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RESEARCH ON KEY TECHNOLOGIES OF LUNAR PATROL
PERCEPTION IN SPARSE SCENES

Luyuan WANG!2, Jiyang YU?, Miaomiao TIAN?

Research on key technologies of lunar patrol perception in sparse scenes is
proposed, including the fusion of vision and laser of real-time modeling and
autonomous navigation during lunar patrols. Object detection and scene
segmentation are used to enhance the scene awareness of astronauts during high-
speed movement. First, surround view stitching is designed to integrate 360-degree
scene information around the lunar rover, which greatly improves the rover's
perception ability. Then, the multi-sensor Simultaneous Localization and Mapping
(SLAM) technology (vision and laser) is implemented to reconstruct experimental
scenes. The global map built before is used to plan the original path, while the safe
arrival of the driving task is ensured through the optimization of the local map and
dynamic obstacle avoidance. Last but not least, real-time object detection and scene
segmentation based on the rover's deep learning algorithm can guide autonomous
navigation. All of the various technologies above are applied to the laboratory's
prototype of the lunar rover principle.
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1. Introduction

The manned lunar rover’s main role is to assist astronauts to carry out a
large range of lunar surface exploration and use their scientific instruments to help
complete the scientific investigation of the lunar surface. To ensure the personal
safety of the astronauts, ensure the smooth completion of the patrol work, and
assist the efficient development of scientific exploration missions, the lunar rover
needs to have an intelligent perception of obstacles, autonomous positioning, and
navigation functions, which can improve the perceptual sensitivity of the
astronauts. Meanwhile, it also needs to have the safety guarantee functions such as
autonomous driving and one-click navigation back.

The existing positioning and navigation schemes for lunar rovers usually
use positioning architecture based on information such as astronomical, visual,
and radio ranging [1]. After walking autonomously for a certain distance away
from the lander, the rover can determine its distance coordinates through two-way
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radio communication with the lander, and can also take sequence images with its
camera, and determine its position coordinates [2] through feature matching. Due
to the camera resolution and field of view, the scheme is only suitable for the
rover to explore in a small range around the lander. In addition, because the target
location has been selected, most of the rover's navigation process has been preset,
with low autonomy and adaptability to different mission scenarios.

When the manned rover moves at a speed of 10 km/h, its single
exploration mission can reach tens of kilometers. During the mission, ensuring
astronauts' safety and improving scientific exploration efficiency are the main
goals to develop the intelligent perception and control system for the manned
lunar rover. Considering the functional requirements of autonomous exploration
and one-click driving for future lunar rovers, real-time positioning, scene
interpretation, and autonomous navigation are the optimal choices for manned
patrol missions.

In recent years, with the rapid development of visual information
processing technology, the positioning results of vision-based Simultaneous
Localization and Mapping (SLAM) have been significantly improved [3].
Existing visual SLAM methods mainly include the direct method based on pixel
gradient and the indirect method based on feature point matching. Due to the
small variation of gray values and single texture features of sandy soil in the lunar
surface environment, the neighborhood pixel gradient-based methods cannot
extract effective features [6] in the lunar image, while the indirect method based
on feature point detection operator has strong stability and robustness to the
brightness change and geometric transformation of the image, and is suitable for
the lunar surface scene.

Different from the objects with significant features such as trees, flowers,
and roads in the ground environment, the lunar surface terrain is unstructured
terrain, with sparse features and few effective features. Therefore, it is difficult to
obtain accurate image-matching information by using vision as the only input
information to the system. Currently, the widely adopted way combines the
information of vision and lidar in the SLAM system, which is assisted by an
Inertial Measurement Unit (IMU) as the error correction of positioning results to
further improve the positioning accuracy. In the existing work, Li et al. [7]
proposed to use the matching method of 2D laser scanning lines (similar to the
contour line) and 3D elevation maps. This method makes full use of the advantage
of lidar to collect dense point cloud data, which improves the ability of real-time
positioning and mapping for the lunar rover and achieves a good convergence
effect. Shang et al.[8] realized the incremental high-precision pose optimization
method under limited resources by extracting salient features in point clouds and
adjusting moderate matching parameters according to the accuracy of different
pose estimations.
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Deep learning-based scene interpretation methods [9] detect non-flat road
conditions such as lunar rocks, lunar craters, and lunar surface slope in the lunar
environment, and then segment various types of semantic information in the scene
to assist astronauts in road condition discrimination and path selection during the
high-speed progress of the manned lunar rover. In the process of real-time
positioning and autonomous navigation, scene interpretation can also take the
interpretation results as the prior information to optimize the modeling results of
the 3D environment. Pang et al. [12] proposed C-Moon-Net, a network for the
detection of multi-scale lunar craters, which improved the detection accuracy and
was suitable for craters of various scales. Li et al. [13] proposed a segmentation
method for lunar rocks and lunar craters and achieved satisfactory results by using
the two-dimensional maximum inter-class variance method based on particle
groups.

Based on the above contents, this paper carries out research on key
technologies of lunar surface patrol perception under sparse scenes. By integrating
the environment perception information with the SLAM system, stereo scene
modeling and autonomous navigation are realized. At the same time, object
detection and semantic segmentation network were used to enhance the scene
perception ability of manned lunar rovers. Specifically, the 360-degree scene
information around the lunar rover is first integrated by the surround view
stitching technology, which greatly improves the perception ability of the lunar
rover and expands the perception range of scene interpretation. Then, the deep
neural networks of object detection and semantic segmentation are used to realize
real-time detection and scene segmentation of the experimental scene. And the
detection and segmentation results can guide real-time obstacle avoidance in the
autonomous navigation process of the lunar rover. Finally, multi-sensor SLAM
technology of vision sensor (RGB-D camera) and LIDAR is used to construct the
global map of the experimental scene, and the data collected by lidar is used to
optimize the local map and avoid obstacles dynamically in the process of path
planning. In summary, the contributions of this paper are as follows: (1)
Surround-view stitching can integrate 360-degree scene information around the
lunar rover, which greatly improves the rover’s perception ability. (2) The multi-
sensor SLAM technology (vision and laser) can effectively improve positioning
accuracy, and object detection and scene segmentation can guide autonomous
navigation, which is important for safe arrival. (3) The experimental results with
the lunar prototype vehicle show that the multi-sensor fusion SLAM system has
accurate modeling results, and timely dynamic obstacle avoidance response,
which can provide real-time driving path guidance for astronauts.

The remaining paper is structured as follows. Section 2 is to introduce the
principle of the algorithm, which describes the implementation process of key
technologies in the lunar surface patrol perception task, including visual/laser
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SLAM technology, surround view stitching technology, object detection
technology, and scene segmentation technology. Section 3 verifies the
effectiveness of lunar patrol perception technology on existing experimental
scenarios and lunar prototype vehicles and gives the experimental results in
autonomous navigation obstacle avoidance tasks, object detection tasks, and scene
segmentation tasks. Finally, section 4 concludes the whole paper.

2. Key technologies of lunar patrol perception

This section mainly introduces key technologies involved in lunar patrol
perception, including visual/lidar SLAM, surround view stitching, object
detection, and scene segmentation.

2.1 Visual/Lidar SLAM

In this paper, we use a visual SLAM scheme to generate a global map and
use LIDAR to build a local map and achieve localization, navigation, and
dynamic obstacle avoidance. Vision sensors have the advantages of small size,
low cost, and strong ability to collect environmental information, which are the
main sensors used in SLAM systems. However, limited by the narrow field of the
visual sensor (RGB-D camera, binocular camera), the car cannot perceive the
scene in all directions with the local map, so we introduce lidar as an auxiliary
sensor to obtain a wider detection range and detection angle, which enables
dynamic obstacle avoidance.
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Fig. 1. Visual SLAM based on RGB-D and stereo images

Visual SLAM based on RGB-D and binocular cameras. We use the
binocular camera and RGB-D camera for simultaneous appearance-based
localization and mapping. The overview of the framework is shown in Fig.1.
Visual SLAM technology is mainly composed of front-end (visual odometry),
back-end optimization, loop detection, and map construction. The specific
descriptions are as follows: 1) Visual odometry. The front-end part based on the
vision sensor is mainly to match image features and then complete the pose and
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depth map point estimation based on geometric cues. 2) Backend graph
optimization. The back-end optimization aims to optimize the output of the visual
odometry and use the filtering algorithm or nonlinear optimization method to
obtain the optimal pose estimation and global consistency map. 3) Loop closure.
Loop closure detection uses the bag-of-words method [14], which is to detect
whether the system passes through the same position repeatedly. If it is found that
the trajectory of the robot system has a closed loop, the information will be sent to
the backend for rectification to eliminate the trajectory drift caused by the
cumulative error of continuous estimation. 4) Map generation. After obtaining the
back-end optimized pose and estimated map point, the mapping module calculates
the 3D coordinates of the map point by combining the robot system's pose and
map points' depth and then finishes map construction.

Lidar-based dynamic obstacle avoidance. This paper uses LIDAR for
localization and local map generation to achieve dynamic obstacle avoidance.
This method uses the Gmapping algorithm based on RBPF filtering [15]. The
basic principle of this particle filtering algorithm is that the robot continuously
obtains the surrounding environment information through motion and observation,
and gradually reduces the uncertainty of its position to obtain accurate positioning
results. For localization, we use the AMCL (Adaptive Monte-Carlo Localization)
algorithm. The input of the AMCL algorithm is lidar data and odometry data, and
the output is the pose of the robot on the map. At the same time, the algorithm
realizes the kinematics conversion between the map, odometer, and the base point
of the car, as shown in Fig.2.

Dead Reckoning Odometry Drift Dead Reckoning

AMCL
Fig. 2. AMCL algorithm in kinematic transformation

For the generated local map and imported global map, as shown in Fig.3,
this paper uses the Movebase motion control module to control the motion of the
car. To achieve dynamic obstacle avoidance, this paper adopts the TEB local
planner [16] to generate local paths. The initial path is generated by the global
path planner, since the environment may be dynamic and may change due to
local, incomplete maps or moving obstacles, the TEB local planner takes into
account the dynamic constraint correction of the car motion in time Robot
trajectory for dynamic obstacle avoidance.
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2.2 Surround-view stitching

The overall flow of the surround view stitching algorithm is shown in
Fig.4. Firstly, robust feature points are extracted from the input image, and the
feature points are matched according to the feature descriptor. Then, the positional
relationship between adjacent images is obtained according to the matched feature
point pairs to perform image registration. Since direct image registration will
destroy the consistency of the field of view, the image is first projected on a
spherical or cylindrical surface. Finally, the seams of adjacent images are
calculated and the fusion of overlapping areas is completed to obtain the final
panoramic image.
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Fig. 4. Surround-view stitching process

Feature points extraction and matching. The feature keypoint extraction
algorithm has the following characteristics: a large number of feature points can
be extracted in different scenarios; uniqueness is good, to facilitate the matching
of feature points; anti-rotation, anti-brightness change, anti-scale scaling, etc.
Commonly used feature point extraction algorithms include SIFT [17], SURF
[18], and so on. Then, feature descriptors are obtained for the extracted feature
points, and matching is performed. Feature matching is obtained by comparing the
Euclidean distance of feature descriptors between feature points.

Image registration. Image registration is to calculate the homography
matrix of two images according to the matching pairs obtained in the feature
matching step, and then fuse multiple images into one image. Considering that the
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feature point pair obtained by feature vector matching may have mismatches, the
RANSAC [19] algorithm is used to solve it. In addition, considering that the
above algorithm solves the position between two images in isolation if the
stitching of multiple images is performed directly, errors will accumulate.
Therefore, the beam adjustment method is used for joint optimization, and
multiple camera parameters are optimized at the same time to obtain a more
accurate image location.

Image projection. All images are projected onto a cylindrical or spherical
surface through projection transformation to maintain the consistency of the field
of view and make the stitched panorama coherent. The choice of the projection
plane is related to the way the camera shoots. Generally speaking, spherical
projection and cylindrical projection are the most commonly used projection
methods. The cylindrical projection is used in this paper, and the schematic
diagram can be seen ir(l Fig.5.

Fig. 5. Schematic diagram of the cylindrical projection

Exposure compensation. The above steps are the basic steps of image
stitching, but the results obtained by stitching still have obvious bright and dark
changes, some dislocations, and obvious transition marks in the overlapping area
between images. To solve these problems, exposure compensation needs to be set
so that the overall brightness of different photos is consistent. In this paper, we
adopt two commonly used exposure compensation methods: gain compensation
[20] and block compensation [21], which can effectively improve the overall
brightness of the image.

Seam calculation and image fusion. As shown in Fig.6, the seam refers
to the most similar line in the overlapping area of the images. Using a fusion
algorithm for several pixels near the seam can effectively remove the
misalignment and artifacts between the images. In this paper, the dynamic
programming method [22] is used to find seams, and the feathering method [23] is
used for image fusion to obtain the final stitching result.
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2.3 Multi-scale feature learning-based object detection

Obiject detection can detect objects of interest in the scene, that is, obtain
the category and position information of the target simultaneously. We adopt a
multi-scale feature learning-based object detection algorithm, which is a single-
stage object detection model. We have added some new improvement ideas based
on the previous object detection algorithm so that its speed and accuracy have
been greatly improved. The method mainly consists of three modules: (1) feature
extraction module; (2) multi-scale feature fusion enhancement module; (3) object
detection head module. The overall technical route is shown in Fig.7, and the
detailed introduction of each module is as follows:
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Fig. 7. Object detection based on multi-scale feature
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Feature extraction module. We use Darknet53 for feature extraction. In
addition, we use a module Focus [11] for initial feature aggregation. To put it
simply, the pixels of each channel of an input image are divided into 4 parts and
then spliced in the channel dimension. After that, the number of channels is
adjusted by a 3x3 convolution. Finally, the size of the feature map is not changed
by filling. The structure is shown in Fig.8. The biggest benefit is that it can
downsample with minimal information loss.
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_ X

(32 x 128 x 128)

Fig. 8. Focus structure
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Multi-scale feature fusion enhancement module. The spatial pyramid
structure is derived from SPP-Net [24], which uses kernels of different sizes to
implement pooling operations and perform feature fusion. This structure can
aggregate the information of multiple receptive fields and enrich the information
of the deepest feature map. Relevant experiments show that the spatial pyramid
structure has little effect on the running speed of the entire model, but the effect is
significantly improved. Whereas, multi-scale information fusion utilizes an
improved version of the feature pyramid structure. By performing multi-scale
feature fusion, the circulation of feature information at different scales can be
accelerated, and the features of small targets can be effectively fused.

Object detection head module. The object detection head module
consists of three detection output heads, and the down-sampling ratios are 8, 16,
and 32 respectively. The output feature maps sampled at small magnifications
detect small objects, and the output feature maps sampled at large magnifications
detect large objects. Finally, automatic detection and identification of objects of
interest can be achieved.

2.4. Adaptive Prototype for Scene Segmentation

Our proposed framework for scene segmentation based on adaptive
prototypes is shown in Fig.9. In this framework, the method first inputs the scene
images to the feature extractor to extract corresponding features, and these
features are fed into the pixel relation-based encoder to aggregate scene pixels
with similar appearances. Then the enhanced features are fed into an adaptive
prototype-based decoder, where each prototype identifies one specific scene. And
the identified different parts are fused into the more accurate scene segmentation.
The specific procedure is as follows:

Pixel Relation-based Encoder. For the scene image, we adopt the feature
extractor to extract corresponding features and utilize a convolution layer to
reduce the channel dimension of the feature map to a smaller dimension. And then
the corresponding query, key, and value can be obtained, which are expressed as
Qn’ Kn ’Vn

Qn = FWHQ’ Kn = FWnK ’Vn = FWHV (1)

Where n=12,...,N denotes the head in the multi-head attention
mechanism and W, is linear projection. Then, we calculate the attention weight
S

n

KT
Qn n )

S, = soft max(—==

JL/8

Where is a «/L /8 scaling factor, we can get the output of the head H, by
adaptively blending values,

)
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H,=S.V, ?)

We concatenate all single head outputs along the channel dimension and
obtain the final output through a projection matrix,

H=Concat(H,,...H,)W° 4)

Through the self-attention operation, the pixels of the lesion region with
similar appearance can be gathered.

Adaptive Prototype-based Decoder. In order to recognize different parts
of the scene, different class-specific prototypes need to be learned. First, we
utilize a self-attention mechanism [25] to further incorporate context information
from other filters to increase their discrepancies. Then we propose a Cross-

attention mechanism that takes the prototypes P as queries and the enhanced

feature maps F as keys and values. Then we have similarities S, between the
enhanced feature map and the enhanced prototype-aware filters. And the

prototype-aware activation map M can be calculated as M :%Z:'_lsn. Each

scene part activation map denotes the spatial distribution of one specific scene,
that is to say, the activation map has high response values at the pixels belonging
to the corresponding scene. Finally, the prototype-aware features X can be
obtained by adaptively blending and feeding the feed-forward network.

Since not all prototypes have the same importance for scene segmentation,
the importance learning mechanism is proposed to learn the importance t* of
different prototypes. For each image obtained from the camera, we can get fused

activation map A by Azz:;tkMk. Finally, the activation map A is gradually
upsampled through the segmentation head to obtain the final segmentation result.
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Fig. 9. Scene segmentation framework
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3 Experimental validation

3.1 Lunar Rover Simulation Platform

According to the characteristics of the lunar rover performing scientific
exploration tasks on the lunar surface, a set of lunar rover prototype vehicles was
built for technical verification. Its simulation model is shown in Fig.10. The
chassis of the prototype vehicle adopts four-wheel differential drive, and
independent motors are used to adjust the torque of the four wheels respectively,
so that the prototype vehicle has a good obstacle-surmounting ability in the face
of complex terrain, and can be used on slopes, pits, sand, and other complex
terrains.

The prototype vehicle is equipped with a variety of sensors to meet the
needs of tasks such as autonomous map navigation and scientific detection.
Among them, the vision sensors include a binocular vision sensor, RGBD vision
sensor (Kinect DK camera), and 360 surround view system, containing a set of
binocular vision sensors from two coaxial monocular cameras on the front and
another three monocular fisheye cameras on the left, right and rear. In addition to
the visual sensor, it is also equipped with lidar and inertial sensors as an aid, of
which the lidar is the Ouster series 64-line lidar, whose detection distance can
reach 120m and the vertical field of view angle is 45 degrees. The inertia sensor
can provide speed, acceleration, and other information in the direction of the XYZ
axis. The lunar rover prototype computing platform adopts the Nvidia AGX
Xavier industrial module, including an ARM-based 8-core Nvidia Carmel CPU,
an Nvidia Volta-based GPU with 512 Nvidia CUDA cores and 64 Tensor cores,
reaching 20TOPS hash rate, which better supports end-side calculations. On the
Nvidia AGX Xavier platform, the prototype uses Ubuntul8.04 as the operating
system with ROS Melodic as the robot system, the data transmission follows the
ROS data standards, and the algorithm is written in C++ and Python languages.

Fig. 10. Lunar rover prototype

3.2 Scene reconstruction and path planning

This paper adopts the scheme of lidar and vision camera fusion to achieve
the map construction. As shown in Fig.11, we show the results of estimating the
depth using a binocular camera and achieving a local 3D reconstruction using the
estimated depth. In this paper, the depth estimation method based on stereo
images can meet the time and performance requirements of the lunar rover
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prototype, and finally realize the visual SLAM map construction, and the 3D map
construction results are shown in Figure 12. As shown in Figure 13, we combine
the reconstructed global map and local obstacle maps obtained by lidar to do the
path planning and dynamic obstacle avoidance. As shown in Figure 14, we have
repeated the above experiments in the lunar surface simulation test site, and the
experimental results show that the autonomous navigation and positioning
algorithm proposed in this paper can also efficiently build maps and
independently plan the path of scientific exploration in large-scale sites. As shown
in Table 1, our method generally surpasses other methods with prominent margins
on average translational error, which proves that the high precision of the
predicted odemetry.

Table 1 Average translational error (%) results for the KITTI sequences.
Methods KITTI sequences
00 | 01 02 03 | 04 | 05 06 | 07 08 | 09 10
F2F 0.85 238 |1.01 | 0.90 | 035|049 | 1.25 | 0.62 | 1.56 | 1.24 | 1.71
F2M 0.68 | 2.04 | 0.97 | 0.77 | 0.45 | 0.38 | 0.57 | 0.56 | 1.17 | 1.38 | 0.49
Fovis | 9.09 | - - 179 | 222 | 426 | 6.95 | 3.65 | 5.39 | 14.8 | 10.6
Viso2 | 2.38 | 5.92 | 419 | 1.94 | 0.66 | 1.85 | 4.60 | 1.04 | 2.82 | 1.68 | 1.93
Ours | 067 | 0.96 | 0.75 | 0.62 | 0.50 | 0.35 | 0.48 | 0.53 | 1.06 | 0.87 | 0.54
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Fig. 14 Path planning of lunar rover prototype (Simulated lunar surface)

3.3 Scene interpretation

Surround-view stitching. As shown in Fig.15, we input images taken
from four (front, back, left, and right) views at the same time. The resulting
stitching image as shown in Fig.15 can be obtained by the surround view stitching
algorithm. From the stitching results, it can be seen that the fusion degree of
seams, the integrity of the panorama, and the consistency of brightness can meet
the requirements.

Fig. 15 Input images for surround view

Fig. 16 Surround-view stitching result

Object detection. After the image taken by the camera is input, the object
detection result shown in Fig.17 can be obtained through the object detection
network. It can be seen from the detection results that the designed algorithm can
achieve good detection results both for targets with very small imaging sizes and
for those with extremely weak texture information. In addition, the proposed
algorithm can realize real-time detection on embedded devices. As shown in
Table 1, our methods significantly outperform other object detection algorithms,
with surprising findings presented on the real-time performance.
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Comparison of Object detection performance.

VOC 2007 Picasso People-Art
Networks [=—=,p AP | BestFl | AP
R-CNN 54.2 104 | 0.226 26
DPM 43.2 37.8 | 0.458 32
Poselets 36.5 178 | 0.271 -
D&T - 1.9 | 0.051 -
Ours 59.2 53.3 | 0.590 45

Fig. 17 Object detection result

Table 2

Scene segmentation. Input the image taken by the camera, and the
segmentation result shown in Fig.18 can be obtained through the scene
segmentation network. It can be seen from the segmentation results that the
integrity of large-area object segmentation, the local details of small-area object
segmentation, and the continuity of regional boundary segmentation can all meet

the requirements.

Segmentation performance comparison on SceneParse150

Fig. 18 Scene segmentation result

Networks Pixel Acc. Mean loU
FCN-8s 71.32% 0.2939
SegNet 71.00% 0.2164
DilatedVGG 73.55% 0.3231
DilatedResNet-34 76.47% 0.3277
DilatedResNet-50 76.40% 0.3385
Cascade-SegNet 71.83% 0.2751
Cascade-DilatedVGG 74.52% 0.3490
DilatedResNet-101 + PPM 80.91% 0.4253
QOurs 81.01% 0.4266

Table 3
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As shown in Table 2, the proposed method outperforms previous methods
by a large margin on the pixel accuracy and mean loU, which provides important
support for semantic-level lunar surface environment perception.

4. Conclusions

In this paper, a compact point cloud model of a 3D scene is established by
a SLAM system that integrates visual images and lidar data, and the autonomous
navigation and dynamic obstacle avoidance functions of the manned lunar rover
are realized on this basis. The application of surround view stitching, lunar surface
object detection, and semantic segmentation technology has greatly improved the
perception ability of astronauts in the process of lunar rover driving, which plays
an important role in ensuring the safety of astronauts and assisting astronauts in
carrying out lunar operations. The experimental results with the lunar rover
prototype show that the multi-sensor fusion system has accurate modeling results
for the experimental scene, effective autonomous path planning, and timely
dynamic obstacle avoidance response, which can provide real-time driving path
guidance for astronauts. In addition, the algorithms in scene interpretation are all
lightweight, which are easy to be directly transplanted into embedded devices.
Under the premise of satisfying the astronaut experience, the proposed method has
significant advantages in the lunar surface application scenarios with harsh
environmental conditions and limited hardware resources.
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