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MULTIFRACTAL ANALYSIS OF THE DYNAMICS OF THE
ROMANIAN EXCHANGE RATE ROL-USD DURING THE
TRANSITION PERIOD

Constantin P. CRISTESCU?, Cristina STAN?, Eugen I. SCARLAT?

In aceastd lucrare prezentdm un studiu asupra conditiilor pe care trebuie si
le satisfaca o serie temporald pentru ca rezultatul unei analize multifractale a
acesteia sd fie satisfacatoare. Analiza de acest tip este importantd deoarece in multe
situatii practice, cum este i cazul unei serii financiare, este necesar sd se
stabileasca daca seria are caracter mono sau multifractal. Rezultatele pentru serii
temporale scurte (limitate de conditii practice) sunt, in general, afectate de erori
care conduc la largirea §i la translatia spectrului de singularitate. Am ardtat ca
analiza multifractald da rezultate bune pentru o serie temporald de cel putin 4000
de puncte. In cazul seriilor mai scurte, rezultate imbundtditite considerabil se obtin
in urma unui proces artificial de lungire constind in repetarea seriei temporale,
dupa un proces prealabil de eliminare a tendintelor dominante.

In this work we present a study on the conditions that a time series has to
Sfulfil in order that a multifractal analysis produces reliable results. The analysis of
this type is very important because in many practical situations, particularly the
present case of a financial time series, the first usually addresed question is whether
the data under study are monofractal or multifractal. The results for short time sries
(as limited by practical constraints) can be (and indeed are) affected by errors
leading to a broadening and a translation of the singularity spectrum. We find that
our multifractal analysis gives reliable results for a time series longer than 4000
points. If the available time series is (much) shorter, considerably improved results
are expected via a lenghtening procedure consisting in the repeating of the available
time series. Clearly, a carefully detrended procedure has to be previously applied in
order to avoid artificially introduced fluctuation that might alter the singularity
spectrum.

Keywords: multifractal analysis, singularity spectrum, fractal dimension,
Hurst exponent

1. Introduction

About ten years ago, the physics community discovered that methods of
physics such as statistical physics and chaotic dynamics are well suited for the
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analysis of social, economic and financial phenomena [1,2]. This led to the
emergence of the new multidisciplinary field of econophysics that meanwhile
developed specific methods for short and long run predictions for the financial
and economic evolution [3].

One of the most popular methods in the field is the multifractal analysis
because the real data from different financial markets is known to exhibit self-
similar properties. Multifractals were introduced in the field of economics [4,5] to
surpass the shortcomings of classical theories that predict the impossibility of
occurrence of precipitous events. When the dimension of a time series is non-
integer, this is associated with two specific features: inhomogeneity — extreme
fluctuations at irregular intervals, and scaling symmetries — definite relationships
between fluctuations over different separation distances. In some cases, such as
exchange rates, the underlying structural equations give rise to fractality [6]. The
specific analysis methods are based on the Hurst exponent, correlation functions
and frequency spectrum, or on more sophisticated ones, like wavelet transforms or
Holder exponent spectrum [7-9].

In this paper we focus upon the time series of the sampled daily exchange rate
ROL-USD over more than five years. The observed exponential-like growth is a
consequence of the strong inflationist trend a pattern that usually occurs where
things are out of order. The economic systems under transition represent a very
interesting field of research, particularly for the occurrence of events that are very
improbable or even catastrophic under normal circumstances.

This paper estimates the conditions that a time series has to fulfill in order that
a multifractal analysis produces reasonably reliable results. It is shown that a
minimum length of the financial series under analysis is a stringent requirement.
This result is obtained by comparing the output of multifractal computation,
particularly of the singularity spectrum for a well known signal (brown noise) and
our financial time series for various lengths thereof. On the basis of the analysis, a
proposal for improved results in the case of short time series is suggested.

2. Theoretical background

In 1971 Renyi [10] defined an order ¢ information
1
1,(r)= 1, InZ,(r) 1)

where the order ¢ partition function is defined by

N(r)
Z,(r)= lep? )



Multifractal analysis of the dynamics of the romanian exchange rate ROL-USD during 39

with ¢ any real number including zero. The summ is over the N(r) cells that

cover the phase space attractor.
An infinite series of generalized dimensions of various orders was
introduced by Grassberger in 1983 [11], defined by

1 InZ
D, =-lim q(r)z— L jimD q(r). 3)
=0 |np 1-g ™o Inr

The low integer order generalized dimensions have the following meaning: D, is

the box counting dimension, D, is the information dimension and D, is the

correlation dimension [12].

The time series of many various real processes have a clear fractal
structure. In applications, particularly in econophysics, it is very important to
determine their fractal characteristics. There are two methods of computing a
singularity spectrum for a time series: by detrended fluctuation analysis (MFDFA)
[13,14] and by wavelet transform modulus maxima (WTMM) [15,16]. The
analysis of the LEU/USD exchange rate during the transition epoch of Romanian
economy by the first method was already presented [17]. In this paper, we shall
use the second method for a similar analysis.

First we shall introduce the main ideas. The wavelet transform associates
to the signal function f(¢) another function 7, (b, a) according to the relationship

1% t-b
1 e =2 [ ron o @
a:-, a
where the scale parameter a is a real pozitiv number, and b e R is the ,spatial
parameter”. A wavelet function y, well localized in both space and frequency
2

m 2
such as the Gaussian exp{— %} and its derivatives y ") = dd - (GXP[— %D is
¢

used.
The meaning of the parameters a and b is quite clear when the analysis

2

-\2
wavelet function is the Gaussian, namely w(t)zexp{—(tz_—t)}. While b
o

represents the coordinate on which the analysis wavelet function is localized, a is
proportional to the dispersion of the Gaussian bell, and consequently, it
characterizes the width of the domain where the wavelet function has meaningful
values.
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By modulus maxima of the wavelet transform, we mean the local maxima
of the |TW (b,a)| function for a given value of a. By decreasing the parameter a«,
these maxima result in a wavelet spectrum that reveals a detailed structure of
singularities of the initial signal as » is scanning the range of values of the
coordinate (in the present situation, 7) [17]. The wavelet analysis for the time
series used in this work is shown on Fig.1, where the upper section shows the time
series after detrending with the second order polynomial.
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Fig. 1 Wavelet analysis of the detrended financial time series, shown on top of the figure.

WTMM uses the ,spatial” partitioning generated by these maxima
corresponding to different values of the scale parameter a. This allows the
definition of an order ¢ partition function according to

Z(g,a)= tZ(]a)ITW (t,(a)a) (5)

where ¢,(a) are the values of b corresponding to the local maxima of |7;, (,a)),

and ¢ is a real number including zero.
For fractal signals, the dependence of the partition function on the
“dimension of the cell”, a, for small values of the latter, must be exponential:

Z(g,a)~a™. (6)
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The singularity spectrum f(c) of the signal f(¢) is obtained [18] using the
Legendre transform of the function z(g)

@)=min(ga - (q)). )
In many practical situations, as in the present one, f(t) is in the form of a
series of discrete values x(i), i =1,2,---, N . In this case, the wavelet transform is

7 ns) =2 30 ) ®

N
and the partition function becomes

Z(q,s)= %ITW (m,(s).s)" (9)

where the index / goes over the set of all maxima of |TW (nsj for each value of the

scale parameter s and n, (s) represents the position of any given maximum. For
fractal signals the partition function satisfies an equation similar to (6):
Z(q, S) ~ 7@ (10)
and equation (7) remains unchanged.
The function z(¢) is computed as the slope of the graph log Z(g,s) versus
logs for the straight portion corresponding to small values of s and finally, the
singularity spectrum f(a) is given by equation (7).

3. Computational results

The singularity spectrum of the brown noise time series is shown in Fig.
2a and that of the financial time series analysed in this paper is shown in Fig. 2b.

The figures present the singularity spectra for three increasing lengths of
the time series. First, we shall discuss the situation for the brown noise (Fig. 2a).
The spectrum denoted 1 is obtained for series length of 1024 points, the one
denoted 2 for a length of 2048 points and the one denoted 3 for 4096 points. We
notice a convergence towards the value Dy=0.5 known to characterise the brown
noise. Further increasing of the length has practically no effect on the spectrum.

In the case of the analysed financial time series, we were unable to follow
the same steps because its length was restricted to only 1350 points.
Consequently, we increased the length of the series by repeating it once and then
by adding again the original time-serie. The spectrum denoted 1 in Fig. 2b is
obtained for the original time series, the one denoted 2 for the double length time
series (2700 points) and the one denoted 3 for the triple length time series (4050
points). The addition of another 1350 points segment does not significanly
change the singularity spectrum. In this case, we notice a similar convergence
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towards a box counting dimension Dy = 0.65. This is consistent with previously
published results [17] and is also proved by the box-counting computation shown
in Fig. 3. We stress that the box-counting result is not altered by the lengthening
process described.
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Fig. 2 Singularity spectra for brown noise (a) and the analyzed financial time series (b) for
different length of the time series

We infer that this artificial process of lengthening of the available time
series is really beneficial for the results of a multifractal analysis by the WTMM.
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Fig. 3 Computation of the box-counting dimension of the financial time series
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4. Conclusions

The analysis of this type is very important because in many practical
situations, particularly the present one, the first usually addresed question is
whether the data under study is monofractal or multifractal. It should be noticed
that both methods mentioned above work satisfactorily well for very long time
series. However, the results for short ones (as limited by practical constraints) can
be, and indeed are affected by errors leading to a broadening and a translation of
the singularity spectrum. It is not pointlike as it should be for monofractal signals.
This effect is clearly seen on Fig. 2, because we know from the previous analysis
[17] that the signal is monofractal. The result is consistent with a comparative
analysis of the accuracy of the two methods which shows that, for short time
series, the method based on detrended fluctuation analysis gives more reliable
results than the wavelet transform analysis [19].

We find that our multifractal analysis gives reliable results for a time
series longer than 4000 points. If the available time series is (much) shorter,
considerably improved results are expected via a lenghtening procedure consisting
of repeating the available time series. Clearly, a carefully detrended procedure has
to be previously applied in order to avoid artificially introduced fluctuations that
might alter the singularity spectrum.
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