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MINIMIZATION OF PRODUCTION TIME IN TURNING 

PROCESS CONSIDERING TOOL LIFE AND OTHER NON-

LINEAR CONSTRAINTS USING PARETO TECHNIQUE 

Miloš MADIĆ1, Miroslav RADOVANOVIĆ2, Marko KOVAČEVIĆ3 

Increase of machining efficiency in turning processes requires optimization 

of cutting parameters with respect to different process performances. Over the past 

years a number of optimization methods and algorithms for solving different turning 

optimization problems have been proposed. This study promotes the use parameter 

free optimization approach for solving multi-objective turning optimization 

problems with several non-linear constraints. The proposed optimization approach 

was used for determining optimal turning regimes, in terms of cutting speed, feed 

rate and depth of cut, so as to simultaneously minimize production time and used 

tool life while considering process constraints such as cutting force and cutting 

power. The obtained optimization solutions were compared with those obtained by 

the previous researchers using different optimization approaches. Demonstration of 

effectiveness of the proposed optimization approach was also illustrated while 

solving the extended multi-objective turning optimization problem in which surface 

roughness constraint was included. Finally, considering the set of Pareto 

optimization solutions, data for cutting tool and costs related to cutting tool, labor 

and overhead, analysis of total cost was shown. 

Keywords: Turning, multi-objective optimization, non-linear constraints, Pareto 

front, production time, tool life. 

1. Introduction 

Turning is one of the oldest and most widespread materials machining 

technology based on material removal from the workpiece in the form of chips by 

using cutting tool with defined cutting geometry [1]. It represents a complex 

machining process in which different performances, such as quality, production 

time, productivity and production costs, are influenced in a varying amount of 

different turning parameters including cutting speed, feed rate, depth of cut, 

cutting tool properties, workpiece material properties, cutting fluid properties, etc. 

[2]. 
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In order to ensure machining effectiveness and manage to achieve 

appropriate balance between opposite performances, such as machining cost, 

production time and machining quality, optimization of turning parameters is of 

crucial importance. In most cases skilled machine operators select turning 

parameter and cutting tools based on the acquired knowledge and experience as 

well as considering cutting tool recommendations. Such approach is usually 

conservative and results in underutilization of the machine tool and cutting tool 

performances. Although such determined machining regimes are not even near 

optimal they are acceptable in most cases for machining of small series of parts or 

individual parts. However, in cases of machining of large series of parts and when 

there is a need to satisfy given quality characteristics, optimization of turning 

regimes is crucial for improving machining efficiency in terms of production time 

and cost. In such cases each performance would be taken as mathematical 

function of the set of turning parameters, but considering at the same time certain 

process constraints such as tool life, cutting forces, available machine tool power, 

cutting temperature etc. Establishing mathematical relationships between turning 

parameters and process performances, as well as turning parameters and process 

constraints, creates a basis for definition of different turning optimization 

problems for given turning operation. 

The conventional approaches for solving turning optimization problems 

include analytical methods, differential calculus, application of Lagrange 

multipliers method, random searches, simplex search method, pattern search 

method, gradient methods and mathematical programming methods [3-10]. In 

recent years modern approaches are usually based on the application of meta-

heuristic algorithms including genetic algorithm [11-13], simulated annealing 

[14], harmony search algorithm [15], cuckoo search algorithm [16], flower 

pollination algorithm [17], teaching-learning-based optimization algorithm [2], 

particle swarm optimization [18, 19], ant colony optimization [20], scatter search 

[21], artificial bee colony [22], firefly algorithm [23], etc. 

An increasing number of applications of metaheuristics results from the 

fact that by applying them, the previous optimization solutions have been 

improved. One more reason is that conventional approaches usually have slow 

convergence speed and require much computing time [13], whereby the optimal 

solution convergence process depends on the chosen initial solution [24]. 

However, the application of metaheuristics is not without shortcomings. Among 

others, one of the biggest shortcomings is that the optimality of the determined 

optimization solution is impossible to prove [25]. As proved by Venkata Rao and 

Kalyankar [2], many of those meta-heuristic algorithms were not handled properly 

and their results were not valid (feasible). Moreover, since all these algorithms 

belong to the probabilistic algorithms, fine tuning of algorithm-specific control 
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parameters may be of crucial importance to decrease computation time, escape 

from local minima and handle properly given optimization constraints [2, 26]. 

Considering above-mentioned this study proposes the use of parameter 

free optimization approach based the hybridization of exhaustive iterative search 

and the epsilon-constraint method. As it guaranties the optimality, in the given 

discrete optimization hyper-space all solutions, constraints can be easily verified 

making it very transparent and easy for practical use. In the present study, the 

multi-objective turning optimization model, proposed by Sardinas et al. [11], is 

adopted for determining of optimal turning parameter values for simultaneous 

minimization of production time and used tool life. The multi-objective turning 

optimization problem was formulated considering process constraints such as 

cutting force and cutting power. Demonstration of the effectiveness of the 

proposed optimization approach was illustrated while solving the extended multi-

objective turning optimization problem in which surface roughness constraint was 

included. Finally, using the data for specific cutting tool and costs related to 

cutting tool, labor and overhead, a cost analysis complementing the Pareto front 

information, proposed by Sardinas et al. [11], for aiding the decision-making 

process was implemented. 

2. Multi-objective turning optimization problem formulation 

The proposed optimization approach for solving multi-objective turning 

optimization problems with non-linear constraints was demonstrated considering 

the initial multi-objective turning optimization model given by Sardinas et al. [11] 

and the obtained optimization results were discussed and compared with results 

obtained by previous researchers. Moreover, the initial multi-objective turning 

optimization model was expanded by including the additional constraint, i.e. 

constraint on surface finish since it is inevitable part in each part drawing. 

Sardinas et al. [11] applied genetic algorithm for selection of cutting 

parameters, i.e. cutting speed, feed rate and depth of cut, so as to minimize two 

mutually conflicting objectives, production time and used tool life. Production 

time which counts for entire time required for cutting is given by: 

0(min) 1    TC
s

V

M T


  

 
= + + + 

 
                                                 (1) 

where τs is the set-up time, τTC is the tool changing time, τ0 is the tool idle time, V 

is the volume of the removed material, T is the tool life and M is the material 

removal rate. 

As the second objective, Sardinas et al. [11] considered used tool life, i.e. 

the part of the entire tool life which is being consumed during the actual 

machining process. The model for used tool life is given as: 
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Taylor’s tool life equation, relating the cutting parameters and tool life is 

given by the following power model: 

(min) T pT C v f a  =                                                         (3) 

where v is the cutting speed, f is the feed rate, ap is the depth of cut, and α, , γ and 

CT are empirical constants. 

For estimation of production time and used tool life Sardinas et al. [11] 

used the following model for calculation of the material removal rate: 
3(mm /min) 1000 pM v f a=                                                         (4) 

The optimization problem formulation by Sardinas et al. [11] involved two 

important process constraints related to a given machine tool, i.e. cutting force 

and cutting power constraints. The cutting force must not be greater than a certain 

maximum value (Fmax) which, besides the selected cutting regime, depends on the 

strength and stability of the given machine tool and cutting tool characteristics. 

The cutting force can be computed from empirical model in the following form: 
' ' '(N)c F pF C v f a  =                                                      (5) 

where α’, ’, γ’ and CF are empirical constants. 

During turning process the cutting power must not exceed the machine 

tool motor power (Pm) considering transmission efficiency (η). Cutting power can 

be calculated taking into account cutting speed and cutting force by the following 

model: 

(kW)
60000 100

c mv F P
P

 
=                                                      (6) 

Due to the techno-technological limitations of the machine tool, cutting 

tool features as well as due to the machining safety, the main cutting parameter 

values are limited by the bottom and upper allowable limit: 

min max

min max

min max
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 

 
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                                                    (7) 

The upper and lower limits of the main turning parameters such as cutting 

speed, feed rate and depth of cut, empirical constants for the cutting force and tool 

life mathematical models, which were obtained after an experimental 

investigation by Sardinas et al. [11], as well as other necessary optimization data 

are summarized in Table 1. Beside these data, the data that were included in the 

extended multi-objective optimization model were provided. These data are 

related to tool nose radius (rE), maximal surface roughness (Ramax), cost for each 

tool edge (zt), labor cost (zL) and overhead cost (zO). One has to note that labor 

cost is calculated assuming labor expenses of 50 EUR for eight working hours. 
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After setting the values from Table 1 and normalizing constraints the final 

formulation of the multi-objective turning optimization problem can be reduced 

to: 
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Table 1 

Multi-objective optimization model data 

Parameter Value Parameter Value 

vmin 250 m/min Pm 10 kW 

vmax 400 m/min η 75% 

fmin 0.15 mm/rev Fmax 5000 N 

fmax 0.55 mm/rev τs 0.15 min 

apmin 0.5 mm τTC 0.2 min 

apmax 6 mm τ0 0.05 min 

Ramax 3.2 µm rE 1.2 mm 

α -3.46 zt 5 EUR 

 -0.696 zl 0.104 EUR/min 

γ -0.46 zo 0.1 EUR/min 

α’ -0.286 CT 5.48109 

’ 0.917 CF 6.56103 

γ’ 1.1 V 219912 mm3 

 

As in other machining operations the turned part must meet certain quality 

characteristics. In that sense it is common that surface roughness must be smaller 

than the specified maximal value (Rtmax). The two most important parameters 

which affect surface roughness are tool nose radius (rE) and feed rate (f). Their 

effects are usually combined into a theoretical surface roughness mathematical 

model in the form: 
2

max
125

(μm)a a
E

f
R R

r
=                                                          (9) 

After setting the values from Table 1 and including the surface roughness 

constraint one obtains the extended multi-objective turning optimization problem 

which is now formulated as: 
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Formulations in Equations 8 and 10 represent nonlinearly constrained 

multi-objective turning optimization problems with three continuous independent 

variables. 

3. Applied optimization approach 

To handle optimization problems, as given in Equations 8 and 10, in this 

study an optimization approach based on the hybridization of exhaustive iterative 

search and the epsilon-constraint method was proposed. Its effective 

implementation was realized in the specialized software tool “BRUTOMIZER” 

[27]. This approach was attempted as it represents a parameter free optimization 

approach which guaranties the optimality of the determined solutions at the cost 

of performing a large number of computations that are, however, executed very 

fast. 

When solving an optimization problem exhaustive iterative search 

systematically searches all possible solutions without the use of any heuristic only 

by optimization problem’s formulation. It is one of the simplest optimization 

algorithms for implementation that always finds the solution if one exists [28]. 

The algorithm can tackle a wide variety of problems, however is inefficient, i.e. 

takes a lot of computational time for its solving. Thus its application is justified 

for solving small/medium scale optimization problems where the number of 

possible solutions is limited. The greatest advantage is that it guaranties the 

optimality of the determined solution. In such way it is often used as a baseline 

method when benchmarking other optimization algorithms or metaheuristics. 

A typical Pareto multi-objective optimization problem considers a number 

of objective functions which are to be maximized or minimized. In the epsilon-

constraint method the idea is to optimize one of the objective functions using the 

other objective functions as constraints incorporating them in the constraint part 

of the multi-objective problem formulation [29]. Thus, the mathematical 

formulation can be expressed as: 
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where x=(x1, x2, ..., xn) is the n-dimensional vector of decision variables, f1(x), 

f2(x), ..., fm(x) are m objective functions and X is the feasible region. 

Dimensional representation of the epsilon-constraint method in the case of 

two objective functions which are to be minimized is given in Fig. 1. 

The set of solutions laying on the curve between points A and B represents 

the set of non-inferior solutions, i.e. Pareto optimal solutions, since an 

improvement in one objective function requires a degradation in the other 

objective function. A specific convenience of the epsilon-constraint method is that 

it is possible to control the number of the generated non-inferior (efficient) 

solutions by properly adjusting the number of grid points in each one of the 

objective function ranges [29]. Moreover, in comparison to widely applied 

weighted sum method, the epsilon-constraint method can identify a number non-

inferior solutions on a non-convex boundary. 

Finally, as noted by Mavrotas [29], effective application of the epsilon-

constraint method requires the calculation of the range of the objective functions 

over the non-inferior set and the guarantee of efficiency of the obtained solution. 

In order to tackle these issues in this study, for the generation of the sets of non-

inferior solutions, the epsilon-constraint method was hybridized with exhaustive 

iterative search ensuring at the same time optimality of the determined solutions. 

 

 
Fig. 1. Geometrical representation of the -constraint method in the case of two objective 

functions 
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4. Results and discussion 

In order to minimize both objectives (production time and used tool life) 

Sardinas et al. [11], applied genetic algorithm for determination of a set of Pareto 

set consisting of 14 combinations of optimal values of cutting parameter values. 

However, as proved by Venkata Rao and Kalyankar [2], only six optimization 

solutions are feasible, whereas the other eight violate cutting power constraint. 

The Pareto front generated with the optimization solutions determined by the 

proposed optimization approach and the feasible optimization solutions by 

Sardinas et al. [11] are given in Figure 2. 

From Figure 2 it is clear that the proposed optimization approach made a 

considerable improvement in optimization results. The optimization solutions, 

obtained using the proposed optimization approach, are not dominated by any 

other solution obtained by GA. Moreover, improvement in the distribution of 

optimization solutions can be easily perceived. It could be observed that 

production time is decreased from 0.91 min to 0.855 min, however at the same 

time the used tool life is increased from 4.02% to 9.5%. On the other hand, on the 

far right side of the Pareto front, the used tool life can be decreased to about 2.13 

% at the cost of increasing production time to 1.12 min. It has to be noted that, in 

general, all solutions in the Pareto fronts are optimal solutions depending upon the 

requirement of decision maker (Table 2). 
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Fig. 2. Comparison of Pareto fronts obtained by Sardinas et al. [11] and the proposed 

optimization approach 
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Table 2 

Pareto optimal solutions determined using the proposed optimization approach 

Pareto solution 
Production time 

τ (min) 

Used tool life 

 (%) 

v  

(m/min) 

f  

(mm/rev) 

ap  

(mm) 

1 0.85445 9.489256 400 0.55 1.573 

2 0.86 8.78 389 0.55 1.6 

3 0.88 6.58 300 0.55 1.71 

4 0.9 5.03 319 0.55 1.82 

5 0.94 3.02 266 0.55 2.05 

6 0.96 2.52 250 0.53 2.2 

7 0.98 2.47 250 0.46 2.47 

8 1 2.41 250 0.39 2.84 

9 1.02 2.36 250 0.34 3.18 

10 1.04 2.32 250 0.3 3.53 

11 1.05 2.27 250 0.26 3.98 

12 1.08 2.22 250 0.22 4.58 

13 1.1 2.17 250 0.19 5.17 

14 1.12 2.13 250 0.17 5.68 

The results from Table 2 were compared with the optimization solution of 

Venkata Rao and Kalyankar [2] and Deb abd Datta [30], who applied the TLBO 

algorithm and multi-objective genetic algorithm (NSGA-II), respectively. It can 

be shown that the proposed optimization approach as the TLBO and NSGA-II 

algorithm determined the same solution, i.e. solution 1 (Table 2). Therefore, 

considering the obtained optimization results, one can argue that the proposed 

optimization approach proved its effectiveness for solving constrained multi-

objective turning optimization problem. 

Now the extended nonlinearly constrained multi-objective turning 

optimization problem (Equation 10) was solved using the proposed optimization 

approach. The set of optimization solutions upon which the Pareto front may be 

generated is given in Table 3. When comparing the obtained results (Table 3) and 

the results obtained without inclusion of surface roughness constraint (Table 2) it 

could be observed that because feed rate above 0.17 mm/rev is not allowable, 

minimal production time is increased to 1 min. This, relatively small increase, was 

obtained because somewhat smaller cutting speed is used (368 m/min instead of 

400 m/min), however tripled depth of cut value is used (4.42 mm instead of 1.573 

mm). 
Table 3 

Pareto optimal solutions while solving the extended multi-objective problem 

Pareto solution 
Production time,  

τ (min) 

Used tool life, 

  (%) 

v  

(m/min) 

f  

(mm/rev) 
ap (mm) 

1 1 6.32 368 0.17 4.42 

2 1.03 4.98 338 0.17 4.67 

3 1.05 4.09 315 0.17 4.88 

4 1.07 3.33 293 0.17 5.12 

5 1.09 2.73 273 0.17 5.36 
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6 1.11 2.28 256 0.17 5.59 

7 1.13 2.11 250 0.17 5.97 

8 1.13 2.12 250 0.16 5.93 

9 1.15 2.15 250 0.16 5.81 

Finally, one can calculate the total production cost which consists of tool 

cost, labour cost and overhead cost. It is clear that the tool cost is directly related 

to the used tool life, whereas the production time affects both labour and overhead 

cost. Therefore the total production cost models is as: 

(EUR)total t l oZ z z z  =  +  +                                            (12) 

Considering the obtained set of optimization solutions (Table 3) and by 

using the given optimization data (Table 1) one can generate Pareto front of total 

cost with respect to labour and overhead cost separately (Figure 3). One can 

observe a continuous increase in labour and overhead cost. However, in the case 

of tool cost, for the first 7 Pareto solutions there is a decrease in tool cost and 

afterwards tool cost tends to increase. Hence, the Pareto solution 7 has the 

smallest total production cost of 0.336 EUR and this solution corresponds to the 

minimal used tool life of 2.11% which can be beneficial for the workshops with 

small and discontinuous productions. However, as noted by Sardinas et al. [11] in 

special conditions production time may be far more important with respect to tool 

life and/or total production cost. Consequently, in some circumstances, selection 

of the Pareto solution 1 is justified. 
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Fig. 3. Pareto front of total cost 

5. Conclusions 

This study proposed the use of optimization approach based on the 

hybridization of exhaustive iterative search and the epsilon-constraint method for 

solving turning multi-objective optimization problems with several non-linear 

constraints. The multi-objective optimization problem for simultaneous 
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minimization of production time and used tool life was considered for 

demonstration of the effectiveness of the proposed approach as well as to compare 

the optimization results with those previously obtained using different 

optimization approaches. It has been observed that the proposed approach is able 

to solve complex turning multi-objective optimization problems, handle non-

linear constraints and provide feasible set of well distributed Pareto optimization 

solutions within reasonable computational time. The proposed optimization 

approach allows the user to specify the number of sub-segments and thus the 

number of Pareto optimization solutions as well as to include specific machine 

tool limitations regarding the allowable values of cutting parameters making it 

more convenient approach for determination of turning regimes. Finally, it has to 

be noted that the optimality of Pareto optimization solutions is guaranteed. 
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