrigeration systems with mechanical vapor compression, the optimal
performance is obtained for a certain distribution of heat exchangers
conductances, on one hand, and for certain values of temperature differences
between the working fluid and heat sources, on the other hand.

Thus, this paper presents a mathematical model, which aims to find the
optimum operating regime of a conventional double cascade refrigeration system
when the cooling load is imposed. The temperature — entropy (T-S) diagram of the
generalized thermodynamic cycle of this refrigeration system is shown in Fig.1.
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Fig.1. The generalized thermodynamic cycle of the conventional double
cascade refrigeration system in temperature — entropy (T-S) diagram

There are many papers that deal with the optimization of real cascade
refrigeration systems. The approach differs from author to author, by using
different thermodynamic analysis methods like the entropy generation
minimization method [3, 4] and finite time thermodynamics techniques [5+8].
Some authors considered in their optimization method different working fluids,
aiming for optimal condensing temperature at the intermediate heat exchanger [9]
or for optimum pairs of working fluids [10].

2. Mathematical model

To develop the mathematical model the following hypotheses are considered:
the operation regime of the double cascade refrigeration systems is stationary;
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thermodynamic cycles are exo- irreversible due to the heat exchange at finite
temperature differences and endo-irreversible due to the internal irreversibilities;
the losses between the cold and hot parts of the machine are not taken into
account; the intermediary heat exchanger that ensures the thermal coupling of the
two cascades is adiabatically insulated; the heat transfer is conductive -
convective.

Considering the average temperatures of working fluids in the three heat
exchangers of the conventional double cascade refrigeration system, 7 and T

for the low temperature stage (BT cycle) and Tp+ and T~ for the high temperature
stage (HT cycle). The low and high source temperatures, Tgr and Ty,
respectively, are constant. Thus, the temperature differences in the heat
exchangers can be written:
ATC :TC_TSC >0
AT;-:TCf—TF'>0 (1)
ATF :TSF_TF >0
Energy and entropy balance equations, for both high and low temperature
cascades are used, as follows:

Heat balance equations:
High temperature cascade:

for the condenser: ‘QC‘ =Kc-AT¢e 2)
for the evaporator: Q; = K; - AT; 3)
Low temperature cascade:
for the condenser: Q; = K; - AT “4)
for the evaporator: Op = Ky - ATp (5)
Equations of energy balance per cycles:
High temperature cascade: Pyp = ‘QC‘ - Qi (6)
Low temperature cascade: Pgp = O; — Op (7

where P, and P,, are the compressor power input in the two cascades.

By summing up relations (6) and (7), the total consumed power is
obtained:

PTZPHT+PBT=‘QC‘_Qi+Qi_QFZ‘QC‘_QF ®)
Entropy balance equations for endo-irreversible cycles:

. 0 ). .
High temperature cascade: — M + TQ—’ +8;7 =0 )
F/

Ic
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Low temperature cascade: — 9 + 9r +S;p=0 (10)
Ter Tg

In the above eqs., K, K;, and K are the heat exchangers conductances

for the low temperature cascade evaporator, intermediate heat exchanger
(condenser-evaporator) and high temperature cascade condenser, respectively,
while the terms S;; and §;p, in the entropy balance equations, are the entropy
sources dues to the internal irreversibilities of the HT and BT cycles, respectively.
The conventional double cascade energetic coefficient of performance can

be defined as:

"useful energy" .

COP = /i 2" _OF
"consumed energy"  Pr

(11)

Thus, the objective function of this optimization model is the
maximization of the COP. For an imposed cooling load (QF =ct.), the
maximization of COP involves, as observed in equation (11), the minimization of
the total power input. Thus, the expression of the total consumed power (PT), eq.

(8), will be processed bellow. From eq. (5), 7, can be expressed as

T, =T, —%. Using 7, together with eqs. (4) and (1), in eq. (10), after some
F
algebra it results:

Ty [T =1-(4+ S35 )/K; (12)

In eq. (12) the following notation was used 4 = QF / (T W IQ{F] .
F

If in eq. (12) one considers eq. (1), it results the temperature difference

between the two working fluids in the intermediate condenser-evaporator heat
exchanger, as follow:

AT = 1= (4+ S ) ;|- 1) 7 (13)
Combining egs. (2), (3), (8) and (12), one finds:
Tse _1-(4+Sip)-(VK; +VKe)- S /K (1= + $ip) K,)
s 1-(4+S;)/K;
Using eq. (1) and (2), eq. (8) can be written as follows:
. X T )
B =K. AT, -Qr =K '(Tc _TSC)_QF =K Tsc '(T_C_IJ_QF (15)

Ne

(14)

Thus, based on eqgs. (14) and (15), the total power consumption is
expressed as:
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| 1= {4+ Sip ) K; | —1}—QF
1-(4+8g) (VK; +1/Kc)-Sim [K e -(1-(4+ S5 ) K; )
(16)

PT=KC'TSC'{

After mathematical processing, eq. (16) can be written as:
Pr=Tsc E-OF (17)
where:

E:{HS’I.H-( L —IH/K L —1]-[1—31‘”}1} (18)
A+S, K, A+S, K, K. K.

Knowing that 4= f(K), from eq. (18) it results that £ = f(K,K;,Kf).
As seen from eqgs. (17) and (18), at imposed QF s Ty Ty Sipr, SiBa the

SF»> =8C> ~1

minimum of Pr is obtained when the expression E is minimum.
If we impose a constant value of the overall heat exchanger conductance,
1.e. Ky =K;+ Ko+ Kp =ct., then K; can be expressed as:

Ki=Kr-Kc—-Kp (19)
By substituting the eq. (19) into eq. (17), it results that £ = f (KC,K F)-
The optimal values of Kr (Kp,, ) and K¢ (Kcop, ), for which expression E

reaches a minimum, will be found as solutions of egs. OE =0 and OF =0.
oK oK ¢
OE . .
Thus, eq. Ko =0, after mathematical processing, becomes:
F
04 oK;
: 2
(A + SiB )2 Ki
Solving and L, from eq. (19), and replacing them in eq.(20)
Kr Kr
gives:
Ki _ Aopt + SiB 1)
KFopt Aopt

If A is substituted in eq. (21), after mathematical processing it results:
Tsp 'KFopt -OF

Or

K;= KFopt + SiB ) (22)

Next, OE =0 is computed, giving:
oK
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oK; 5
~He ] -{HS,-H-( L _iﬂ 23)
Ki  Kiop A+Sip  K;
. oK; : . .
From relation (19), = —1. With this relation, eq. (23) becomes:
C
1 1+ S, - L1 (24)
K; K Copt A+ SiB K;
. 1 1
From relation (24) it results: K, =K; |1+ S8y - ——— 25
(24) Copt i { iH (A i SiB Ki j} (25)
Combining eqs. (22) and (25), after mathematical processing it is obtained:
1 . . A
KCopt = KFopt |1+ ’ SiB + SiH 1= 2 (26)
Aopt KFopt
If egs. (22) and (26) are substituted in eq. (19) it results K,

KT+2'SI'
3+Tgr /O -(S; + Siz)

KFopt = (27)

where S; = S;;7 +S;5.
Starting from eq. (19) and using eqs. (26) and (27), K;,;
Kiopt =Kp - (KFopt + KCopt) (28)
If egs. (17) and (18) are substituted in eq. (11), dividing by QF and using

the optimal heat exchanger conductances values, it results the maximum
coefficient of performance:

1s found as:

cop. —— ! T

: 1 1
1+S"H{A +S5 K, J
TSC opt iB iopt

OF LS U N PR 72
Aopt+SiB Kiopt KCopt KCopt_

The optimum temperature difference for lower cascade evaporator is
obtained from relationship (5), corresponding to K, :

ATFopt = QF/KFopt (30)
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Similarly, the optimum temperature difference for the upper cascade
condenser results by combining egs. (2), (8), (11) and (17) for K Fopt » Kcopt and

COPR, . Vvalues:
ATCopt = QF '(I/COPmax + 1)/KCopt (31

Under these conditions, it is found the optimal operating regime,
characterized by:

Q n KFopt
Tsc Kiopt
Tsp Kcopt
Parameters {Tg+ ; — Optimum Variabiles COP,,,,
Kr ATpopt
Sit ATcopt
Si ATiopt

In other words, the optimum operating variables are obtained for a given
set of parameters, which generally represents the initial data in the design work.

3. Optimization study

In order to see how the mathematical model proposed in this paper
provides reliable results, a conventional double cascade refrigeration system was
considered, whose operating conditions are characterized by the following

variable values: the cooling load QF =100-+10000 W; cold source temperature:
Tsg =200K; hot source temperature: 7gc =308K; overall heat exchanger
conductance: Ky =1300W/K; evaporating temperature for high stage (HT cycle):
Trr=247K,; internal entropy sources, corresponding to the BT cycle
S;5 =0.5 W/K and to the HT cycle S;;; =0.7 W/K, respectively.

A computer program was developed according to this mathematical
model. Parts of the results are presented below (Figs. 2+4).

Figure 2 presents the optimum heat exchanger conductances distribution
function of the cooling load. It is noted that once the cooling load increases, at its

low values Qf € (100+2000) W, Kcope strongly decreases and K, strongly

increases, ~ while  Kj,,  increases slowly. Next, for values of

Or €(2000+10000) W, the heat exchanger conductances distribution tends to
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respect the principle of equipartition [11, 12]. Over QF:43300W the
equipartition of exchanger conductances distribution is established.

750 | | |
Tsc= 308 K Tsp=200 K K=1300 WIK
§u=0.7 WIK $,5=05 WIK
600 .
= Kcopt
é Kiopt
= 450 | —
i
g
KFopt
300 =
150 | | | |
0 2000 4000 6000 8000 10000
Qp[W]

Fig.2. Optimum heat exchanger conductances as function of the cooling load

Figure 3 shows the variation of the maximum coefficient of performance,
corresponding to the optimum distribution of heat exchangers conductances
(KFopt» Kiops and Kcgp, ), function of the cooling load. Each value of the

coefficient of performance is a maximum value for an imposed set of variables.
Also, it can be observed that there are an infinity of operating regimes at
maximum COP, but there is only one operating regime characterized by an

maximum-maximorum  COP  (COPI* =1.18[-],  corresponding  to

Op =2400W).

Based on the same thermodynamic analysis method, the existence of a
maximum-maximorum energetic coefficient of performances operating regime
was also obtained in case of the optimization of power plants [13].

Figure 4 shows the variation of the the optimum temperature differences at
the low temperature stage evaporator (AT, ), at the high temperature stage

condenser (AT¢,,,), and between the two working fluids in the intermediate
condenser-evaporator heat exchanger (AT}, ) respectively, with respect to the
cooling load. On can observe that all three temperature differences AT, ,

ATy and ATc,, , respectively, increase once the cooling load increases. It
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results that AT;,,

For the operating regime with the maximum-maximorum COP the optimal
values are: ATy, =5.79K, AT;,,, =7.6K and AT¢,, =9.8K.

; 1s larger then AT, Fopt and that ATcopr is greater than ATop -

Tsc= 308 K Ter=200 K Ky=1300 WIK
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Fig.3. Maximum COP as function of the cooling load
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Fig.4 Optimum temperature differences as function of the cooling load
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Fig. 5 Influence of S,, and S, on maximum COP as a function of the cooling load

(a) influence of S, ; (b) influence of S, .

Figures 5 (a) and 5 (b) present the influence of the internal irreversibility
sources, S;p andS;y, on maximum COP as a function of the cooling load. It

results that the refrigeration system, only in a endo-irreversible case (S,B >0;

S;z > 0), has an operating regime for which COP is maximum— maximorum. In

this case COB,,n , values decrease with the increase in the internal irreversibility

sources, corresponding to an increasing cooling load. Thus, the mathematical
model proposed in this paper confirms the real operating case, where the internal
irreversibilities increase with the increasing of the cooling load [1, 2].

Comparing the influence of S;z (Fig. 5 a) with the influence of S (Fig.
5 b), it results that the two internal irreversibility sources have a symmetric
influence on the maximum COP performance. Thus, both internal irreversibility
sources of the two stages cycle in a conventional cascade refrigeration system
have the same influence on the operating regime.

4. Conclusions

The paper has presented a mathematical model, which aims to find the
optimum operating regime of a conventional double cascade refrigeration system

for imposed cooling load (QF =ct.) and overall heat exchanger conductance
(K7 =ct.). The main hypotheses of the mathematical model are the following:

stationary operating regime; exo- and endo-irreversible thermodynamic cycles,
due to the heat exchange at finite temperature differences and due to the internal
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irreversibilities, respectively; no heat losses between the cold and hot ends of the
system; adiabatic thermal coupling in the intermediary heat exchanger; conductive
- convective heat transfer between the working fluid and heat sources.
Generalized thermodynamic cycle of the conventional cascade system is presented
in Fig. 1.

The search for the optimum operating regime involves finding the optimal
constructive parameters (heat exchanger conductances distribution) and functional
parameters (temperature differences between the working fluids and the heat
sources) for which the coefficient of performance (COP ) is maximum.

A computer program was developed according to the mathematical model.
Some results are presented in the paper. Optimum parameter values are obtained
for a specified set of variables which represent the initial set of data for the design
activity.

For the imposed set of variables (Qp € (100+10000)W; Tgr =200K;
Tgc =308K; K7 =1300W/K; S;3=0.5W/K and S;;7 =0.7W/K), in Fig. 2 is
presented the optimal distribution of the heat exchanger conductances (K¢,
Kpop: and Kj,p, ) which leads to a maximum coefficient of performance. If

OF €(2000+10000) W, the heat exchanger conductances distribution tends to

respect the principle of equipartition. Over QF =43300 W the equipartition of

exchanger conductances distribution is established.
From Fig. 3 it results that there is an infinity of operating regimes at
maximum COP, but there is only one operating regime characterized by an

maximum-maximorum COP (COP =1.18[-] for Qp =2400W). Maximum

COP, in imposed cooling load conditions, corresponds to an economical
operating regime, characterized by a minimum power consumption.
The optimal temperature differences (ATg,,, Alcy, and AT,,),

between working fluid and heat sources, between the working fluids in the
intermediate condenser-evaporator heat exchanger, increase with the increase in
the cooling load; AT;,,, experiences a greater increase than AT, and ATc,,,

is greater than ATiopt (Fig. 4); for the maximum-maximorum COP operating
regime their optimal values are: ATp,, =5.79K, AT, =7.6K and
ATcopr =9-8K.

The results (Figs. 2+4) point out that all constructive and functional
parameters are directly and evenly (Fig. 5) influenced by the internal
irreversibility sources (SiB and SiH) corresponding to the two stages of the

conventional cascade refrigeration system. Thus, it results that in order to obtain a
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correct information using the here presented mathematical model it is very
important to appreciate the correct values of the internal irreversibility sources.

The results obtained by this mathematical model are in good concordance
with the real operating regimes where the internal irreversibilities increase with
the increase of the cooling load.

The mathematical model proposed in this paper does not take into
consideration the properties of the working fluids corresponding to high and low
temperature stages. In real operating conditions, besides irreversibilities dues to
the imperfections of the thermodynamic processes, the pair of working fluids has
a major influence on the conventional double cascade refrigeration system COP .
In these conditions, future work will be conducted in this direction for completing
and improving the here proposed mathematical model.
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