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AN APPROACH TO ACCESS TO A CONCEPT LATTICE VIA 

THE IDEA OF LATTICE THEORY 
Hua MAO1 

 
A concept lattice is defined by a binary relation on a context and indeed a lattice. In this 

paper, for a given context, firstly, we present a way to obtain all the cover elements of the smallest 
element in the given context ordered by a naturally relation. After that, we define a binary relation 
on a new context produced by one of elements in the concept lattice for the given context. A new 
concept lattice is derived from just the new binary relation. By the help of lattice theory, we 
explain the isomorphic relation between the new concept lattice and an interval in the concept 
lattice produced by the given context. Henceforth, using this isomorphic relation and the way 
presented previously to obtain all the cover elements of the smallest element, we give an approach 
to earn all the elements in the concept lattice for the given context. Simultaneously, the Hasse 
diagram of the concept lattice is got. 
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1. Introduction 

We know that concept lattices are used in several areas of database 
managing and the theory of concept lattices is an efficient tool for knowledge 
representation and knowledge discovery (cf. [1, 2, 3, 5]). As Berry and Sigayret 
said in [2], one of the important challenges in data handling is generating or 
navigating the concept lattice of a binary relation. In this paper, we present an 
approach for generating and understanding a concept lattice by the intervals and 
the cover elements’ properties in the concept lattice for a given context. The 
approach generates all the concepts as well as the edges of the Hasse diagram of 
the lattice, without requiring a data structure. 
 

A. Berry et.al. in [6] also present an algorithmic process which encounters 
all the concepts without requiring an exponential-size data structure. The 
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algorithm in [6] is a Depth-First fashion. To get the cover of a concept (A, B), it 
needs to compute the partition into maxmods. After that, it computes the set ND 
of non-dominating maxmods. Finally, using the set ND of non-domination 
maxmods of I(G\A, B) (Notice: I(G\A, B) is a sub-relation of I, cf. [6]), it obtains 
the cover of (A, B). The method in this paper is different from [6] and the others 
such as [2, 7, 8] and so on. It is a Breadth-First fashion. We notice that though [6] 
informs us that in a sublattice of a given context, if (A, B) is the least, then this 
sublattice is exactly the lattice of the sub-relation I(G, B) and the atoms of this 
lattice are defined by the properties of I(G\A, B). It does not show the relationship 

between [(A, B), (G, ∅)] and �(G\ A, B, IB) (Notice: the definition of �(G\A, B, IB) 

can be found in the following). This paper just deals with the relationship between 

the interval [(A, B), (G, ∅)]⊆�(G, M, I) and �(G\A, B, IB). We may hope that the 

relationship is not only useful in this paper but also important to the discussion 
with concept lattices in the future. Using this relationship, for finding the cover of 
a given concept (A, B) in a concept lattice, we only need the method computing 
the cover of the least element in this concept lattice. The method computing the 
cover of the least element is visual and simple. 

 
Firstly, we declare that all the discussions in this paper are finite. Secondly, 

some knowledge needed in the sequel are now recalled on. 
Definition 1 (1) [1, &2] A triple (G, M, I) is called a formal context, if G 

and M are sets and I ⊆ G×M is a binary relation between G and M. For A⊆G and 
B⊆M, we define A′={m∈ M | (g, m)∈ I for all g∈ A} and B′={g∈G | (g, m)∈ I for 
all m∈ B}. (A, B) is a formal concept of (G, M, I) if and only if A′=B and A=B′. 

The concepts of a given context are naturally ordered by (A1, B1) ≤ (A2, B2) 
⇔ A1⊆ A2 (⇔ B2⊆ B1). The ordered set of all formal concepts of (G, M, I) is 

denoted by �(G, M, I) and is called the concept lattice of (G, M, I). 

(2) [3, p.12, &4, p.4] In the poset (P, ≤), a covers b or b is covered by a (in 

notation, bR a) if and only if b<a and, for no x, b<x<a. 

[4, p.5] In a poset P of finite length with the least element 0, the height h[x] 
of x∈ P is, by definition, the l.u.b. of the lengths of the chains 0=x0<x1<...<xl=x 
between 0 and x. 
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[3, p.21] Given a ≤ b in a lattice L, the interval [a, b]={x∈ L | a ≤ x ≤ b}. 
 
Lemma 1 Let (G, M, I) be a formal context, Aj, A⊆G and Bj, B⊆M ( j∈J). 

Then 
(I)[1] (1)  (i) A1⊆ A2 ⇒ A2′ ⊆ A1′;     (i)’  B1⊆ B2 ⇒ B2′ ⊆ B1′. 
         (ii) A⊆ A′′ and A′=A′′′;     (ii)’  B⊆ B′′and B′ =B′′′. 
         (iii)  A⊆ B′⇔ B⊆ A′. 

      (2) �(G, M, I) is a complete lattice in which infimumand supremum are 

given by 
∧j∈J (Aj, Bj)=(∩j∈J Aj, (∪j∈J Bj)′′);   ∨j∈J (Aj, Bj)=((∪j∈J Aj)′′, ∩j∈J Bj). 

(II)[5]   (iv) (∪j∈J Aj)′ =∩j∈J Aj′;    (iv)’ (∪j∈J Bj)′ =∩j∈J Bj′ . 
 

Remark  (1) [4, p.5] In a poset P, h[x]=1 if and only if x covers 0. 
[4, p.7] Given a≤b in a lattice L, the interval is a sublattice. 
(2) In this paper, a formal context (G, M, I) and a formal concept of (G, M, 

I) is simply said a context and a concept respectively. We just use gIm to express 
(g, m)∈I. 

 
2. Computing the cover elements of the smallest element  
 
Let (G, M={m1, m2, …, mn}, I) be a context. No harm to suppose, in what 

follows, in �(G, M, I), (∅, M) and (G, ∅) is the smallest element and the greatest 

element respectively. Actually, if not, we can easily change the original context to 
be that as the supposition and the original concept lattice is easier to be obtained 
from the new concept lattice. In this section, we just give a way to obtain the 

whole cover elements of (∅, M) in �(G, M, I). 

Let �1={M\mj | (M\mj)′′=M\mj, j∈{1, 2, …, n}}, �1={(M\mj)′ | M\mj ∈�1} 

and ∩1={ j | M\mj ∈�1}. In addition, �1={((M\mj)′, M\ mj) | j∈∩1}. 

Suppose we have got �j (j=1, 2, …, p-1) such that  

�j ={M\{
1i

m , …,
jim } | (M\{

1i
m , …,

jim })′′= M\{
1i

m , …,
jim } and for any 
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      S⊂{i1, …, i j}, S∉∩|S|}, 

�j ={(M\{
1i

m , …,
jim })′ | M\{

1i
m , …,

jim }∈�j},   

∩j ={{i1, …, i j} | M\{
1i

m , …,
jim }∈�j}, 

�j ={((M\{
1i

m , …,
jim })′, M\{

1i
m , …,

jim }) | {i1, …, i j}∈∩j}. 

Let �p={M\{
1i

m , …, ipm } | (M\{
1i

m , …, ipm })′′=M\{
1i

m , …, ipm } and for 

any S⊂{i1, …, ip}, M\{
1sm , …,

||Ssm }∉�|S| }, �p ={(M\{
1i

m , …, ipm })′ | 

M\{
1i

m , …, ipm }∈�p}, ∩p ={{i1, …, ip} | M\{
1i

m , …, ipm }∈�p} and �p 

={((M\{
1i

m , …, ipm })′, M\{
1i

m , …, ipm }) | {i1, …, ip}∈∩p}. 

Since n, |G|<∞ impel that the above process is stopped after k steps where 
k≤n.   

 

We may observe that by Definition 1, (A, B)∈�(G, M, I) ⇔ B′=A and 

A′=B. This reveals that A is uniquely determined by B. Next to discuss with the 
cover elements of (∅, M). 
 

Theorem 1 Let (A, B)∈�(G, M, I). Then 

(A, B) covers (∅, M) ⇔ B∈�p for some p∈{1, 2, …, k}. 

Proof  (⇐) Let B∈�p for some p∈{1, 2, …, k}. 

Suppose (A, B) does not cover (∅, M). This implies that there is (X, 

Y)∈�(G, M, I) satisfying (∅, M) R (X, Y) < (A, B). By Definition 1, it follows    

M ⊃Y ⊃ B. 

Let Y=M\{
1ym , …,

tym } where y1<y2<…<yt. B⊂ Y⊂ M tells us t≠n. In 
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addition, M\{
1i

m , …,
pim }=B=Y\{

1bm , …,
wbm }=M\{

1ym , …,
tym ,

1bm , …,
wbm } 

where b1, …, bw∉{y1, …, yt} and bα≠bβ for any α≠β (α, β∈{1, …, w}⊂{1, …,n}). 

(∅, M)R(X, Y) expresses that for any S⊂{y1, …, yt}, 

(M\{
1sm , …,

||Ssm })′′≠ M\{
1sm , …,

||Ssm }. Thus Y∈�t is correct for some t∈{1, …, 

k}. But there is (M\{
1t

m , …,
||Ttm })′′≠M\{

1t
m , …,

||Ttm } for any T⊂{i1, …, 

ip}={y1, …, yt}∪{b1, …, bw} according to the definition of �p and B∈�p. This 

follows a contradiction to {y1, …, yt}⊂{i1, …, ip} and Y∈�t. 

Hence, (A, B) covers (∅, M). 
(⇒) Let (A, B) cover (∅, M). Then {i1, …, it}⊂{1, …, n}. 

Suppose B∉�t for ∀t∈{1, …, k}. This indicates that there exists {j1, …, 

j|S|}=S⊂{i1, …, it} satisfying M\{
1j

m ,…,
||Sjm }∈�|S|. Further, 1≤|S| and (M\ 

{
1j

m ,…,
||Sjm })′∈�|S|. Therefore, it follows  

       ((M\{
1j

m ,…,
||Sjm })′, M\{

1j
m ,…,

||Sjm })∈�(G, M, I). 

Namely, (∅, M)≤((M\{
1j

m , …,
||Sjm })′, M\{

1j
m , …,

||Sjm })<(A, B). By the 

cover property of (A, B), one has M\{
1j

m ,…,
||Sjm }=M, and so |S|=0, a 

contradiction. 

That is to say, B∈�p holds for some p∈{1, 2, …, k}. 

 

Corollary 1 Let B⊆M. Then B∈�p for some p∈{1, …, k} ⇔ (B′, B)∈�(G, 

M, I) and (B′, B) covers (∅, M). 

Proof  By the selection of �p (p=1, …, k) and Theorem 1. 
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The following is to introduce an algorithm to get �1, �1, �1 and ∩1. 

Step 1. Let �1=∅, �1=∅, �1=∅, ∩1=∅ and j=0. 

Step 2. If j=n, then go to Step 5. If j<n, go to Step 3. 
Step 3. j=j+1. 

Step 4. If (M\mj)′′= M\mj, then �1=�1∪(M\mj), �1=�1∪(M\mj)′, �1= �1∪ 

((M\mj)′, M\mj), ∩1=∩1∪j. Otherwise, go to Step 2. 

Step 5. Stop.  
 

Next to introduce an algorithm to approach �p and so on. Suppose for 

1≤t<p, �t is got, certainly, �t, ∩t are got, too. Herein, �t={(B′, B) | B∈�t for some 

t<p} is obtained. 

Step 1. Let �p=�p=∩p=�p=)=∅, and �={{i1, i2, …, ip}| for any S⊂{i1, 

i2, …, ip}, S∉∩|S|}. 

Step 2. If �\)=∅, then go to Step 6. Otherwise, go to Step 3. 

Step 3. Select {i1, i2, …, ip}∈�\). 

Step 4. )=)∪{i1, i2, …, ip}. 

Step 5. If (M\{
1i

m , …,
pim })′′=M\{

1i
m , …,

pim }, then  

�p=�p∪(M\ {
1i

m , …,
pim }), �p=�p∪(M\{

1i
m , …,

pim })′, ∩p=∩p∪({i1 , …, ip}) 

and �p =�p∪((M\{
1i

m , …,
pim })′, M\{

1i
m , …,

pim }).  

Otherwise, go to Step 2. 
Step 6. Stop.  
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By the selection of �p and �p, we see that for (A, B)∈ �(G, M, I), if (∅, 

M)R(A, B), then B∈�p, simultaneously, A∈�p. Because of Theorem 1, we may 

use the above algorithms to obtain all the cover elements ∪ k
p 1= �p of (∅, M) in 

�(G, M, I). In view of the knowledge of lattice theory, if every �p={∅}, 

(p∈{1, …, k}), then �k={∅}, �k=G and ∩k={{1, 2, …, n}}. So (G, ∅) covers (∅, 

M). Therefore, under this case, �(G, M, I)={(∅, M), (G, ∅)} holds. 

 
3.  Properties of an interval 
 

Let (A, B)∈�(G, M, I). In this section, we firstly research on the properties 

of the interval [(A, B), (G, ∅)] in �(G, M, I), followed by giving an approach to 

obtain the whole elements in �(G, M, I), and meanwhile, getting the Hasse 

diagram of �(G, M, I). (The Hasse diagram of a poset is seen [3, p.13 &4, p.4]). 

According to Definition 1, we may indicate (X, Y)∈[(A, B), (G, ∅)] ⇒ 
A⊆X⊆G and ∅⊆Y⊆B. Based on this, next we define a binary relation IB between 
G\A and B as: ∀x∈G\A, y∈B,    xIBy ⇔ xIy and for any a∈ A, aIy. 

In light of Definition 1 and Lemma 1, �(G\A, B, IB) is a concept lattice. To 

state more clearly and to be different from the signs in �(G, M, I), in �(G\A, B, 

IB), for U⊆G\A and V⊆B, we just present U′B={m∈B|∀x∈U, xIBm} and V′B= 
{g∈G\A|∀ y∈V, gIBy}. 

 

Theorem 2 Let (A, B)∈�(G, M, I). Then theinterval [(A, B), (G, ∅)] of 

�(G, M, I) is isomorphic to the lattice �(G\A, B, IB). 
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Proof  Distinguished three steps to finish the proof. 
Step 1.  Let (X, Y)∈[(A, B), (G, ∅)]. Let Xnew=X\A and Ynew=Y. Then 

Xnew⊆ G\A and Ynew⊆ B. We will prove (Xnew, Ynew)∈�(G\A, B, IB). 

 Since (X, Y)∈�(G, M, I), A⊆X and X′={m∈M | ∀x∈X, xIm}={m∈M | 

∀x∈A, xIm, and, ∀x∈X\A, xIm}=Y⊆B. This follows  
X′={m∈B | ∀x∈Xnew, xIBm}=Xnew′B. 

Thus, Y=X′=Xnew′B, i.e. Ynew=Xnew′B. 
On the other hand, Y′={g∈G | ∀y∈Y, gIy}=X⊇ A implies that ∀y∈Y 

induces aIy for any a∈A, and hence, Y′={g∈G\A | ∀y∈Y, gIy, and besides, aIy for 
∀a∈A}. But Ynew′B={g∈G\A | ∀y∈Ynew, gIBy}={g∈G\A| ∀ y∈Y, gIBy} 

         ={g∈G\A | ∀ y∈Y, gIy, and simultaneously, ∀a∈A, aIy}. 
Thus, Y′=Ynew′B. 

So, combining the above two hands, it obtains (Xnew, Ynew)∈�(G\A, B, IB). 

Step 2.  Let (Cnew, Dnew)∈�(G\A, B, IB), C=Cnew∪A and D=Dnew. Then 

A⊆ Cnew∪A=C⊆ G, and D⊆ B. We just prove (C, D)∈�(G, M, I). 

Since Cnew′B =Dnew and Dnew′B =Cnew. In addition, 
Cnew′B ={b∈B | ∀ x∈Cnew, xIBb} 
     ={b∈B | ∀x∈Cnew, xIb, and besides, ∀a∈A, aIb} 
     ={b∈B | ∀x∈Cnew∪A, xIb}={b∈B | ∀x∈C, xIb}=Dnew=D,  

and   Dnew′B={c∈G\A | ∀y∈Dnew, cIBy} 
    ={c∈G\A | ∀y∈Dnew=D, cIy, and besides,∀a∈ A, aIy}=Cnew. 
However, D′={z∈G | ∀y∈ D, zIy}  
          ={z∈G\A | ∀y∈D, zIy}∪{z∈A | ∀y∈D, zIy}. 
Moreover, D⊆ B and Lemma 1 together follows A=B′⊆ D′. Thus for any 

a∈A and ∀y∈D, it must have aIy. 
Furthermore, for any z∈D′\A, we assure zIy for any y∈D, and so z∈Cnew. 

Conversely, for any c∈Cnew, we own cIy for any y∈D, and so c∈D′. 
In one word, there is D′\A=Cnew, i.e. D′=Cnew∪A=C. So C=D′ holds. 
On the other hand, C′={m∈M | ∀x∈C, xIm}={m∈M | ∀x∈Cnew, xIm}∩ 

{m∈M | ∀x∈A, xIm}={m∈M | ∀ x∈Cnew, xIBm}=Cnew′B =Dnew=D⊆B. 

Summing up, (C, D)∈�(G, M, I). 
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Step 3. Combining the above two steps, we may state that the map defined 

as f : [(A, B), (G, ∅)] → �(G\A, B, IB) satisfying f : (X, Y) → (X\A, Y)           

is a bijection between [(A, B), (G, ∅)] and �(G\A, B, IB). 

Let (Xj, Yj) ∈[(A, B), (G, ∅)], Xjnew=Xj\A, and Yjnew=Yj (j=1, 2). Then Yj ⊆B, 
(j=1, 2), and further, Y1∩Y2⊆B, and so (Y1∩Y2)′ ⊇B′and B′=A by Lemma 1. In 
view of Lemma 1, it causes 

(X1, Y1)∨(X2, Y2)=((X1∪ X2)′′, Y1∩Y2)=((Y1∩Y2)′, Y1∩Y2); 
      (X1new , Y1new )∨(X2new, Y2new)=((X1new∪X2new)′B′B, Y1new∩Y2new) 
                             =((Y1new∩Y2new)′B, Y1new∩Y2new ).  
By the definition, it follows  f ((Xj, Yj))=(Xjnew, Yjnew), (j=1,2); 

f ((X1, Y1)∨(X2, Y2))= ((Y1∩Y2)′\A, Y1∩Y2); 
f ((X1, Y1))∨f ((X2, Y2))=(X1new, Y1new)∨(X2new, Y2new) 
                = ((Y1new ∩Y2new)′B, Y1∩Y2). 
On the other hand, by the above, we firmly believe (Y1∩Y2)′⊇A. 

Additionally, (Y1∩Y2)′={g∈G | ∀y∈Y1∩Y2, gIy}⊇ A shows that for ∀y∈Y1∩Y2 
and ∀a∈A, aIy holds. 

But (Y1new∩Y2new)′B={g∈G\A | ∀y∈Y1new∩Y2new, gIBy} 
       ={g∈G\A | ∀y∈ Y1∩Y2, gIy, and simultaneously, ∀a∈ A, aIy}. 
These point out (Y1∩Y2)′\A =(Y1new∩Y2new)′B. 
Hence f ((X1, Y1)∨(X2, Y2))=f ((X1, Y1))∨f ((X2, Y2)). 
Dually, we may prove f ((X1, Y1)∧(X2, Y2))=f ((X1, Y1))∧f ((X2, Y2)). 

Therefore, [(A, B), (G, ∅)] ≅ �(G\A, B, IB).  

 
We may sum up the beyond discussion to state that after using Theorem 1 

to obtain all the cover elements of (∅, B) in �(G\A, B, IB), via Theorem 2, we will 

obtain all the cover elements of (A, B) in �(G, M, I). 

 

Next we express the sketch of an algorithm to approach �(G, M, I). 

In �(G, M, I), h[(∅, M)]=0 where h is the height function of �(G, M, I). 
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Let x∈�(G, M, I) with h[x]=1. By Remark in Section 1, it follows that x 

covers (∅, M). Thus, x is got by the algorithm in Section 2. 

In light of Definition 1, y∈�(G, M, I) covers some z∈�(G, M, I) with 

h[z]=1 if and only if h(y)=2. 
Hence, we may use the algorithm in Section 2 to obtain the cover elements 

of (∅, B) in �(G\A, B, IB) where (A, B)∈�(G, M, I) and h[(A, B)]=1. After that, 

using Theorem 2, we find out all the cover elements of (A, B) in �(G, M, I). That 

is, we earn all the elements of height 2 in �(G, M, I). Simultaneously, owing a 

cover relation or not between x and y is shown, where ∀x, y∈�(G, M, I), h[x]=1 

and h[y]=2. 

Analogously, for h[z]=t ≥ 2, the cover elements of z in �(G, M, I) are 

found. The height of any cover element of z is t+1. Thus, all the elements of 
height t+1 will be searched out. Meanwhile, the cover relations between the set of 
elements of height t and the set of elements of height t+1 are shown clearly. 

Because (G, ∅) is the greatest element in �(G, M, I) and |M|, |G|<∞, we 

may state that the height h[(G, ∅] of �(G, M, I) is finite. Moreover, we may find 

out all the elements in �(G, M, I). Therefore, the above process will be stopped 

after finite steps. At the same time, the relationships among the elements in �(G, 

M, I) are obtained. Furthermore, the Hasse diagram of �(G, M, I) is also obtained.  

 
Next, we provide an example to show how to use the approach above to 

find out the concept lattice �(G, M, I) and its Hasse diagram for a given context 

(G, M, I). 
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Example 1 Let M={1, 2, 3, 4, 5, 6} and G={a, b, c, d, e, f}. 
The table below describes binary relation I. 

Table 1 
               Describe the relation between G and M 

 1 2 3 4 5 6 
a  × ×   × 
b × × ×    
c × ×   ×  
d ×   × ×  
e ×   ×   
f   ×    

 

By using the following steps, we find out �(G, M, I). 

Step 1. (∅, M) is the smallest. 

Step 2. By Theorem 1, the cover elements � of (∅, M) are {(
tj

A ,
tj

B ) 

|
tj

A ∈�j,
tj

B ∈�j,  t=1, 2,…, |�j|;  j=1, 2, …, k}. Using the algorithm in Section 

2 for (∅, M), one gets {�j | j=1, …, k}, {�j | j=1, …, k} and � as follows. 

Since M\{1}={2, 3, 4, 5, 6}. From Table 1, we easily receive (M\{1})′= 
{g∈G | ∀x∈ M \{1}, gIx}={a, b, c}∩∅=∅. 

Similarly, (M\{j})′=∅, (j=2, 3, 4, 5, 6). Hence, �1=�1=∩1=∅. 

By Table 1, obviously, (M\{i, j})′=∅, (i≠ j; i, j=1, …,6), that is, �2=�2 =∩2 

=∅. 
Additionally, M\{1, 2, 3}={4, 5, 6}, (M\{1, 2, 3})′=∅. However,  

M\{1, 4, 5}={2, 3, 6},   
(M\{1, 4, 5})′={g∈ G | ∀ x∈{2, 3, 6}, gIx}={a},  
(M\{1, 4, 5})′′=({a})′={2, 3, 6}=M\{1, 4, 5}. 

Thus M\{1, 4, 5}∈�3, {a}∈�3, {1, 4, 5}∈∩3 and  

((M\{1, 4, 5})′={a}, M\{1, 4, 5}={2, 3, 6})∈�(G, M, I). 
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Repeated application of the algorithm in Section 2 to {i, j, t}, (i, j, t ∈ 
{1, …, 6}; i≠ j≠ t), it yields out 

�3={M\{1, 4, 5}={2, 3, 6}, M\{4, 5, 6}={1, 2, 3}, M\{3, 4, 6}={1, 2, 5},  

     M\{2, 3, 6}={1, 4, 5}}; 

�3={(M\{1, 4, 5})′={a}, (M\{4, 5, 6})′={b}, (M\{3, 4, 6})′={c}, 

     (M\{2, 3, 6})′={d}}; 

∩3={{1, 4, 5}, {4, 5, 6}, {3, 4, 6}, {2, 3, 6}}. 

At the end, all the cover elements of (∅, M) in �(G, M, I) are 

 � ={({a}, {2, 3, 6}), ({b}, {1, 2, 3}), ({c}, {1, 2, 5}), ({d}, {1, 4, 5})}. 

Step 3.  For ({a}, {2, 3, 6})∈�. 

Let A={a} and B={2, 3, 6}. [(A, B), (G, ∅)] is an interval in �(G, M, I). 

Put Xnew=X\A=X\{a} and Ynew=Y for (X, Y)∈[(A, B), (G, ∅)]. Then by the 

definition at the beginning of this section, it causes �(G\A, B, IB)=�({b, c, d, e, f}, 

{2, 3, 6}, IB). 

By the method in the proof of Theorem 2, in �(G\A, B, IB), we obtain that 

the smallest element is (∅, {2, 3, 6}), and all of its cover elements are ({b}, {2, 

3}). Further, in light of Theorem 2, we may indicate that in �(G, M, I), all the 

cover elements of (∅∪A, {2, 3, 6})=(A, {2, 3, 6}) are ({b}∪A, {2, 3})=({a, b}, {2, 

3}). Analogously, in �(G, M, I),  

the cover elements of ({b}, {1, 2, 3}) are ({a, b}, {2, 3}) and ({b, c}, {1, 2}); 
the cover elements of ({c}, {1, 2, 5}) are ({b, c}, {1, 2}) and ({c, d}, {1, 5}); 
the cover elements of ({d}, {1, 4, 5}) are ({c, d}, {1, 5}) and ({d, e}, {1, 4}). 

That is, all the elements of height 2 in �(G, M, I) are ({a, b}, {2, 3}), ({b, 

c}, {1, 2}), ({c, d}, {1, 5}) and ({d, e}, {1, 4}). 



An approach to access to a concept lattice via the idea of lattice theory         49 

Step 4. Similarly to the closely Step 3, for x∈�(G, M, I) with h[x]=t, all 

the cover elements of x are generated (t=2, 3) and h[(G, ∅)]=4. Finally, we 

receive the Hasse diagram of �(G, M, I) as Figure 1. 

                   ({a, b, c, d, e, f}, ∅)      ({a, b, c}, {2}) 
 
({a, b, f}, {3}) 

({b, c}, {1, 2})                                     ({b, c, d, e}, {1})    ({c, d}, {1, 5}) 
 
                                          ({d, e}, {1, 4}) 

({a, b}, {2, 3}) 
 
 

     ({a}, {2, 3, 6})                                  ({d}, {1, 4, 5}) 
   

       ({b},{1,2,3})                                 ({c}, {1, 2, 5})                
              (∅, {1, 2, 3, 4, 5, 6}) 

Fig. 1.  Hasse diagram of concept lattice relative to the context in Table 1 
 

We still consider that [2] is good and valuable to discuss concept lattices 
with the way of graph theory. The result in Example 1 is the same as that in [2, 
Example 2.2]. This also shows the truth of the algorithm produced from Theorem 
1 and Theorem 2. However, [2, Example 2.2] is obtained directly from the 
definition of concept lattice. Certainly, the context in [2, Example 2.2] are also 

discussed with the methods of graph theory in [2, �4 and �5], and [2] gives the 

same diagram in [2, �4] and [2, �5] as that in [2, Figure 1] for the context in [2, 

Example 2.2] respectively. 
The approach in this paper is different from others because it is just using 

the isomorphic and interval’s properties of lattice theory. It is visible and 
accessible. As Ganter and Wille said in [1], for concept lattice, “Much of the 
mathematics required for the applications comes from lattice theory. ... The new 
goals made it necessary to extend this theory.” We may infer that the potential of 
the results in this paper is extending and enriching the theory of concept lattices. 
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