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ON ANALYTICAL SOLUTION OF THE BLACK-SCHOLES

EQUATION BY THE FIRST INTEGRAL METHOD

Farshid Mehrdoust1, Mohammad Mirzazadeh2

The Black-Scholes formula is used as a model for valuing European or

American call and put options on a non-dividend paying stock. In option pricing

theory, the Black-Scholes equation is one of the most effective models for pricing

options. In this paper, the first integral method is employed to obtain a quick

and accurate solution to the Black-Scholes equation with boundary condition for

a European option pricing problem.
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1. Introduction

The financial mathematics is definitely among the most popular subjects of

applied mathematics today from both academic and the industry point of view. The

main subjects in financial mathematics is concerned with modeling of evolution of

financial processes such as stock prices, interest rates, exchange rates and pricing

derivatives on basic underlying. The first basic breakthrough in the financial mathe-

matics was made by Black and Scholes which is indeed found an explicit closed form

solution for pricing plain vanilla European options [5, 6]. According to the idea of

Black and Scholes, the option price can be modeled as a terminal boundary problem

for a partial differential equation. Therefore, it is reasonable to adopt the exist-

ing theory and methods of partial differential equation as a fundamental approach

to the study of the option pricing. This includes designing efficient algorithms for

solving option pricing problems from the viewpoint of numerical solutions of partial

differential equation problems.

Many authors have applied several different methods to solve the Black-Scholes equa-

tion [1, 4, 7]. In this paper, the first integral method (FIM) is applied to solve the

Black-Scholes partial differential equation and boundary conditions for a European

option pricing problem. The FIM is a direct algebraic method for obtaining exact

solutions of some nonlinear partial differential equations. Recently, this method has

been widely used by many researchers [2, 8-10].
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2. The Black-Scholes model framework

The underlying asset price follows the geometric Brownian motion [5]

dSt

St
= µdt+ σdWt, (1)

where the value of the option also depends on the initial price of the stock S0, the

expiry date T , the volatility of the underlying asset σ, the exercise (strike) price E,

and the risk-free interest rate µ. Let V = V (S, t) denote the option price. The value

of the option at the expiry (maturity) time T for call option is

V (S, T ) = (S −E)+ = max{0, S − E},

and for put option is as follows

V (S, T ) = (E − S)+ = max{0, E − S}.

Now, we can derive a mathematical model of the option pricing using the ∆-hedging

technique [5, 6]. For this purpose, we consider a portfolio

Π = V − S∆, (2)

where ∆ denotes shares of the underlying asset. We choose ∆ such that Π is risk-free

in interval (t, t + dt). If portfolio Π starts at time t, and ∆ remains unchained in

(t, t+ dt), then the requirement Π be risk-free means the return of the portfolio at

t+ dt should be
Πt+dt −Πt

Πt
= rdt, (3)

or equivalently

dVt −∆dSt = rΠtdt = r(Vt −∆St)dt. (4)

Recall that the stochastic process St satisfies the stochastic differential equation (1),

hence using Itô formula [5] we conclude that

dVt = (
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ µS

∂V

∂S
)dt+ σS

∂V

∂S
dWt. (5)

Using (4) and (5), we can write

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ µS

∂V

∂S
−∆µS)dt+ (σS

∂V

∂S
−∆σS)dWt = r(V −∆S)dt. (6)

Since we assume that the change over any time step (t, t + dt) is non-random, the

coefficient of the random term dWt on the left hand side must be zero. For this

purpose, we choose ∆ = ∂V
∂S . Therefore, from (6) we get the following partial

differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂t2
+ rS

∂V

∂S
− rV = 0. (7)

This is the Black-Scholes equation that describes the option price movement. There-

fore, in order to determine the option value at any time in [0, T], we need to solve
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the following partial differential equation problem in the domain Ω = {(S, t) : 0 ≤
S < ∞, 0 ≤ t ≤ T}

∂V

∂t
+

1

2
σ2S2∂

2V

∂t2
+ rS

∂V

∂S
− rV = 0, (8)

with the boundary condition, V (T, S) = (S − E)+ for call option and V (T, S) =

(E − S)+, for put option.

By setting x = lnS and τ = T − t, the problem (8) is reduced to a Cauchy problem

of a parabolic equation with constant coefficients

∂V

∂τ
− 1

2
σ2∂

2V

∂x2
− (r − σ2

2
)
∂V

∂x
+ rV = 0, (9)

subject to the boundary condition, V (T, S) = (ex−E)+ for call option and V (T, S) =

(E − ex)+ for put option.

3. The First integral method analysis

Consider the nonlinear partial differential equation in the form

Ψ(u, ux, ut, uxx, uxt, ...) = 0, (10)

where u = u(x, t) is the solution of nonlinear partial differential equation (10). Here,

we consider the following transformation

u(x, t) = f(ξ), (11)

where ξ = x− ct. This enables us to use the following changes

∂

∂t
(.) = −c

∂

∂ξ
(.),

∂

∂x
(.) =

∂

∂ξ
(.),

∂2

∂x2
(.) =

∂2

∂ξ2
(.),

∂2

∂x∂t
(.) = −c

∂2

∂ξ2
(.), (12)

and so on for other derivatives. Using Equation (12) we can convert the nonlin-

ear partial differential equation (10) to the following nonlinear ordinary differential

equation

G(f(ξ),
∂f(ξ)

∂ξ
,
∂2f(ξ)

∂ξ2
, ...) = 0. (13)

Let us consider a new independent variable

X(ξ) = f(ξ), Y =
∂f(ξ)

∂ξ
, (14)

which leads a system of nonlinear ordinary differential equations

∂X(ξ)

∂ξ
= Y (ξ)

∂Y (ξ)

∂ξ
= φ(X(ξ), Y (ξ)). (15)

By the qualitative theory of ordinary differential equations, if we can find the in-

tegrals to Equation (15) under the same conditions, then the general solutions to

Equation (14) can be solved directly. However, in general, it is really difficult for

us to realize this even for one first integral, because for a given plane autonomous

system, there is no systematic theory that can tell us how to find its first integrals,
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nor is there a logical way for telling us what these first integrals are. We will apply

the division theorem to obtain one first integral to Equation (14) which reduces

Equation (13) to a first order integrable ordinary differential equation. An exact

solution to (10) is then obtained by solving this equation. Now, let us recall the

following theorem, i.e. division theorem [8].

Theorem 3.1. Suppose that P (w, z) and Q(w, z) are polynomials in C[w, z] and also

P (w, z) is irreducible in C[w, z]. If Q(w, z) vanishes at all zero points of P (w, z),

then there exists a polynomial G(w, z) in C[w, z] such that

Q(w, z) = P (w, z)G(w, z).

4. The Black-Scholes equation with FIM

Our goal for this section is to solve the following Black-Scholes partial differ-

ential equation

∂V

∂τ
=

∂2V

∂x2
+ (k − 1)

∂V

∂x
− kV, (16)

subject to the boundary condition, V (T, S) = (ex −E)+ for call option and k = 2r
σ2

is a real constant.

By considering the following transformation

V (x, t) = f(ξ), ξ = x− ct, (17)

the Black-Scholes equation becomes

−cf ′ = f ′′ + (k − 1)f ′ − kf. (18)

Using (14) and (15), we get

Ẋ(ξ) = Y (ξ), (19)

Ẏ (ξ) = (1− c− k)Y (ξ) + kX(ξ). (20)

According to FIM, we suppose that X(ξ) and Y (ξ) are nontrivial solutions of (19)

and (20), and

Q(X,Y ) =

m∑
i=0

ai(X)Y i,

is an irreducible polynomial in the complex domain C[X,Y ] such that

Q(X(ξ), Y (ξ)) =

m∑
i=0

ai(X(ξ))Y i(ξ) = 0, (21)

where ai(X), i = 0, 1, ...,m are polynomials of X and am(X) ̸= 0. Equation (21) is

called the first integral to (19) and (20). Using the division theorem, there exists a

polynomial g(X) + h(X)Y in the complex domain C[X,Y ] such that

dQ

dξ
=

dQ

dX

dX

dξ
+

dQ

dY

dY

dξ
= (g(X) + h(X)Y )

m∑
i=0

ai(X)Y i. (22)
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Suppose that m = 1 by comparing with the coefficients of Y i, i = 2, 1, 0 on both

sides of (22) we have

ȧ1(X) = h(X)a1(X), (23)

ȧ0(X) + (1− c− k)a1(X) = g(X)a1(X) + h(X)a0(X), (24)

a1(X)(kX) = g(X)a0(X). (25)

Since ai(X), i = 0, 1 are polynomials, then from (23) we conclude that a1(X) is

constant and h(X) = 0. For simplicity, take a1(X) = 1. Balancing the degrees of

g(X) and a0(X), we conclude that deg(g(X)) = 0. Suppose that g(X) = A0, then

we find a0(X) as follows

a0(X) = A0 + (A1 + c+ k − 1)X, (26)

where A0 is arbitrary integration constant.

Substituting a0(X) and g(X) into (25) and setting all the coefficients of powers X

to be zero, then we obtain a system of nonlinear algebraic equations and by solving

it, we obtain

A0 = 0, A1 = − c

2
− k

2
+

1

2
±

√
c2 + 2ck − 2c+ k2 + 2k + 1, (27)

where k and c are arbitrary constants.

Using the conditions (27) in (21), we obtain

Y (ξ) = {− c

2
− k

2
+

1

2
±

√
c2 + 2ck − 2c+ k2 + 2k + 1}X(ξ). (28)

By combining (28) and (19), we obtain the exact solution to Equation (18) and then

the exact solution to the Black-Scholes equation can be written as follows

V (x, t) = exp{− c

2
− k

2
+

1

2
±

√
c2 + 2ck − 2c+ k2 + 2k + 1(x− ct+ ξ0)},

where ξ0 is an arbitrary constant.

5. Conclusion

The main goal of this paper is to provide analytical solution of the Black-

Scholes option pricing equation by the first integral method. We obtained an efficient

and accurate solution to solve the Black-Scholes partial differential equation.
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