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FINANCIAL SAVINGS BASED SELECTION OF OPTIMAL 

BUSES AND CAPACITY FOR RPIs IN REDS  

M. LAVANYA1, G. SRINIVASAN2* 

The current research article suggests a framework to solve the Reactive 

Power Injections (RPIs) in Radial Electric Distribution Systems (REDS) using the 

Dingo Optimization Algorithm (DOA) to maximize Financial Savings (FSs). This 

article formulates the objective function by considering three significant factors: 

maximizing the reduction in Real and Reactive Power Losses (RRPL) while 

minimizing capacitor investment costs with weight factor considerations and 

adhering to bus voltage profile enhancement. Notably, this work does not employ a 

Sensitivity Based Index (SBI) to identify critical nodes for Reactive Power Injection 

(RPI). The emphasis lies on showcasing the Fitness Scores (FSs) achieved by the 

proposed method through Optimal Capacitor placement and sizing (OCPS) under 

three scenarios. Simulation results demonstrate the superior solutions in terms of 

maximum FSs, RRPL reduction, and minimal bus voltage deviations obtained by the 

proposed method. 

Keywords: Dingo Optimization Algorithm, Financial Savings, Radial Electric 

Distribution System, Reactive Power Injections, Real and Reactive Power Losses 

1. Introduction 

It is a common practice adopted by the distribution engineers to Integrate 

Shunt Capacitors (ISC) in Radial Electric Distribution Systems (REDS) to 

consume negative VARs, which reflects some of the lagging components of 

inductive VARs at the buses of integration which in turn changes the 

characteristics of the inductive load. For the last five decades, many researchers 

focused on ISC with proper capacity along the distribution networks to improve 

the node voltage enrichment, apparent power loss reduction, reduce lagging 

component of branch current, free-up the feeder capacity, enhancement in voltage 

stability, apparent power demand decrease, sub-station transformer power factor 

enhancement, etc. Thus, more real power output is available for delivery [1]. It is 

well known from the literature that the REDS share major power losses around 
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70% of the total losses which needs special interest in reducing the power losses 

[2]. Around 15% to 18% of electrical energy generated in India has been wasted 

as heat loss (I2R). On the other hand, the power deficit in India is around 18%. It 

is achievable to reduce the Real and Reactive Power Losses (RRPL) from roughly 

18% to below 8% in the electric utility sector, increasing the Financial Savings 

(FSs). Hence it is mandatory to find suitable nodes and the appropriate reactive 

power capacities in REDS. ISCs at non-optimal nodes will increase the RRPL 

reduction and reduction in node voltage deviation. From the literature, it is 

apparent that optimal ISC is a complex, complicated, non-linear, combinatorial, 

and mixed integer optimization problem that must be addressed using different 

optimization techniques and algorithms that have been presented earlier. 

In [3], Reactive Power Injection (RPI) has been performed in Radial 

Electric Distribution Systems (REDSs) using the Artificial Electric Field 

Algorithm (AEFA) as an optimization tool to reduce energy loss and capacitor 

investment cost. The paper employs two scenarios: The first scenario involves 

utilizing the Loss Sensitivity Factor (LSF) for optimal node selection, while 

AEFA performs optimal sizing. In the second scenario, AEFA is responsible for 

both Optimal Capacitor placement and sizing (OCPS). The efficacy of the 

proposed method has been validated using the PG&E 69 bus and Indian 118 bus 

test systems. Modified Particle Swarm Optimization Algorithm (MPSO) based 

optimization of RPI in REDS with three objective functions comprising of 

power/energy loss minimization with capacitor investment cost (fixed and 

switchable) under three load levels has been performed in [4]. In this work, 

normalized LSF-based identification of most potential nodes has been adopted. 

Stochastic Fractal Search Optimization (SFSO) technique as an optimization 

method, OCPS from single to three optimal locations to minimize power loss has 

been proposed in [5]. Apart from capacitor allocation and sizing, one PV type DG 

injecting real power equal to 20% and less than 100% of real power injection 

considering with and without geographical constraints after reactive power 

injection has been proposed in this paper. Modified LSF-based selection of most 

prospective nodes for RPI has been engaged in [6] and optimal capacity of 

capacitor has been done by Multi-verse Optimizer. The objective function 

revolves around minimizing both power loss and capacitor investment costs.  

Reference [7] presents the integration of quasi-opposition-based learning 

(QOBL) and chaotic local search (CLS) with the original SFS algorithm. This 

combined approach is implemented in REDS to determine the optimal number of 

nodes while considering appropriate sizing for both fixed and switchable 

capacitors under various loading conditions. This paper considers two objective 

functions. The first one deals with energy loss minimization and capacitor 

investment cost minimization considering 24 hours and 365 days. In the second 

objective function, fourteen-hour-based load levels are adopted to evaluate the 
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objective function. PG&E 69 bus, Indian 118 bus, and a Real 152 bus test system 

have been taken for assessment of the proposed method. The optimal number, 

optimal allocation, and capacity determination of multiple capacitors in REDS to 

maximize the overall power loss reduction based on total cost savings using 

Analytical closed-form expressions have been addressed in [8]. In this work, two 

analytical closed-form expressions have been proposed under four different cases 

comprising a total number of compensation nodes, optimal nodes, and the optimal 

sizing of capacitors.  

In [9], a hybridization of Permutated Oppositional Differential Evolution - 

Sine Cosine Algorithm (HPODESCA) and Sensitivity-Based Decision-Making 

Technique (SBDMT) is proposed to maximize the Fitness Scores (FSs) in 

addressing the ISC problem. The Quasi-Oppositional Technique (QOT) is 

employed at initialization and within the main loop stages to generate the initial 

population. Additionally, four sensitivity-based approaches are used to identify 

potential nodes for reactive power compensation, ranked via a multi-criteria 

decision-making (MCDM) approach based on their similarity to the ideal solution. 

On the other hand, [10] introduces a Remora Optimization Algorithm (ROA) for 

minimizing the power loss and capacitor investment cost. It resolves the OCPS 

problem, with and without the Power Loss of Network Lines Index (PLNLI). The 

IEEE 33 and PG&E 69 bus test systems are employed to validate the effectiveness 

of this approach. 

Ref. [11] Implements a Mixed-Integer Second-Order Cone Programming 

model (MI-SOCP) to optimize the OCPS problem in REDS, aiming to minimize 

power loss. Ref. [12] Utilizes the Hybrid Grey Wolf Optimizer (HGWO) to 

minimize the power or energy loss and capacitor purchase cost by optimizing 

OCPS. The study validates the method across various test systems but does not 

employ sensitivity indices to identify critical compensation nodes. 

In [13], the Chu and Beasley Genetic Algorithm (CBGA) coupled with the 

General Algebraic Modelling System (GAMS) has been employed as an 

optimization technique. This approach focuses on achieving OCPS in REDS, 

aiming to minimize operational and investment costs. Ref. [14] focuses on the DG 

and OCPS problem in REDS with the target to minimize power loss, and 

maximization of voltage stability index (VSI) using the BAT algorithm. LSF-

based identification of the most critical buses for real and reactive power 

compensation has been adopted in this paper. BAT algorithm will carry out 

appropriate sizing of DGs / capacitors. Commercial, Residential, Industrial, and 

Constant power loads are considered in this work and three load variations such as 

50%, 100%, and 160% are considered.  

Proposed Work: In this study, the utilization of a novel, superior, and 

robust Nature Inspired Metaheuristics Optimization Algorithm (NIMOA) known 

as the Dingo Optimization Algorithm (DOA) [15] has been introduced. DOA 
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employs dynamic adjustments to update the alpha, beta, and other member 

dingoes. It has been employed for the optimal allocation and capacity 

determination of RPI. DOA has been recognized as a potent NIMOA that can 

address a wide range / diverse array of optimization challenges and effectively 

overcome the aforementioned difficulties. The primary aim of this study is to 

attain the highest possible FSs through the concurrent optimization of RRPL 

reduction with capacitors and their associated costs. This NIMOA has been tested 

and validated on two sinusoidal REDSs such as an 18-bus (extended version of 

the 15-bus system) and a PG&E 69-bus. The performance of the suggested 

NIMOA has been assessed by concluding simulation results and comparative 

studies. 

2. Statement of Problem  

This work aims to maximize the FSs by ISCs optimally in three REDS 

while satisfying both equality and inequality constraints. Before discussing the 

objective function, it is better to focus on the REDS Load Flow (REDSLF) 

adopted in this work.  
 

2.1 Radial Electric Distribution System Load Flow (REDSLF) 
 

To assess the REDS's performance, Load Flow (LF) analysis is regularly 

conducted to ensure power supply sufficiency, reactive power support, and 

voltage profile enrichment. Traditional LF methods like Gauss-Seidel, Newton-

Raphson, and Fast-Decoupled are inadequate for radial DN due to high R/X ratios 

and radial topology by nature. Instead, a swift and robust REDSLF method 

developed in 2003 [16], based on recursive functions and a linked-list data 

structure, has been employed to optimize the reactive power injection. This 

approach has been identified as an efficient one in handling power losses across 

the entire DS, including laterals and sub-laterals.  
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where 
( )Loss gP and 

( )Loss gQ  are the total real and reactive power losses of 

the REDS. Pg, Qg, Rg, and Xg are the real power, reactive power demand at node 
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‘g’, and resistance and reactance of the branch ‘g’ (g to g+1) in kW, kVAR, and in 

Ω respectively. NB indicates the total number of branches. 
 

2.2 Objective Function  
 

A single objective function comprising total RRPL reduction (OF1 and 

OF2) in REDS and capacitor investment cost reduction (OF3) using weighing 

factors has been presented in this work. 

  Maximize 1 2 3[ ]OF OF OF OF= + +                            (3) 

Where ( )

( )
1 1

ACI
Loss T

IC
Loss T

P

P
OF 

 
 
 
  

=   

           ( )

( )

22

ACI
Loss T

IC
Loss T

Q

Q
OF 

 
 
 
  

=  

( )
1

33 ( ) ( )
CN OMins

m

N
inv

CN CNcap C m capcapOF N NC Q CC 
=


     
   +  +    

    

=  

Subject to Equality constraint 

   
( )( )

1

0ACI ACI

MPS

N CN

Loss TDT C m
m

Q Q Q Q
=

− + − =                     (4) 

Subject to an Inequality constraint 
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where inv
capC , ins

capC  and OM
capC  are the buying cost of the capacitor (discrete 

capacity in steps of 50 KVAR), installation cost, and Operation and maintenance 

cost of capacitors in $/kVAR and $/node respectively. IC, ACI, NCN, MPS, and 

QDT refer to the initial condition of the DS, After Capacitor Installation 

Optimization, total number of capacitor nodes, main power supply, and total 

reactive power demand in kVAR respectively. QC(m) indicates the capacity of the 

capacitor in kVAR. β1, β2 and β3 indicate the weighing factor given to the 

individual objective functions. 

3. Overview of Dingo Optimization Algorithm (DOA): 

The Dingo Optimization Algorithm (DOA) is an innovative approach for 

global optimization inspired by the hunting behaviors of dingoes. The DOA 

operates through two key phases: exploration and exploitation. Exploration, akin 

to the encircling phase, aims to broadly navigate the problem space, whereas 
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exploitation, like the attack phase, converges towards the best solution in later 

algorithmic iterations. In this algorithm, one search agent represents the targeted 

prey, while others adjust their strategies to approach the prey while exploring the 

search space comprehensively. 
 

3.1 Mathematical Models:  
 

The Dingo Optimization Algorithm (DOA) strategically models the 

hunting actions of dingoes searching, encircling, and attacking prey through 

mathematical representations to conduct optimization which is discussed below. 
 

3.1.1 Chasing and approaching:  
 

In DO, the dingo's search for prey is translated into a mathematical 

exploration within the solution space. Like the dingo's random exploration to 

locate potential prey, the algorithm employs stochastic processes to explore 

various areas in search of an optimal solution. This phase involves updating 

potential solutions using random variations or perturbations. 
 

3.1.2 Encircling: 
 

Dingoes possess remarkable hunting skills, adept at locating prey. Once 

the location is traced, the pack, led by the alpha, surrounds the prey. To simulate 

the dingo's social structure, the prevailing strategy involves the best agent aiming 

for the prey, like an optimal approach, given the unknown quest area. Meanwhile, 

other members continue refining their strategies for potential future approaches. 

During the encircling phase, dingoes move based on specific equations (8)-(12) in 

their pursuit of optimization.  
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Where dD  represents the dingoes distance from the prey, pP  implies the position 

vector for prey, P  is the vector indicating the dingo's position, A  and B are 

coefficient vectors, 1a  and 2a represent random variables within the range of 

[0,1] and I represents the iteration with 
maxI  as the maximum iteration count. 

Equations (1) and (2) enable dingoes to navigate within the quest area around the 
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prey by changing their locations randomly. These equations can also be applied to 

explore a search space with N dimensions, allowing the dingo to move within 

hypercubes around the best-known result obtained thus far.  

In the provided formulas, D  signifies the distance vector, and vector P 

represents the position vector. The subscript d pertains to the dingoes, while the 

subscript ‘p’ refers to the prey, denoting the best search agent among them. The 

vectors A  and B play a crucial role in guiding dingoes toward a specific portion 

of the solution space around the prey. Notably, determines whether the prey is 

moving away from or being pursued by the dingoes. Values less than -1 indicate 

the former, while values above 1 denote the latter. 
 

3.1.3 Hunting: 
 

During the hunting phase, it's commonly assumed in these biologically 

inspired algorithms that the pack members possess a strong intuition about the 

prey's location. The alpha dingo typically leads the hunting endeavors, yet there 

are occasions where beta and other members of the pack may also join in the 

hunting process. In this phase, the alpha and beta, representing the two best 

solutions within the dingo pack, guide the movements of other dingoes. Equations 

(13)-(21) outline the equations governing their positional updates. 
               

1.D A P P = −                                                    (13) 

                
2.D A P P = −                                            (14) 
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The following formula is used to determine each dingo's intensity: 
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3.1.4 Attacking the prey: 

If the positions remain unchanged, signaling the end of the hunt, the 

dingoes transition into the attack phase aimed at the prey. During this phase, the 
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value of undergoes linear reduction across iterations. The parameter D
 spans 

within the range of [-3b, 3b]. Consequently, as iterations progress, this range 

gradually contracts, causing the dingoes to gradually halt their movement. The 

suggested encircling method contributes to exploration to a certain degree. 

However, to enhance exploration further, DOA needs additional operators.  DOA 

supports its quest agents in adjusting their positions by factoring in the locations 

of α, β, other pack members, and the targeted prey. Despite utilizing these 

operators, DOA retains the capability to deactivate local solutions. 
 

3.1.5. Searching: 

Dingoes rely on their pack's movements for hunting, consistently 

advancing to pursue and confront prey. Using B and A  for random values, values 

below -1 indicate prey moving away, while those above 1 show the pack closing 

in. These aid DOA in global scanning targets. Another crucial DOA element is 

generating random numbers in [0, 3] for prey weights. It operates stochastically, 

giving precedence to vector values ≤1 over ≥1 to navigate equation (1)'s gap 

influence. This enhances effective search and avoids local optima. Depending on a 

dingo's location, it randomly determines prey values, essential for meeting 

requirements or exceeding them.  offers stochastic exploration values from initial 

to final iterations, preventing local optima. DOA concludes upon fulfilling 

termination criteria. Fig. 1 reveals the pseudo-code for the proposed algorithm 

 
1. Generate initial search agents 

 2. Set b , Aand B values 

 3. While termination conditions are not met do 
 4. Estimate the fitness and intensity cost of each dingo  
 5. D

=Dingo with finest search 

 6. D
=Dingo with the second-finest search 

 7. 
oD =Dingoes search results afterward 

 8. Iteration 1 
 9. Repeat  
10. For i=1 to 

inD  do 

11. Update the latest search agent status 
12. End for 
13. Evaluate the fitness cost and intensity of dingoes 

14. Record the value of F
,F

and
oF . 

15. Record the value ofb , AandB . 
16. It= It+1 
17. Check if It ≥ stopping criteria 
18. Output  
19. End while  

 

Fig. 1  Pseudocode for the proposed optimization algorithm – DOA   
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4. Case Study Details, Simulation Results and Discussions: 

To substantiate the effectiveness of the DOA in optimizing the objective function 

(discussed in section 2), two sinusoidal test REDSs have been taken, and 

simulations have been carried out for RPI considering single to three locations for 

PG&E 69-bus system and two to four locations for the 18-bus sinusoidal test 

system. The details of the two sinusoidal REDSs and the simulation results are 

discussed under Art. 4.1 and 4.2.  

Node number 1 has been taken as a substation/slack bus for all the 

sinusoidal REDS. All nodes, except bus no. 1, are considered as load nodes. The 

voltage for bus number 1 has been fixed as 1 p.u. RPI has been expected to be 

applied from node 2 through the end node of the REDS. The proposed algorithm 

using REDSLF has been developed and executed in MATLAB software, running 

on an i5 Intel processor with 8 GB RAM. The solution vector size and the number 

of iterations has been set to 800 and 100, respectively. For each node of the RPI, 

two variables are assigned (optimal node and optimal sizing).  

The cost of real power is taken as $120 / kW [17]. According to ref. [18], 

the cost of reactive energy loss (kVARh) is one-third of the cost of real power. 

The purchase cost of the capacitor is $2.5 / kVAr and the cost of installation and 

maintenance has been considered as $460 / node [19]. For all the REDSs, the base 

MVA has been taken as 100 MVA. The base kV for PG&E 69-bus and 18-bus 

REDS are taken as 12.66 kV and 11 kV respectively. To ascertain the impact of 

RPIs on two sinusoidal REDSs, ISCs as mentioned in scenarios 1 to 3 have been 

carried out.  Capacitor investment cost related to heavy load variation has only 

been considered for cost evaluation. 

Scenario 1: Effect of RPIs at two optimal locations for 18-bus system / 

Single optimal location for PG&E 69-bus system. 

Scenario 2: Effect of RPIs at three optimal locations for 18-bus system / 

Two optimal locations for PG&E 69-bus system  

Scenario 3: Effect of RPIs at four optimal locations for 18-bus system / 

Three optimal locations for PG&E 69-bus  
 

4.1 18-bus test system – Results and discussions: 
 

The first sinusoidal test system taken for evaluation is the 18-bus REDS 

which is the extension of renowned 15-bus sinusoidal REDS. It has 18 buses, and 

17 branches with a total apparent power demand of (1506.4+j 1536.8) kVA. The 

apparent power loss under the Initial Condition (IC) for this test system is 

(105.2268+j 98.0618) kVA. The minimum bus voltage under IC is 0.9171p.u. The 

data about 18-Bus REDS can be viewed in [20]. The single line diagram for the 

18-bus test system is shown in Fig. 2. The total RRPL cost under IC is 

$12627.216 and $3922.47 per annum respectively.  
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From Table 1 it is evidenced that RPIs under scenarios 1 to 3 yield RRPL 

reductions between 44% and 52% respectively with reactive power penetration 

between 81% and 91%. The difference in minimum bus voltage recorded after 

RPI (i.e.) After Optimization (AO) is 0.0359 p.u.  0.038 p.u. and 0.0383 p.u. 

respectively considering scenarios 1 to 3. From Table 1, it is also apparent that the 

net FSs yielded by DOA under scenario 2 have been recorded as the highest 

compared to scenario 1. However, scenario 3 reduces the net FS by $320.816 

compared to scenario 2 because of the increased capacitor investment cost. Fig. 3 

shows the performance of DOA in bus voltage enhancement under three 

scenarios.  

   

Fig. 2 – One line diagram of 18-bus REDS [32]    Fig. 3- Bus Voltage profile (IC / AO)   

                                                                                    – 18-bus system – Scenarios 1 to 3 

 

Table 1 

Performance of DOA – 18-bus system – Scenario 1 to 3. 

Parameters 
Cap. @ two 

nodes 

Cap. @  three 

nodes 

Cap. @ four 

nodes 

PLoss (AO) / PLoss (IC) (kW) 
58.2304 / 

105.2268 

52.3359 / 

105.2268 

50.5913 / 

105.2268 

% PLoss reduction 44.662 50.26372 51.9217 

QLoss (AO) /QLoss (IC) (kVAR) 
52.7143 / 

98.0618 

48.064 / 

98.0618 

46.6932 / 

98.0618 

% QLoss reduction 46.2438 50.986 52.384 

Capacitor details (kVAR) 
600 (6) 

650 (16) 

400 (6) 

450 (11) 

500 (16) 

400 (6) 

400 (11) 

200 (15) 

400 (16) 

% Cap. Penetration 81.338 87.845 91.098 

Δ PLoss Cost ($) 5639.568 6346.908 6556.26 

Δ QLoss Cost ($) 1813.9 1999.912 2054.744 

Cap. Cost ($) 4045 4755 5340 

Net F Ss ($) 3408.47 3591.82 3271.004 

Vmin (p.u) 0.953 0.9551 0.9554 

4.2. PG&E 69-bus test system – Results and discussions: 

The next test system considered here is the PG&E 69-bus sinusoidal 

REDS which has 69 buses 68 sectionalizing switches and five tie-switches. The 
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total real and reactive power demand under nominal load is 4903.0477 kVA at 

0.821365 power factor lagging. The RRPL and minimum bus voltage under IC are 

(225 + j102.14) kVA and 0.90919 p.u. respectively. The RRPL costs under IC are 

$27000 and $4085.6 per year respectively. Figure 4 shows the single-line diagram 

of the PG&E 69-bus test system.   
 

                 
Fig. 4. One-line diagram of PG&E       Fig. 5. Bus Voltage profile (IC/AO)       

          69-bus REDS                              – PG&E 69-bus REDS- Scenarios 1 to 3 

 

Table 2 reveals the performances of the PG&E 69-bus test system under 

three scenarios mentioned previously. From Table 2 it is clear that the RRPL 

reduction is found to be between 31% to 35.5% with reactive power penetration 

between 50% and 67%. The differences in minimum bus voltage recorded are 

0.02111 p.u., 0.02161 p.u., and 0.02191 p.u. respectively considering scenarios 1 

to 3. By calculating the net FSs after scenarios 1 to 3, it is noticeable that the 

difference between scenarios 2 and 3 and scenarios 1 to 3 are $902.84 and 

$1215.4 respectively. From Table 2, it is understandable that the net FSs after 

scenario 1 are better than scenarios 2 and 3. Figure 5 reveals the performance of 

bus voltages under IC and AO for all the three scenarios.  
 

Table 2 

Performance of DOA – PG&E69-bus system – Scenario 1 to 3 

Parameters 
Cap. @ single 

node 

Cap. @ two 

nodes 

Cap. @ three 

nodes 

PLoss (AO) /PLoss (IC) (kW) 150.9 / 225 146.41 / 225 145.09 / 225 

% PLoss reduction 32.93333 34.93 35.51555 

QLoss (AO) / QLoss (IC) (kVAR) 
69.961 / 

102.1155 

67.245 / 

102.14 

66.651 / 

102.1155 

% QLoss reduction 31.488 34.1481 34.7298 

Capacitor details (kVAr) 1350 (61) 
300 (18) 

1200 (61) 

350 (11) 

250 (20) 

1200 (61) 

% Cap. Penetration 50.1188 57.544 66.825 

Δ PLoss Cost ($) 8892 9430.8 9589.2 

Δ QLoss Cost ($) 1286.18 1395.8 1418.58 
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Cap. Cost ($) 3835 4670 5880 

Net FSs ($) 6343.18 6156.6 5127.78 

Vmin (p.u) 0.9303 0.9309 0.9317 

 

Tables 3 to 5 expose the comparison of the performance of other 

optimization techniques with DOA considering three scenarios. From Table 3, it 

is witnessed that the performance of DOA under scenario 1 yields a better 

performance (RRPL reduction, bus voltage enhancement, and net FS) than [3,4,5]. 

Though the real power loss reduction achieved by DOA is better than [8], it is to 

be noted that due to the lower capacitor value optimized by [8], the net FS is 

better than DOA.   

The performance of DOA under scenario 2 has been compared with [4 – 

10]. It is visible from Table 4 that the real power loss reduction achieved by DOA 

is better than [5 – 10]. The capacitor penetration optimized by DOA is better than 

[4–6, 10]. The minimum bus voltage enhanced by DOA is better than [4 – 9] and 

equals [10]. The net FSs achieved by DOA are better than [4,5,6,8,10]. Though 

the real power loss reduction realized by MPSO [4] is more than DOA, the net FS 

by [4] is $363.2 less than DOA. On the other hand, it is apparent from Table 4 that 

the real power loss reduction attained by [7,9] is less than DOA. While calculating 

net FS, [7,9] yields a better FS than DOA because of the less cap. investment cost. 
 

Table 3 

Comparison of performance of DOA – PG&E69-bus system – Scenario 1 

Parameters 
AEFA [3] 

(Strategy 1) 

AEFA [3] 

(Strategy 2) 
MPSO [4] SFSOA [5] ACE [8] DOA 

PLoss (AO) / PLoss (IC) kW 
175.92 / 

224.96 

152.02 / 

224.96 

150.9 / 

225 

152.04 / 

225 

152.4 / 

225 

151.12 / 

225 

% PLoss reduction 21.8 32.42354 32.93333 32.42666 32.2666 32.835555 

QLoss (AO) / QLoss (IC) kVAR 
79.86 / 

102.15 

70.48 / 

102.15 
--------- --------- --------- 

69.961 / 

102.14 

% QLoss reduction 21.82 31.01 --------- --------- --------- 31.488 

Capacitor details (kVAr) 1100 (57) 1350 (61) 1400 (61) 1330 (61) 1239 (61) 1350 (61) 

ΔPLoss Cost ($) 5884.8 8752.8 8892 8755.2 8712 8865.6 

ΔQLoss Cost ($) 891.6 1266.8 --------- --------- --------- 1287.16 

Cap. Inv. Cost ($) 3210 3835 3960 3785 3557.5 3835 

Net Profit ($) – considering 

only PLoss cost 
2674.8 4917.8 4932 4970.2 5154.5 5030.6 

Net Profit ($) – considering 

both cost  
3566.4 6184.6 -------- -------- -------- 6317.76 

Vmin (p.u) 0.921 (65) 0.931 (65) 0.9291 0.93 -------- 0.931 

 

Table 5 compares the effect of RPIs at three optimal locations with [4,8,10 

– 14]. The real power loss reduction attained by the proposed method is better 

than [8,10 – 13]. It is to be noted that the capacitor penetration achieved by DOA 
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is better than [10,14] and equals [11,12,13]. However, the capacitor penetration by 

[4,8] is less than DOA which is found to be minuscule [4]. The minimum bus 

voltage enhancement achieved by DOA is better than [4,8,10–13]. Finally, the 

FSs accomplished by DOA are better than [10–14]. The FS difference between 

DOA and [4,8] seems to be $161 and $430.8 respectively.     
 

Table 4 

Comparison of performance of DOA – PG&E69-bus system – Scenario 2 

Parameters 
MPSO 

[4] 

SFSOA 

[5] 
MVO [6] 

SFS / 

ISFS [7] 
ACE [8] 

PODESCA 

[9] 

ROA 

[10] 
DOA 

PLoss (AO) / PLoss 

(IC) (kW) 

145.27 / 

225 

146.44 / 

225 

146.6294 

/ 224.895 

147.762 / 

225.0006 

146.9 / 

225 

147.78 / 

225.02 

146.43 / 

224.97 

146.41 / 

225 

% PLoss reduction 35.44 34.91555 34.801 34.33 34.7111 34.3 34.91 34.93 

Capacitor details 

(kVAr) 

300 (18) 

1400 (61) 

361 (17) 

1275 (61) 

600 (18) 

1200 (61) 

250 (20) 

1150 (61) 

299 (18) 

1193 (61) 

250 (20) 

1150 (61) 

350 (17) 

1262 (61) 

300 (18) 

1200 (61) 

ΔPLoss Cost ($) 9567.6 9427.2 9391.86 9268.62 9372 9268.8 9424.8 9430.8 

Cap. Inv. Cost  $5170 $5010 $5420 $4420 $4650 $4420 $4950 $4670 

Net Profit ($) 4397.6 4417.2 3971.86 4848.62 4722 4848.8 4474.8 4760.8 

Vmin (p.u) 0.93 0.9303 0.9308  0.9289  ----- 0.9302  0.9309 0.9309  

 
Table 5 

Comparison of performance of DOA – PG&E69-bus system – Scenario 3 

Parameters 

PLoss (AO) 

/ PLoss (IC) 

(kW) 

% PLoss 

reduction 

Capacitor 

details 

(kVAr) 

ΔPLoss  

Cost ($) 

Cap. Inv. 

Cost ($) 

Net Profit 

($) 
Vmin (p.u) 

MPSO [4] 
144.79 / 

225 
35.63 

320 (21) 

1200 (61) 

230 (64) 

9625.2 5755 3870.2 0.9311 

ACE [8] 
146 / 

225 
35.1111 

201 (12) 

207 (21) 

1176(61) 

9480 5340 4140 -------- 

ROA [10] 
145.08 / 

224.97 
35.51 

244 (62) 

373 (11) 

230 (21) 

980 (61) 

9586.8 5947.5 3639.3 0.93125 

MI-SOCP 

[11] 

145.397 

/ 

225.072 

35.39978 

300 (11) 

300 (18) 

1200 (61) 

9561 5880 3681 

--------- 

HGWO [12] 
145.22 / 

225 
35.457777 

300 (11) 

300 (17) 

1200 (61) 

9573.6 5880 3693.6 0.9308 

GAMS [13] 
145.58 / 

224.9352 
35.27914 

450 (12) 

150 (22) 

1200 (61) 

9524.784 5880 3644.784 

--------- 

CBGA [13] 
145.37 / 

224.9532 
35.37767 

450 (12) 

150 (22) 

1200 (61) 

9549.984 5880 3669.984 --------- 
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BOA [14] 
144.96 / 

225 
35.57 

400 (12) 

230 (19) 

1237 (61) 

9604.8 6047.5 3557.3 0.9327 

DOA 
145.09 / 

225 
35.51555 

350 (11) 

250 (20) 

1200 (61) 

9589.2 5880 3709.2 0.9317 

5. Conclusion  

This work emphasizes mainly the RPIs in sinusoidal REDS using a new, 

durable, and robust NIMOA called Dingo Optimization Algorithm (DOA) to 

identify the optimal variations in penetration of SCs to achieve maximum RRPL 

reduction with a reduction in capacitor investment cost thereby more FSs while 

ensuring that all equality and inequality constraints are met. The major advantage 

of DOA is the efficient handling of discrete, complicated, non-linear, and large-

dimensional optimization problems. Two renowned sinusoidal REDSs such as 18-

bus and PG&E 69-bus have been utilized to demonstrate the usefulness of DOA. 

The following are the observations: 

(i) In general, all the reactive power optimization-based research work in 

REDS considers reduction in real power loss reduction with capacitor investment 

cost. However, this work focuses on the minimization of both RRPL reduction 

with capacitor investment costs. 

(ii) No SBIs have been adopted in this work to select the most appropriate 

nodes for RPI. Instead, DOA has to identify the most possible nodes and the 

proper reactive power capacity of the capacitor.   

(ii) Considering 18-node REDS, the RRPL reduction has been identified 

between 45% and 53% considering all three scenarios with FSs between $3.2K to 

$3.4K /year is evidenced.      

(iii) Regarding PG&E 69-bus REDS, the reductions in RRPL are found to 

be between 31% and 36%, with the reactive power penetration between 50% and 

67% is noticed. The FSs considering all three scenarios vary between $5.1K and 

6.35K. The performances have been compared with the recent NIMOAs presented 

in the literature. The difference in RRPL reduction achieved by DOA is found to 

be better and significant. 

Based on the simulation results and the preceding discussions, it is evident 

that DOA consistently outperforms other methods in achieving a reduction in 

RRPL net FSs. Hence, DOA has been recommended to be another strong and 

efficient technique for solving optimal RPI.   
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