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SOME PHYSICAL IMPLICATIONS OF ABSOLUTE 
GEOMETRIES IN THE DESCRIPTION OF COMPLEX 

SYSTEMS DYNAMICS 
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GHIZDOVAT5, Cristina Marcela RUSU6, Vladimir-Alexandru PAUN7,  
Maricel AGOP 6,8, Viorel-Puiu PAUN8,9 

 

Some implications of absolute geometries in the description of complex 
systems dynamics, at various scale resolutions are highlighted. In such context, by 
means of an analytic geometry of 2 x 2 matrices, a generalization of the standard 
velocities space in Fock’s sense is obtained. Moreover, in the one-dimensional 
homographic action case, various chaos transition scenarios (period doubling and 
intermittences) can be mimed, through the selection of scale resolution.  
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1. Introduction 

Recent results [1-3] highlight the fundamental role of absolute geometries 
in the description of complex systems dynamics, both at microscopic scale (e.g., 
based on SL(2R) invariance of multifractal Schrödinger-type equations [1, 2]) and 
at macroscopic scale (e.g., through the same SL(2R) invariance in the description 
of axial symmetry gravitational field, based on the Ernst complex potential [4, 5]).     
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Moreover, various mathematical operational procedures, developed in the 
framework of the Scale Relativity Theory [6-8], imply, by means of the same 
SL(2R) invariance, several multifractal analyses of complex systems dynamics (at 
different scale resolutions). Because the SL(2R) invariance of the differential 
equations that describe complex systems dynamics is implicitly linked to 
homographic transformations (transformation related to absolute geometries) [8], 
in the present paper we will adress some physical implications of absolute 
geometries in the description of complex systems dynamics.  

2. Metrization Principles 

There are two fundamental actions of 2 × 2 matrices generally considered 
in theoretical physics: action in a one-dimensional domain and action in a two-
dimensional domain, regardless of whether they are real or complex. The first of 
these actions is the so-called projective or homographic action. If the variable that 
characterizes the domain is denoted by z (being real or complex) and the matrix is 
represented by the table of numbers 

𝜶𝜶 ≡ �𝛼𝛼 𝛽𝛽
𝛾𝛾 𝛿𝛿� (1) 

in which the four numbers are, again, real or complex, then the homographic action 
defines by the following correspondence of the domain 𝑧𝑧 in itself: 

𝑧𝑧 →  �𝛼𝛼 𝛽𝛽
𝛾𝛾 𝛿𝛿� (𝑧𝑧) ≡

𝛼𝛼𝛼𝛼 + 𝛽𝛽
𝛾𝛾𝛾𝛾 + 𝛿𝛿

 (2) 

On the other hand, there is the linear action of the matrix (1) in the two-
dimensional domain. If the domain is arithmeticized by the pair of numbers (real or 
complex) (x, y), then this action is defined by the following correspondence of the 
domain in itself: 

(𝑥𝑥,𝑦𝑦) →  �𝛼𝛼 𝛽𝛽
𝛾𝛾 𝛿𝛿� (𝑥𝑥,𝑦𝑦) ≡ (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽, 𝛾𝛾𝛾𝛾 + 𝛿𝛿𝛿𝛿) (3) 

The main difference between the two actions lies in the number of matrix 
elements required to fully characterize them. In the case of the homographic action, 
three numbers are sufficient, while for the linear action all four numbers are 
necessary to characterize it completely. 

As known, these two actions or, more precisely, the correspondences that 
they induce by equations (2) and (3) are closely related to the algebraic properties 
of the set 2 × 2 matrices. In particular, the composition of functions is related to 
the multiplication of matrices. The fact is that matrices in general, not only the ones 
we are talking about now, form a group in relation with the matrix multiplication 
operation. In our particular case, this property induces a similar property of 
applications (2) and (3). This fact can be used to define properties of the matrices 
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action described by differential geometry methods. But for this we need a geometry 
of the matrices themselves, and this refers a priori to a four-dimensional space, since 
a matrix has four components - its elements. 

3. Analytic Geometry of 𝟐𝟐 × 𝟐𝟐 Matrices 

If we denote by 𝑋𝑋 a point in this four-dimensional space, then its 
representation by coordinates is given by a quadruple of numbers representing the 
elements of the matrix: 

𝑋𝑋 ≡ (𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿) (4) 

In the case of the homographic action where only three of these numbers are 
sufficient to characterize it, the elements of the matrix can be considered as 
homogeneous coordinates in a three-dimensional space. Only for the linear action 
the space has dimension four. The quadratic form 

(𝑋𝑋,𝑋𝑋) ≡ 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽 (5) 

which represents the determinant of the matrix, is an algebraic surface of the second 
degree in space, i.e., a quadric of the space. The points in space, located on this 
quadric, represent singular matrices, which are not reversible if they do not 
specifically refer to an action: they have an inverse, which makes sense if we refer 
to the homographic action, but they do not have an inverse to the linear action. Here 
is the point where the equivalence between the group of matrices and the group of 
induced morphisms breaks for certain correspondences. 

The above quadric plays an important role in our space, in the sense that it 
can be taken as the absolute of space in Cayley's sense and can be used in the 
construction of a geometry absolute or Cayleyene [9, 10]. This geometry helps us, 
in turn, in the construction of some metric structures that lead to conservation laws 
which characterize the various actions, approximately in the spirit of the classic 
Hamilton-Jacobi equation. Our immediate goal is to discover those laws. 

To construct that absolute geometry, we consider the quadratic form (5) as 
the norm in our space. It induces a scalar product through the doubling procedure: 

(𝑋𝑋1,𝑋𝑋2) =
1
2

(𝛼𝛼1𝛿𝛿2 + 𝛼𝛼2𝛿𝛿1 − 𝛽𝛽1𝛾𝛾2 − 𝛽𝛽2𝛾𝛾1) (6) 

where the correspondence between the indices of the points and those of the 
coordinates makes the notation obvious. This scalar product helps us to characterize 
the straight line in space, this being the essential concept in producing absolute 
metrics. A straight line between two points can be drawn, usually, as a linear 
combination of those points: 
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𝑋𝑋 = 𝜆𝜆𝑋𝑋1 + 𝜇𝜇𝑋𝑋2 (7) 

with 𝜆𝜆 and 𝜇𝜇 variable numbers that represent the homogeneous coordinates on the 
line. This straight line intersects the absolute in two points that have homogeneous 
parameters on the line, partially determined by the quadratic equation: 

(𝑋𝑋,𝑋𝑋) ≡ 𝜆𝜆2(𝑋𝑋1,𝑋𝑋1) + 2𝜆𝜆𝜆𝜆(𝑋𝑋1,𝑋𝑋2) + 𝜇𝜇2(𝑋𝑋2,𝑋𝑋2) = 0 (8) 

Indeed, from here we can only determine the ratios of these two parameters, 
as the roots of the equation, that is 

𝑡𝑡 ≡
𝜆𝜆
𝜇𝜇

= −
(𝑋𝑋1,𝑋𝑋2)
(𝑋𝑋1,𝑋𝑋1) ±

�(𝑋𝑋1,𝑋𝑋2)2 − (𝑋𝑋1,𝑋𝑋1)(𝑋𝑋2,𝑋𝑋2)
(𝑋𝑋1,𝑋𝑋1)  (9) 

It turns out, however, that these ratios are sufficient for our purpose. 
Operationally, the metric is the distance between two infinitely neighboring points 
in space, so we need the distance between several two-points. The quantity that 
reduces to the known distance in the Euclidean limit is the anharmonic ratio that 
two points have to two reference points to their right. More precisely, the distance 
is, up to a numerical factor, the natural logarithm of this anharmonic ratio. 

Given two points 𝑋𝑋1,2, the straight line can be taken in the form of the 
inhomogeneous equation, i.e., 𝑋𝑋 = 𝑡𝑡𝑋𝑋1 + 𝑋𝑋2, because the parameter t intervenes in 
the form of the roots in equation (9). In order to define the distance between the two 
points, we choose two other reference points on the right 𝑋𝑋3.4, let's say, and we 
construct the anharmonic ratio of the four points. It is defined by the anharmonic 
ratio of the inhomogeneous parameters of the points: 

(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4) =
𝑡𝑡1 − 𝑡𝑡3
𝑡𝑡1 − 𝑡𝑡4

:
𝑡𝑡2 − 𝑡𝑡3
𝑡𝑡2 − 𝑡𝑡4

 (10) 

The absolute distance is simply proportional to the logarithm of this 
quantity. It depends, of course, on the pair of reference points chosen, but in our 
case this ambiguity can be substantially reduced if we refer the construction of the 
line to the absolute of space. Let us note first that in the equation of the line we have 
the values 𝑡𝑡2 = 0 for the point 𝑋𝑋2 and 𝑡𝑡1 = ∞ for the point 𝑋𝑋1. With this, the 
anharmonic ratio (10) takes the simple form 

(𝑋𝑋1,𝑋𝑋2;𝑋𝑋3,𝑋𝑋4) =
𝑡𝑡4
𝑡𝑡3

 (11) 

Furthermore, a unique choice for the points 𝑋𝑋3 and 𝑋𝑋4 is that of intersection 
points of the right with the absolute. This choice has the advantage of allowing a 
standardization of construction, because any pair of points in space has a 
corresponding pair of points on the absolute: the points where the line determined 
by the respective pair intersects the absolute. The corresponding parameters of the 
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two points on the absolute are then given by the pair of roots from equation (9), so 
that equation (11) becomes 

(𝑋𝑋1,𝑋𝑋2;𝑋𝑋3,𝑋𝑋4)

=
(𝑋𝑋1,𝑋𝑋2) + �(𝑋𝑋1,𝑋𝑋2)2 − (𝑋𝑋1,𝑋𝑋1)(𝑋𝑋2 ⋅ 𝑋𝑋2)
(𝑋𝑋1,𝑋𝑋2) −�(𝑋𝑋1,𝑋𝑋2)2 − (𝑋𝑋1,𝑋𝑋1)(𝑋𝑋2 ⋅ 𝑋𝑋2)

 (12) 

With this expression of the anharmonic ratio, we can construct an 
infinitesimal version of a distance, which is precisely the metric we need. Assuming 
that our points 𝑋𝑋1 and 𝑋𝑋2 are infinitely close, and noting generically 𝑋𝑋1 = 𝑋𝑋,𝑋𝑋2 =
𝑋𝑋 + 𝑑𝑑𝑑𝑑, we can calculate the quantities required in equation (12) in the form 

(𝑋𝑋1,𝑋𝑋2) = (𝑋𝑋,𝑋𝑋) + (𝑋𝑋,𝑑𝑑𝑑𝑑)
(𝑋𝑋2,𝑋𝑋2) = (𝑋𝑋,𝑋𝑋) + 2(𝑋𝑋 < 𝑑𝑑𝑑𝑑) + (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)
(𝑋𝑋1,𝑋𝑋2)2 − (𝑋𝑋1,𝑋𝑋1)(𝑋𝑋2,𝑋𝑋2) = (𝑋𝑋,𝑑𝑑𝑑𝑑)2 − (𝑋𝑋,𝑋𝑋)(𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)

 (13) 

Now, in the real domain we can accept that the quantity (𝑋𝑋,𝑑𝑑𝑑𝑑)/(𝑋𝑋,𝑋𝑋) is 
an infinitesimal of the first order, while (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)/(𝑋𝑋,𝑋𝑋) is an infinitesimal of the 
second order. Therefore, the anharmonic ratio (12) can be developed to the first 
order in the form 

(𝑋𝑋1,𝑋𝑋2;𝑋𝑋3,𝑋𝑋4) = 1 + 2��
(𝑋𝑋,𝑑𝑑𝑑𝑑)
(𝑋𝑋,𝑋𝑋)

�
2

−
(𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)

(𝑋𝑋,𝑋𝑋)
 (14) 

In the same infinitesimal order, the logarithm of this expression is the part 
containing the radical, so that the absolute metric can be written, up to a factor that 
fixes its physical dimensions, as: 

(𝑑𝑑𝑑𝑑)2 = �
(𝑋𝑋, 𝑑𝑑𝑑𝑑)
(𝑋𝑋,𝑋𝑋)

�
2

−
(𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)

(𝑋𝑋,𝑋𝑋)
 (15) 

It turns out that this expression is also valid under broader conditions of 
definition for our space: complex points, the general functional definition of the 
absolute, etc. We will refer here only to those definitions that have at least some 
physical meaning.  

For the moment, let's make an observation on the absolute given by equation 
(5). When the coordinates of the points are real, this quadric is a hyperboloid with 
a canvas, as we know it from analytic geometry. The description can be extended 
for complex coordinates, in which case we are dealing with a space with five real 
dimensions, which can describe, for example, the conics in ordinary space. But 
regardless of these details, a calculation of the metric (15) gives us that metric in 
the form 

(𝑑𝑑𝑑𝑑)2 =
(𝛼𝛼𝛼𝛼𝛼𝛼 + 𝛿𝛿𝛿𝛿𝛿𝛿 − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛾𝛾𝛾𝛾𝛾𝛾)2

4(𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽)2
−
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽

 (16) 
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This metric can be related to several important physical situations, 
especially related to homographic action of the matrices, which we will now 
consider in detail. 

An immediate physical consequence of the above written formalism refers 
to a generalization of the velocities space from Einstein’s Theory. 

In such context, if we denote by 𝑋𝑋 a point in this space of velocities, then a 
coordinate representation is given by a quadruple of (until further notice, real) 
numbers: 

𝑋𝑋 ≡ (𝑐𝑐,𝒗𝒗) (17) 

The norm of these points is then given by the quadratic form: 

(𝑋𝑋,𝑋𝑋) ≡ 𝑐𝑐2 − 𝒗𝒗2 (18) 

Thus, the points which satisfy the condition (𝑋𝑋,𝑋𝑋) = 0 are geometrically 
shaping an absolute for this geometry. Among other things, physically they 
represent the propagation of light if the limit velocity 𝑐𝑐 is a constant. Specifically, 
the points with positive norm represent inertial motions, while the points with 
negative norm represent, for instance, de Broglie waves in the regular case of 
special relativity, or some other ensembles of Hertz material particles in the case of 
the Kepler motion [10].  

The norm (18) induces an internal multiplication of the points by the known 
'polarization' procedure (see, for instance, [10]): 

(𝑋𝑋1,𝑋𝑋2) ≡ 𝑐𝑐1𝑐𝑐2 − 𝒗𝒗1 ∙ 𝒗𝒗2 (19) 

Here, an obvious correspondence is understood, between indices of points 
and indices of coordinates. This internal product helps in describing a straight line 
in space, which is the essential concept necessary in constructing a metric, at least 
from the differential geometric point of view. 

Now, let us go back to our specific case, as given by equation (18). If the 
coordinates of points are real, then the absolute quadric is a two-sheeted 
hyperboloid, as we know it from analytic geometry. This description can also be 
used for the case of complex coordinates. However, in that instance, the geometrical 
image is not quite as simple as in the real case: there, we have to do with the 
intersection of two real quadrics, therefore with a real conic in space. Regardless of 
these details, momentarily we shall refer to a direct calculation of the metric given 
by equation (15). This will be based on the identification 𝑑𝑑𝑑𝑑 ≡ (𝑑𝑑𝑑𝑑, 𝑑𝑑𝒗𝒗), which 
gives the following quadratic form as a metric based on this representation: 

(𝑑𝑑𝑑𝑑)2 =
𝑐𝑐2(𝑑𝑑𝒗𝒗)2 − (𝒗𝒗 × 𝑑𝑑𝒗𝒗)2

(𝑐𝑐2 − 𝒗𝒗2)2 +
𝒗𝒗2(𝑑𝑑𝑑𝑑)2 − 2𝑐𝑐(𝒗𝒗 ∙ 𝑑𝑑𝒗𝒗)(𝑑𝑑𝑑𝑑)

(𝑐𝑐2 − 𝒗𝒗2)2  (20) 
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This metric can be related to some known, and physically important 
situations. Let us, therefore, consider the equation just obtained in greater detail. 

We wrote here the absolute metric as a sum of two terms for a particular 
reason: in the framework of special relativity, the first term from equation (20) is 
the metric of the velocity space, and it is a direct consequence of the law of 
composition of relativistic velocities [11]. In this way, one can say that the whole 
metric (20), for instance in cases where the first component of the point 𝑋𝑋 is a 
constant: the differential of a constant 𝑐𝑐 is always zero, and the second term in (20) 
vanishes. In other words, there is no intrafinite four-vector velocity in relativistic 
physics as we inherited it from Maxwell electrodynamics [12-16].  

In order to understand the method, let us assume the case of constant 𝑐𝑐: only 
after analyzing this case, we can properly improve on it. The absolute metric (20) 
turns out to be: 

(𝑑𝑑𝑑𝑑)2 = �1 − �
𝒗𝒗
𝑐𝑐
�
2
�
−2

��
𝑑𝑑𝒗𝒗
𝑐𝑐
�
2

− �
𝒗𝒗
𝑐𝑐

×
𝑑𝑑𝒗𝒗
𝑐𝑐
�
2

� (21) 

In the three-dimensional velocity space of relativity, this metric can be 
written in the form: 

(𝑑𝑑𝑑𝑑)2 = �
𝑑𝑑𝒒𝒒

1 − 𝒒𝒒2
�
2

− �
𝒒𝒒 × 𝑑𝑑𝒒𝒒
1 − 𝒒𝒒2

�
2

,𝒒𝒒 ≡
𝒗𝒗
𝑐𝑐

 (22) 

4. The One-Dimensional Homographic Action 

Consider the equation 

𝑡𝑡′ =
𝛼𝛼𝛼𝛼 + 𝛽𝛽
𝛾𝛾𝛾𝛾 + 𝛿𝛿

 (23) 

which represents the homographic action of the generic matrix that we denote by 
𝜶𝜶. The problem what we want to solve is the following: to find the relationship 
between the set of matrices and a set of values of 𝑡𝑡 for which 𝑡𝑡 remains constant. 
This problem has important applications in theoretical statistics and relativity. From 
a geometrical point of view this means finding the set of points (𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿) that 
uniquely corresponds to the values parameter t. Using equation (23), our problem 
is solved by a Riccati differential equation which is obtained as a consequence of 
the constancy of 𝑡𝑡:𝑑𝑑𝑑𝑑 = 0 (for details see [17-23]): 

𝑑𝑑𝑑𝑑 + 𝜔𝜔1𝑡𝑡2 + 𝜔𝜔2𝑡𝑡 + 𝜔𝜔3 = 0 (24) 

where we use the following notation: 
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𝜔𝜔1  =
𝛾𝛾𝛾𝛾𝛾𝛾 − 𝛼𝛼𝛼𝛼𝛼𝛼
𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽

,

𝜔𝜔2  =
𝛿𝛿𝛿𝛿𝛿𝛿 − 𝛼𝛼𝛼𝛼𝛼𝛼 + 𝛾𝛾𝛾𝛾𝛾𝛾 − 𝛽𝛽𝛽𝛽𝛽𝛽

𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽

𝜔𝜔3  =
𝛿𝛿𝛿𝛿𝛿𝛿 − 𝛽𝛽𝛽𝛽𝛽𝛽
𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽

 (25) 

It is then easy to see that the metric (16) is directly related to the discriminant 
of the quadratic polynomial from equation (24): 

(𝑑𝑑𝑑𝑑)2 =
1
4
𝜔𝜔2
2 − 4𝜔𝜔1𝜔𝜔3� (26) 

The three differential forms in equation (25) constitute what is commonly 
known as a coframe [18, 21]) at any point of absolute space. This coframe allows 
us to translate the geometric properties of absolute space into algebraic properties 
related to differential equation (24). 

The simplest of these properties refer to the motion on geodesics of the 
metric, which translates directly into statistical properties. In this case the 1-forms 
𝜔𝜔1,𝜔𝜔2,𝜔𝜔3 are exact differentials in the same parameter the length of the arc of the 
geodesic, let's say. Along these geodesics, equation (24) turns into an ordinary 
differential equation of the Riccati type: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎1𝑡𝑡2 + 2𝑎𝑎2𝑡𝑡 + 𝑎𝑎3 (27) 

Here the parameters 𝑎𝑎1,2,3 are constants that characterize a certain geodesic 
of the family. 

In the following, let us rewrite the Riccati equation (27), in the form  

𝑤̇𝑤 −
1
𝑀𝑀
𝑤𝑤2 + 2

𝑅𝑅
𝑀𝑀
𝑤𝑤 − 𝐾𝐾 = 0 (28) 

where we used the notations  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑤̇𝑤,𝑎𝑎1 =
1
𝑀𝑀

 ,𝑎𝑎2 = −
𝑅𝑅
𝑀𝑀

,𝑎𝑎3 = 𝐾𝐾 (29) 

For obvious physical reasons it is therefore important to find the most 
general solution of equation (28). José Carineña and Arturo Ramos offer us a pass 
in short but modern and pertinent review of the integrability of Riccati's equation 
[24-27]. For our current needs it is enough to note that the complex numbers 

𝑤𝑤0 ≡ 𝑅𝑅 + 𝑖𝑖𝑖𝑖Ω,  𝑤𝑤0
∗ ≡ 𝑅𝑅 − 𝑖𝑖𝑖𝑖Ω;  Ω2 =

𝐾𝐾
𝑀𝑀
− �

𝑅𝑅
𝑀𝑀
�
2

 (30) 

roots of the quadratic polynomial on the right side of equation (28), are two 
solutions (constants, that's right) of the equation: being constants, their derivative 
is zero, being roots of the right-hand polynomial, it cancels. So, first we do the 
homographic transformation: 
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𝑧𝑧 =
𝑤𝑤 − 𝑤𝑤0

𝑤𝑤 − 𝑤𝑤0∗
 (31) 

and now it can easily be seen by direct calculation that 𝑧𝑧 is a solution of the linear 
and homogeneous equation of the first order 

𝑧̇𝑧 = 2𝑖𝑖Ω𝑧𝑧 ∴ 𝑧𝑧(𝑡𝑡) = 𝑧𝑧(0)𝑒𝑒2𝑖𝑖Ω𝑡𝑡 (32) 

Therefore, if we conveniently express the initial condition 𝑧𝑧(0), we can give 
the general solution of the equation (28) by simply inverting the transformation 
(31), with the result 

𝑤𝑤 =
𝑤𝑤0 + 𝑟𝑟𝑒𝑒2𝑖𝑖Ω(𝑡𝑡−𝑡𝑡𝑟𝑟)𝑤𝑤0

∗

1 + 𝑟𝑟𝑒𝑒2𝑖𝑖Ω(𝑡𝑡−𝑡𝑡𝑟𝑟)  (33) 

where 𝑟𝑟 and 𝑡𝑡𝑟𝑟 are two real constants that characterize the solution. Using equation 
(30) we can put this solution in real terms, i.e. 

𝑧𝑧 = 𝑅𝑅 + 𝑀𝑀Ω�
2𝑟𝑟sin [2Ω(𝑡𝑡 − 𝑡𝑡𝑟𝑟)]

1 + 𝑟𝑟2 + 2𝑟𝑟cos [2Ω(𝑡𝑡 − 𝑡𝑡𝑟𝑟)]

+𝑖𝑖
1 − 𝑟𝑟2

1 + 𝑟𝑟2 + 2𝑟𝑟cos [2Ω(𝑡𝑡 − 𝑡𝑡𝑟𝑟)]�
 (34) 

which highlights a frequency modulation through what we would call a Stoler 
transformation [15, 28, 29] which leads us to a complex form of this parameter. 
More than that, if we make the notation 

𝑟𝑟 ≡ coth 𝜏𝜏 (35) 

equation (34) becomes 

𝑧𝑧 = 𝑅𝑅 + 𝑀𝑀Ωℎ (36) 

where ℎ is given by 

ℎ = −𝑖𝑖
cosh 𝜏𝜏 − 𝑒𝑒−2𝑖𝑖Ω(𝑡𝑡−𝑡𝑡𝑚𝑚)sinh 𝜏𝜏
cosh 𝜏𝜏 + 𝑒𝑒−2𝑖𝑖Ω(𝑡𝑡−𝑡𝑡𝑚𝑚)sinh 𝜏𝜏

 (37) 

We present in Figure 1 a, b the dependences of Rez on Ω and t, at various 
scale resolutions. In this way, several chaos transition scenarios (period-doubling 
(a) and intermittences (b)) can be mimed. Such a situation is verified by means of 
the Fourier transformation.  
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Fig. 1a, b. The time variation of the Rez solution amplitude for different values of  Ω (a): 
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To obtain these graphic representations based on the time series 
theoretically developed in the presented model, the same software programs as in 
the bibliographic references [30, 31] were used. 

5. Conclusions  

Several implications of absolute geometries in fundamental physics have 
been presented: 

i.   a generalization of the standard velocities space in Fock’s sense; 
ii. chaos transition scenarios (period doubling and intermittences) mimed 
through the selection of scale resolutions. 
Our constructed velocities space refers not only to the standard space in 

Fock’s sense (in which the vacuum speed of light is a constant) but also to a more 
general space (in which the limit velocity, in particular the speed of light, can also 
be variable). 

We must highlight the fact that the Riccati-type gauge (see eq. (24)) proves 
to be fundamental in non-linear dynamics, in miming various chaos transition 
scenarios, as presented in the paper. 
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