

## ESTABLISHING PERFORMANCE PARAMETERS TO DETERMINE MANGANESE USING UV-VIS MOLECULAR ABSORPTION SPECTROMETRY

Cristina Monica MIREA<sup>1</sup>, Ioana DIACONU<sup>2\*</sup>, Ecaterina Anca ȘERBAN<sup>3</sup>, Elena RUSE<sup>4</sup>

*In this study are described the development and determination of some performance parameters of an analytical method for the determination of manganese using UV-Vis molecular absorption spectrometry. The method presents a good linearity and has proved to be precise and accurate and can be used in any laboratory.*

**Keywords:** manganese, analysis method, UV-Vis spectrophotometry, performance parameters

### 1. Introduction

Manganese occurs in water, sediment, biological materials and soil [1, 2]. In the environment, it does not occur as the free metal but in the form of compounds, combined with other elements, such as: silicon, chlorine, oxygen, carbon and sulphur [3]. Two types of manganese compounds are known, namely: inorganic manganese compounds and organic manganese compounds. Inorganic manganese compounds are used in the production of batteries, dietary supplements, ceramics, steel and are generated as combustion products from coal – burning industrial plants and motor vehicles. Organic manganese compounds are used in the manufacture of pesticides, fertilizers and in a gasoline additive called methylcyclopentadienyl manganese tricarbonyl (MMT) [4, 5]. These compounds are solid and can be dissolved in water or can be found in air as a suspension of small particles. There are 11 oxidation states with values between – 3 and + 7, but the most common are + 2 and + 4 [3].

<sup>1</sup> PhD Student, Dept. of Analytical Chemistry and Environmental Engineering, University POLITEHNICA of Bucharest, Romania

<sup>2</sup> Lect., PostDoc Student, Dept. of Analytical Chemistry and Environmental Engineering, University POLITEHNICA of Bucharest, Romania, e-mail: diaconuoana12@yahoo.com

<sup>3</sup> PhD Student, Dept. of Analytical Chemistry and Environmental Engineering, University POLITEHNICA of Bucharest, Romania

<sup>4</sup> Assoc. Prof., Dept. of Analytical Chemistry and Environmental Engineering, University POLITEHNICA of Bucharest, Romania

Manganese is part of highly toxic heavy metals. In excess, it gives a yellowish water, bad taste and odor, causing staining of bathroom accessories, clothes and kitchen utensils, and contributes to the water hardness, determines in pressure decrease in pipes, pumps and water heaters depositions [1, 2].

Manganese is considered an important nutrient that ensures the normal development and functioning of the body, but is toxic in high doses [4, 5]. Manganese toxicity is influenced by exposure routes [5, 6]. Routes of exposure include: exposure through soil, exposure through air and exposure through water. Exposure to manganese can be done by inhalation and ingestion, but inhalation is a primary route [5].

Excessive exposure to manganese causes central nervous system adverse effects. Another effect of manganese exposure is the „manganism”, a disease whose symptoms are similar to Parkinson’s and which shows tremors, muscle stiffness, difficulties with breathing or swallowing, lack of coordination, and other neuromuscular problems [4, 5]. Inhaled manganese can get in contact with the brain through ways: olfactory way(nasal airways) and is a direct path to brain tissue and to the lungs [5, 7].

In mammalian cells, manganese causes chromosome aberrations and DNA damage. In high doses, it affects fertility and it is toxic to the foetus and embryo [2, 8].

Manganese exposure can be teratogenic (cause birth defects) such as: low external ears, delayed bone hardening, short tail, cleft palate, excess toes, decreased birth weight and hydrocephaly [5, 9 13].

The determination of manganese can be done using several different methods, such as: atomic absorption spectrometry (AAS), spectrophotometry, neutron activation analysis (NAA), polarography, inductively coupled plasma - atomic emission spectrometry (ICP-AES) or mass spectrometry (ICP-MS) [2, 14], nuclear magnetic resonance method [2, 15] or a method that uses online concentration analysis [2, 16] and electrochemical methods [2].

Atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES) are the most used techniques for the determination of manganese, especially in environmental and biological samples. Some of these techniques require derivatization, extraction and wet digestion before detection.

Spectrophotometric methods are the oldest methods used for the determination of manganese. Reagents used for the colorimetric determination of manganese are: oximes (formaldoxime), aromatic amines, azo dyes (PAN - (1-(2-pyridylazo)-2-naphtol) and porphyrins. Another method used for the determination of manganese is spectrophotometry with previous oxidation of Mn(II) in a strong basic medium, using a chromatogenic reagent, for example 3,3',5,5'-terramethylbenzidine [2, 17].

Neutron activation analysis (NAA) is characterized by a high sensitivity and specificity for very low concentrations of manganese. This method has been used for the determination of manganese at very low concentrations in different samples, for the determination of manganese concentrations in plants and blood and in order to check the accuracy of results obtained by other methods [2, 18, 19].

The nuclear magnetic resonance method, known as a method that uses online concentration analysis, has been used to determine both complex and free manganese ions in aqueous media [2, 15, 16].

For the determination of traces of manganese in complex samples electrochemical methods, such as: stripping chronopotentiometry (SCP), cathodic stripping voltammetry (CSV), anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) are used [2].

Stripping techniques are usually realized in two steps: pre-concentration/accumulation of metal ions (electrochemical and adsorptive deposition) and quantification and re-oxidation of the accumulated metal ions. In the first step, ion metals are reduced at a constant potential for a fixed period of time and hydrodynamic conditions ensuring a steady flow of the analyte to the electrode surface [2, 20, 21, 22]. The dissociation rate constants and diffusion coefficients are used to determine the amount of metal accumulated that represents a measure of them. The last step consists in applying an anodic ramping potential for the quantification of the metal accumulated and the resulting current recorded as a function of applied potential represents re-oxidation. In voltammetric techniques the metal accumulated is stripped by a potential scan either towards more positive potentials (ASV) or towards more negative potentials (CSV) while registering the current - potential dependence. In chronopotentiometric stripping techniques the metal accumulated is stripped either electrochemically, applying a constant dissolution current (galvanostatic or constant current chronopotentiometry), or chemically, using an oxidant (potentiometric stripping analysis - PSA). In both cases the change of the potential of the working electrode is registered and evaluated [2, 23].

In the present study the development of an analytical method for the determination of manganese using UV-Vis absorption spectrometry is realized. Also the characterization of some performance parameters of this method is realized.

## 2. Experimental

### 2.1 Materials and solutions

All reagents used were analytical grade. These (manganese sulphate monohydrate, sulphuric acid, ammonium iron (II) sulphate hexahydrate, ethylenedinitrilotetraacetic acid disodium salt, hydroxylammonium chloride, formaldehyde, sodium hydroxide, ammonia) were purchased from Fluka.

The stock solution of 100 mg/L Mn (II) was prepared by dissolving manganese sulphate monohydrate ( $MnSO_4 \cdot H_2O$ ) in water and then sulphuric acid ( $H_2SO_4$ ) 3 mol/L was added. The working solution of 5 mg/l was prepared by a dilution of stock solution with distilled water.

The sulphuric acid ( $H_2SO_4$ ) 3 mol/L was prepared by a dilution of the concentrated sulfuric acid.

The ammonium iron (II) sulphate hexahydrate solution  $[(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O]$  of 700 mg/L was prepared by dissolving ammonium iron (II) sulphate solution in distilled water and by adding sulfuric acid 3 mol/L.

The complexon III 0, 24 mol/L was prepared by dissolving ethylenedinitrilotetraacetic acid disodium salt.

The formaldoxime solution was prepared by dissolving 10 g hydroxylammonium chloride ( $NH_3OHCl$ ) in distilled water and adding 5 ml of 35 % (m/m) formaldehyde solution.

The sodium hydroxide (NaOH) solution 4 mol/L was prepared by dissolving sodium hydroxide in distilled water.

Hydroxylammonium chloride/ammonia solution is a mixture between hydroxylammonium chloride solution 6 mol/L (dissolving hydroxylammonium chloride in water) and ammonia solution 4, 7 mol/L (diluting of concentrated ammonia in distilled water) [24].

### 2.2. Apparatus

Volumetric flasks – capacity 50 ml, glass bottle - capacity 100 ml, cylinder – capacity 50 ml and pipettes – capacity 1ml, 5ml and 10ml were used.

The analytical control was achieved using a LAMDA UV-VIS-NIR (Perkin Elmer Life and Analytical Sciences) spectrophotometer at the wavelength 450 nm.

### 2.3. Procedure

In a series of 50 ml volumetric flasks were used to prepare a series of solutions of  $MnSO_4$  of different concentrations and dilute to the mark with distilled water. The solutions were transferred in 100 ml glasses and add 1 ml of ammonium iron (II) sulphate hexahydrate solution and 2 ml of EDTA(ethylenedinitrilotetraacetic acid disodium salt). After mixing 1 ml of

formaldoxime solution and 2 ml of sodium hydroxide solution were added. The solutions were mixed and allowed to rest for 5 – 10 minutes, and then 3 ml of hydroxilammonium chloride/ammonia solution was added and left to stand for 1 hour for color development. The absorbance was measured at 450 nm wavelength using cells of 10 mm optical path length [24].

### **3. Results and discussions**

The concept validation was defined from three international documents, such as: ISO 17025, ISO 9000 and International Vocabulary of Metrology (VIM). In ISO 17025 validation is definite as „confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled”, in ISO 9000 as “confirmation, through the provision of objective evidence, that the requirements for a specific intended use or application have been fulfilled and in VIM as” verification, where the specified requirements are adequate for an intended use” [25, 26, 27, 28, 29, 30, 31].

During the validation method a set of performance characteristics are evaluated such as: linearity, limit of detection (LOD) and limit of quantification (LOQ), precision and accuracy [28].

#### **Linearity**

Linearity is the ability of an analytical method to obtain test results proportional to the concentration of the analyte in the sample. This can be evaluated in different steps of the method as calibration function (in this step the focus is on instrumental measurement) and function of the concentration of the specimen. The purpose of these steps is to determine the shape calibration function [28].

Linearity was demonstrated on 13 manganese concentrations of the standard solution prepared from manganese sulphate monohydrate using the proposed procedure. Absorbance was measured and the calibration curve was plotted, depending on the concentration absorbance.

On this basis some statistical parameters were calculated such as: the regression line equation ( $y = a + bx$ ), the slope of the regression line (b), standard deviation of the slope ( $s_b$ ), the intersection to the origin (a), standard deviation of intersection ( $s_a$ ), correlation coefficient (R), determination coefficient ( $R^2$ ), standard deviation (s), relative standard deviation (RSD) and the number of freedom degrees (v), regression sum of squares, standard deviation of estimate y, function F.

Table 1

Calibration data for manganese

| i  | Concentration [mg/L] | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> | A <sub>5</sub> | □        |
|----|----------------------|----------------|----------------|----------------|----------------|----------------|----------|
| 1  | 0.50                 | 0.075          | 0.0751         | 0.0752         | 0.0753         | 0.0755         | 0.07522  |
| 2  | 1.00                 | 0.1482         | 0.1484         | 0.1486         | 0.1485         | 0.1486         | 0.14846  |
| 3  | 1.50                 | 0.2283         | 0.2284         | 0.2286         | 0.2287         | 0.2285         | 0.2285   |
| 4  | 2.00                 | 0.2929         | 0.2929         | 0.293          | 0.293          | 0.293          | 0.29296  |
| 5  | 2.50                 | 0.3727         | 0.3728         | 0.3727         | 0.3726         | 0.3726         | 0.37268  |
| 6  | 3.00                 | 0.4805         | 0.4806         | 0.4806         | 0.4807         | 0.4807         | 0.48062  |
| 7  | 3.50                 | 0.529          | 0.5288         | 0.5288         | 0.5288         | 0.529          | 0.52888  |
| 8  | 4.00                 | 0.5978         | 0.598          | 0.6011         | 0.6002         | 0.5972         | 0.59886  |
| 9  | 4.50                 | 0.6996         | 0.6998         | 0.6997         | 0.6999         | 0.6999         | 0.69978  |
| 10 | 5.00                 | 0.7834         | 0.783          | 0.7829         | 0.7828         | 0.7827         | 0.78296  |
| 11 | 5.50                 | 0.8504         | 0.8504         | 0.8509         | 0.8509         | 0.8507         | 0.85066  |
| 12 | 6.00                 | 0.9632         | 0.9637         | 0.9638         | 0.9634         | 0.9631         | 0.963525 |
| 13 | 6.50                 | 1.0206         | 1.0203         | 1.0199         | 1.0199         | 1.0199         | 1.02012  |

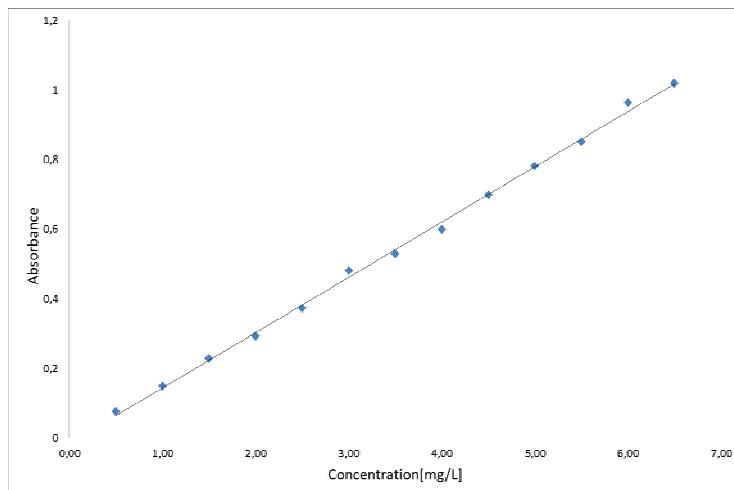



Fig. 1. Calibration curve of Manganese at 450 nm (absorbance =f(concentration))

Table 2

Calculated parameters of the linear regression analysis

| Statistic parameter                       | Value                  |
|-------------------------------------------|------------------------|
| Regression line equation                  | $y = 0.1591 x - 0.015$ |
| Slope of the regression line, b           | 0.1591                 |
| Standard deviation of the slope, $s_b$    | 0.00202                |
| Intersection to the origin, a             | -0.015                 |
| Standard deviation of intersection, $s_a$ | 0.0080                 |
| Correlation coefficient, R                | 0.9991                 |

|                                           |            |
|-------------------------------------------|------------|
| Determination coefficient, R <sup>2</sup> | 0.9982     |
| Standard deviation, s                     | 0.00005477 |
| Relative standard deviation, RSD          | 0.000101   |
| Number of freedom degrees, v              | 9          |
| Residual sum of squares                   | 0.00204    |
| Regression sum of squares                 | 1.1514     |
| Standard deviation of estimate y          | 0.01363    |
| Function F                                | 6198.037   |

### Limit of detection (LOD) and Limit of Quantification (LOQ)

The limit of detection is defined by the ICH as the lowest concentration of the analyte in a sample that can be detected but not necessarily quantifiable. This is similar to the sensitivity of the method. The sensitivity of the method is the slope of the calibration curve obtained after the graphical representation of the response, depending on concentration. ICH describes three methods to determine the limit of detection such as: visual evaluation, standard deviation of the signal based on the standard deviation of the blank and standard deviation on the signal based on the slope of the calibration curve [32, 33].

$$LOD = F*s/b,$$

where: F- constant, 3.3;

s – the blank standard deviation;

b – the slope of the calibration curve;

Calculation of the blank standard deviation of blank and of the slope of the calibration curve resulted:

$$LOD = 3.3*0.00005477/0.1591$$

$$LOD = 0.001136 \text{ mg/L}$$

The limit of quantification is defined by the ICH as the lowest quantity of the analyte in a sample that can be quantitatively determined with accuracy and precision. This is used to determine the degradation products and impurities [32, 33].

$$LOQ = F*s/b$$

where: F- constant, 10;

s – the blank standard deviation;

b – the slope of the calibration curve;

$$LOQ = 10*0.00005477/0.1591$$

$$LOQ = 0.003443 \text{ mg/L.}$$

In this study, both the limit of detection and the limit of quantification were calculated using the blank standard deviation and the slope of the calibration curve, varying only constant F.

### Precision

Precision is defined by the ICH as the degree of dispersion between a set of values obtained by measuring multiple of the same homogeneous sample under specific conditions. This can be considered at three levels, such as: *repeatability, intermediate precision, and reproducibility* [32, 33].

Precision can be expressed as standard deviation (s,  $\sigma$ ) or percentage relative standard deviation (RSD %)[34].

### Repeatability

Repeatability was demonstrated by analyzing six replicates performed on the same day, the same analyst in the same working conditions, namely a concentration of 4 mg/L. In Table 3 are shown the obtained results from experiments conducted.

*Table 3*  
**Experimental results obtained from the analysis of samples performed to demonstrate the repeatability of the manganese determination method using UV-vis molecular absorption spectrometry,  $\lambda = 450$  nm**

| Replicated measurements number | Measured signal, A (y <sub>i</sub> ) | x <sub>i</sub>    | (x <sub>i</sub> - $\bar{x}$ ) <sup>2</sup> · 10 <sup>4</sup> |
|--------------------------------|--------------------------------------|-------------------|--------------------------------------------------------------|
| 1                              | 0.63482                              | 4.084349          | 87,706                                                       |
| 2                              | 0.64966                              | 4.177624          | 0,0014                                                       |
| 3                              | 0.65248                              | 4.195348          | 3.009                                                        |
| 4                              | 0.65308                              | 4.199120          | 4.46                                                         |
| 5                              | 0.6535                               | 4.201759          | 5.644                                                        |
| 6                              | 0.65478                              | 4.209805          | 10.114                                                       |
|                                |                                      | $\bar{x} = 4.178$ | $\sum (x_i - \bar{x})^2 = 0.011093$                          |
| Standard deviation, s          |                                      | 0.007494 mg/L     |                                                              |
| RSD                            |                                      | 0.00179           |                                                              |
| RSD%                           |                                      | 0.179             |                                                              |

### Intermediate precision

Intermediate precision was **demonstrated by using six identical samples that** were analyzed in three different days by the six different analysts, in the same laboratory and in the same working conditions, namely a concentration of 6.5 mg/L. In Table 4 are shown the obtained results from experiments conducted.

*Table 4*  
**Experimental results obtained from the analysis of samples performed to demonstrate the intermediate precision of the manganese determination method using UV-vis molecular absorption spectrometry,  $\lambda = 450$  nm**

| Statistical parameter        | Day 1    | Day 2    | Day 3    |
|------------------------------|----------|----------|----------|
| Average concentration [mg/L] | 6.454285 | 6.491787 | 6.661890 |
| Average absorbance           | 1.01188  | 1.017843 | 1.044907 |
| Standard deviation, s        | 0.008302 | 0.004607 | 0.003569 |
| RSD                          | 0.001286 | 0.000709 | 0.000536 |
| RSD%                         | 0.1286   | 0.0709   | 0.0536   |

### Accuracy

Accuracy is defined by ICH as the similarity between the accepted reference value or conventional true value and the value found [32, 33]. The accuracy can be demonstrated using different methods, such as:

- comparing the result obtained from the analysis of a sample of known concentration with the real value measurement;
- using the linearity and precision;
- by adding a known amount of active substance in a blank sample then analyzed and compared the results. This procedure is known as the recovery method [34].

In this study, we used the recovery method to demonstrate the accuracy of this method. The percentage recovery was calculated using the formula:

$$R\% = \frac{CF - CU}{CA} \times 100$$

where: CF - measured concentration of the sample fortified,

CU – substance concentration of the unfortified sample,

CA- concentration of the substance added to fortified sample [34, 16].

*Table 5*  
**Experimental results obtained from the analysis of samples performed to demonstrate the accuracy of the manganese determination method using UV-Vis molecular absorption spectrometry,  $\lambda = 450$  nm**

| Sample       | Manganese quantity in the initial sample (CU) (mg/g) | Manganese quantity added (CA) (mg) | Manganese quantity recovered in sample (CF) (mg/g) | Recovery degree (%) |
|--------------|------------------------------------------------------|------------------------------------|----------------------------------------------------|---------------------|
| 5 ml         | 0.1840                                               |                                    |                                                    |                     |
| 5 ml + 3 ml  | 0.1840                                               | 0.3                                | 0.4601                                             | 92.03               |
| 5 ml + 6 ml  | 0.1840                                               | 0.6                                | 0.7228                                             | 89.79               |
| 5 ml + 9 ml  | 0.1840                                               | 0.9                                | 0.9718                                             | 87.53               |
| 5 ml + 12 ml | 0.1840                                               | 1.2                                | 1.3714                                             | 98.95               |
| 5 ml + 15 ml | 0.1840                                               | 1.5                                | 1.6819                                             | 99.86               |

#### 4. Conclusions

In this study, emphasis was placed on establishing performance characteristics for the validation of the method for the determination of manganese through UV-Vis spectrophotometry. The developed method presents a good linearity on the selected range (0.5-6.5 mg/L). The method proved to be linear, precise and accurate and with a good LoD and LoQ.

#### Acknowledgement

The study has been funded by the Sectoral Operational Programme Human Resources Development 2007 – 2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/134398.

#### R E F E R E N C E S

- [1] *A. Vollmanová, T. Tóth, J. Tomá: „Mangán v ivotnom prostredí.”*, SPU Nitra, 2003
- [2] *G. Nadaska, J. Lesný, I. Michalík. "Environmental aspect of manganese chemistry."*, Hung. J. Sci., ENV-100702-A , 2010, pp. 1-16.
- [3] *A. Pinsino, V. Matranga, M.C. Roccheri „Manganese: A New Emerging Contaminant in the Environment”*, INTECH Open Access Publisher, 201., pp. 17 – 29.
- [4] *U.S. Centers for Disease Control (ATSDR). 2000: "Toxicological Profile for Manganese."*
- [5] *U.S. EPA, “Toxicity and Exposure Assessment for Children’s Health: Manganese.” Tech Chemical Summary*, pp. 1 – 9.
- [6] *U.S. Environmental Protection Agency. 1988. "Integrated Risk Information System (IRIS): Manganese”*, (CASRN 7439-96-5).
- [7] *B. Weiss. "Economic implications of manganese neurotoxicity."*, Neurotoxicology, **vol. 27**, no. 3, 2006, pp. 362-368.
- [8] *G. B. Gerber, A. Leonard, and Ph Hantson. "Carcinogenicity, mutagenicity and teratogenicity of manganese compounds."*, Crit. Rev. Oncol. Hematol., **vol. 42**, no. 1 2002, pp. 25-34.
- [9] *M. T. Colomina, J. L. Domingo, J. M. Llobet & J. Corbella..” Effect of day of exposure on the developmental toxicity of manganese in mice.”*, Vet. Hum. Toxicol., **vol 38**, no. 1, 1996, pp. 7-9.
- [10] *D. J. Sánchez, J. Domingo, J. M. Llobet, and C. L. Keen. "Maternal and developmental toxicity of manganese in the mouse."*, Toxicol. Lett., **vol. 69**, no. 1, 1993, pp. 45-52.
- [11] *B. A. Lown, J. B. Morganti, R. D'Agostino, C. H. Stineman and E. J. Massaro. "Effects on the postnatal development of the mouse of preconception, postconception and/or suckling exposure to manganese via maternal inhalation exposure to MnO<sub>2</sub> dust."*, Neurotoxicology, **vol. 5**, no. 1, 1983, pp. 119-129.
- [12] *W. S. Webster and A. A. Valois. "Reproductive toxicology of manganese in rodents, including exposure during the postnatal period."*, Neurotoxicology, **vol. 8**, no. 3, 1987, pp. 437-444.

[13] *B. Y. Zhang, S. Chen, F.-L. Ye, O. C. Zhu, H. X. Zhang, R. B. Wang, C. F. Xiao, T. C. Wu, and G. G. Zhang.* "Effect of manganese on heat stress protein synthesis of new-born rats.", *World J. Gastroenterol.*, **vol. 8**, no. 1, 2002, pp. 114-118.

[14] *G. F. Pearson and G. M. Greenway.* "Recent developments in manganese speciation.", *TrAC Trends Anal. Chem.*, **vol. 24**, no. 9, 2005, pp. 803-809.

[15] *K. E. Kellar and N. Foster.* "Determination of the relative amounts of free and complexed manganese ions in aqueous solution by nuclear magnetic resonance.", *Anal. Chem.*, **vol. 63**, no. 24, 1991, pp. 2919-2924.

[16] *J. A. Resing and M. J. Mottl.* "Determination of manganese in seawater using flow injection analysis with on-line preconcentration and spectrophotometric detection.", *Anal. Chem.*, **vol. 64**, no. 22, 1992, pp. 2682-2687.

[17] *F. B. Serrat.* "3, 3', 5, 5'-Tetramethylbenzidine for the colorimetric determination of manganese in water.", *Microchim. Acta*, **vol. 129**, no. 1-2, 1998, pp. 77-80.

[18] *C. Rose, R. F. Butterworth, J. Zayed, L. Normandin, K. Todd, A. Michalak, L. Spahr, P. M. Huet and G. Pomier-Layrargues.* "Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction.", *Gastroenterology*, **vol. 117**, no. 3, 1999, pp. 640-644.

[19] *WHO: „Air Quality Guidelines for Europe. 2nd Ed.”*, Copenhagen: WHOROE, 2001, pp. 288.

[20] *K. Z. Brainina and E. Neyman.* "Electroanalytical stripping methods.", *J. Wiley Sons*, **vol. 126**, 1993, pp. 198

[21] *M. Pesavento, G. Alberti and R. Biesuz.* "Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.", *Anal. Chim. Acta*, **vol. 631**, no. 2, 2009, pp. 129-141.

[22] *R. Town and H. P. van Leeuwen.* "Effects of adsorption in stripping chronopotentiometric metal speciation analysis.", *J. Electroanal. Chem.*, **vol. 523**, no. 1, 2002, pp. 1-15.

[23] *E. Beinrohr, P. Csémi, F. J. Rojas and H. Hofbauerová.* "Determination of manganese in water samples by galvanostatic stripping chronopotentiometry in a flow-through cell.", *Analyst*, **vol. 119**, no. 6, 1994, pp. 1355-1359.

[24] *IS 3025-59 (2006). „Methods of Sampling and test (physical and Chemicals) for water and wastewater, Part 59: Manganese”* [CHD 32: Environmental Protection and Waste Management]

[25] *McNaught & Wilkinson.* "Compendium of Chemical Terminology, 2nd ed.", IUPAC, 1997 (ISBN 0-86542-684-8).

[26] *W. J. Youden and E. H. Steiner.* "Statistical manual of the Association of Official Analytical Chemists; statistical techniques for collaborative tests, planning and analysis of results of collaborative tests.", AOAC, 1975.

[27] *Eurachem Guide.* "The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics, 1st edition", Eurachem, Dec. 1998.

[28] *PS15.* "Guide to Method Validation for Quantitative Analysis in Chemical Testing Laboratories", no. 3, 2012

[29] *ISO/IEC 17025.* "General Requirements for the competence of testing and calibration laboratories, 2nd edition", 2005.

[30] *EN ISO 9000.* "Quality control systems – Basic principles and glossary"

[31] *International vocabulary of basic and general terms in metrology (VIM) (BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 2nd ed., 1993.*

[32] *ICH Q2B.* "Validation of Analytical Procedures: Methodology, adopted in 1996, Geneva Q2B, in 2005 incorporated in Q2(R1).

[33] *L. Huber.* „Validation of analytical methods.”, Agilent Technologies, No. 5990-5140EN, 2010, pp. 13 – 25.

[34] I. L. Popescu, H. Y. Aboul-Enein, I. G. Tănase, I. Ghica, and C. Bala. "Validation of a Quantitative Method Determination of Estradiol in Pharmaceutical Products using UV-Vis Molecular Absorption Spectrometry.", *Anal. Lett.*, **vol. 41**, no. 18, 2008, pp. 3272-3296.