
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 2, 2022 ISSN 2286-3540

A PARALLEL APPROXIMATION ALGORITHM FOR

MINIMUM AREA POLYGONIZATION BASED ON

CLUSTERING

Saeed ASAEEDI1, Mahsa Soheil SHAMAEE2

Minimum area polygonization is a well-known NP-complete problem in

computational geometry. It is the problem of finding a simple polygon with minimum

area for a given set of points in the plane. We present a parallel approximation

algorithm based on clustering to solve this problem in polynomial time. The

algorithm has four phases: clustering the points into the meaningful parts,

reclustering the big clusters to the smaller ones, finding minimum area polygon for

each cluster and, finally merging the polygons. We implement the algorithm and

present the results of experiments by comparing the previous works. We compare

the average score obtained by our algorithm and that of the previous methods. The

score obtained by an algorithm is the ratio given by the area of the computed

polygon using that algorithm divided by the area of the convex hull.

Keywords: Minimum area polygonization, Approximation algorithm,

Hierarchical clustering, Partitional clustering, Computational geometry

1. Introduction

Minimum Area Polygonization (MAP) was shown to be NP-complete by

Fekete [1, 2], who also proved that no polynomial time approximation algorithm

exists for MAP [3]. It is proved in [4] that computing α-Concave hull, as a

generalization of MAP, is still NP-complete. The α-Concave hull on a set of

points is the minimum area simple polygon containing those points with angular

constraint.

The most related problem to MAP is Traveling Salesman Problem (TSP).

Although there exist many algorithms to approximate and randomize TSP [5, 6, 7,

8, 9, 10], there are few studies on MAP. Taranilla et al. [11] presented three

heuristic algorithms to obtain approximate solutions for MAP. Crombez et al. [12]

proposed two algorithms, greedy method and local search, to find the maximum

and minimum area polygons on a set of points. Maximum area polygonization

(MAXP) is NP-hard same as MAP [1, 2]. Fekete presented a 1/2-approximation

1 Department of Computer Science, Faculty of Mathematical Sciences, University of Kashan,

Kashan 87317-53153, I. R. Iran, e-mail: asaeedi@kashanu.ac.ir
2 Department of Computer Science, Faculty of Mathematical Sciences, University of Kashan,

Kashan 87317-53153, I. R. Iran.

112 Saeed Asaeedi, Mahsa Soheil Shamaee

algorithm for MAXP [3]. Using the technique of randomized incremental

construction, Peethambaran et al. [13] presented a greedy heuristic for MAP and

MAXP. Muravitskiy and Tereshchenko [14] gave a greedy algorithm to solve

MAP. The idea of the algorithm is simple: Compute the convex hull of the points

and remove the largest possible triangle constructed by the inner points

decrementally. Osiponok and Tereshchenko proposed a divide and conquer

algorithm [15]: Divide the set of points into two subsets, construct approximated

minimum area polygon recursively, and finally merge them.

In [16] a randomized approximation algorithm is presented for minimal

and maximal volume polyhedronization of three-dimensional point sets. As the

recent study, Fekete et al. [17] developed exact methods for MAP and MAXP

based on integer programming. In recent years, a workshop was held at the 2019

Computational Geometry Week (CG Week) in Portland that focused on optimum

area polygonization [18, 19].

In [20, 21] cluster polygonization had investigated by Lee and Estivill-

Castro. They presented a linear time algorithm to transform point clusters into

polygons. In this paper, we use clustering algorithms to split the points into small

enough subsets, then transform each cluster into minimum area polygon locally

and finally merge the computed polygons trying to keep minimality.

Two main categories of clustering are partitioning and hierarchical.

Agglomerative or divisive hierarchical algorithms try to build a hierarchy of

clusters and they are generally parameter-less. In this paper, we use the

agglomerative hierarchical clustering algorithm presented in [22] to cluster the

points into the meaningful parts. In this step, the number of clusters is not

determined exactly, and it depends on the position of the points. The k-means

algorithm [23] is a well-known partitional clustering method. Here, we use the k-

means algorithm to recluster the big clusters to the fixed size smaller ones. We

find the minimum area polygon on each cluster and then merge them to construct

the approximated minimum area polygon on the points. In [24, 15] some polygon

merging algorithms are shown. We present a new merging algorithm to keep

minimality as much as possible. The rest of the paper is as follows: In the section

2, the parallel approximation algorithm is presented to solve MAP. In section 3,

the numerical results are presented and discussed. Finally in section 4, we

conclude the paper highlighting its achievements.

2. Approximation algorithm for MAP

Let S be a set of points in the plane and Pm(S) be the simple polygon on S

with the smallest possible area. In this section, we present a parallel

approximation algorithm to compute Pm(S). The algorithm has four phases: (1)

classify S into clusters of points close to each other by using agglomerative

A parallel approximation algorithm for minimum area polygonization based on clustering 113

hierarchical clustering algorithm, (2) recluster the big clusters containing more

than 6 points into fixed size partitions, (3) parallelly, compute Pm(si) for each final

cluster si of points, and (4) merge all polygons Pm(si) by adding connecting

rectangles with smallest areas.

In [22], an agglomerative hierarchical clustering algorithm using a

sweeping approach was presented. The algorithm uses two horizontal sweep-lines

moving through S from bottom to top, and the clusters were constructed during

this process. The time complexity of the algorithm is O(n log n). We use this

clustering technique for the first phase of our algorithm. Fig. 1.b, Fig. 2.b and Fig.

3.b show how clustering algorithm works for random points, the dataset taken

from SPAETH cluster analysis database [25] and sample points from TSPLIB

benchmark data [26], respectively.

Fig. 1. (a) Set of 500 random points, (b) Output of first phase, (c) Output of second phase.

Fig. 2. (a) Set spaeth06 of SPAETH, (b) Output of first phase, (c) Output of second phase.

Fig. 3. (a) Instance a280 of TSPLIB, (b) Output of first phase, (c) Output of second phase.

114 Saeed Asaeedi, Mahsa Soheil Shamaee

The presented algorithm in this paper is a divide and conquer algorithm.

The algorithm first split the points into the small enough subsets, then compute

minimum area polygon on each subset using the exact algorithm, and finally

merge the computed polygons. Some clusters obtained from the first phase may

be too large and therefore the exact algorithm is not efficient for these clusters. As

the second phase, we use a partitional clustering algorithm to recluster the big

clusters for obtaining small subsets.

We use the k-means algorithm to split the big clusters into fixed size

partitions. Since any exact algorithm is fast enough on the set of 6 points, we

consider this fixed size to be 6. We investigate the effect of different values for

this cluster size on the efficiency of our algorithm in section 3. Let Si be the set of

ni points of ith cluster such that ni>6. We run the k-means algorithm on Si with

k=ni/6 centroids. Fig. 1.c, Fig. 2.c and Fig. 3.c depict the subclusters on random

points, SPAETH and TSPLIB, respectively.

The outputs of the second phase of the algorithm are clusters each of

which contains at most 6 points. In the next phase, we parallelly compute the

minimum area polygon on each cluster using an exact algorithm. The exact

algorithm is a full search of all simple polygons to find the minimum one. The

time complexity of this algorithm is constant, O(6!). Fig. 4.b, Fig. 5.b and Fig. 6.b

show the output of this phase for the sets of 100, 200 and 500 random points,

respectively.

As the final phase, we merge the polygons computed from the previous

phase. We connect the polygons with minimum area rectangles. To address this

issue, we use a greedy method: find the minimum area empty simple rectangle R

that connects two polygons without intersecting with others, and merge them

using R. Fig. 4.c, Fig. 5.c and Fig. 6.c illustrate how this greedy method works on

the sets of 100, 200 and 500 random points, respectively.

Fig. 4. (a) Final clusters on a set of 100 points, (b) Minimum area polygon on each cluster, (c)

Merge the polygons to compute the approximated minimum area polygon.

A parallel approximation algorithm for minimum area polygonization based on clustering 115

Fig. 5. (a) Final clusters on a set of 200 points, (b) Minimum area polygon on each cluster, (c)

Merge the polygons to compute the approximated minimum area polygon.

Fig. 6. (a) Final clusters on a set of 500 points, (b) Minimum area polygon on each cluster, (c)

Merge the polygons to compute the approximated minimum area polygon.

Consequently, the pseudo code of our algorithm is shown in algorithm 2.1.

The function agglomerativeClustering partitions the input parameter, points, to

the clusters based on the presented algorithm in [22]. kMeans is a function with

parameters s (the input points) and n/6 (n=the size of s) that returns n/6 clusters of

s based on k-means method. The function parallelExactAlgorithm runs the exact

algorithm of MAP on each cluster of "secondClusters", parallelly. The polygons

returned by parallelExactAlgorithm are merged together by mergePolygons.

116 Saeed Asaeedi, Mahsa Soheil Shamaee

The function mergePolygons is described in algorithm 2.2:

Since the time complexity of other phases are less than that of phase 4,

algorithm 2.2 and therefore algorithm 2.1 runs in O(n4) time where n is the

number of points.

3. Numerical results

In this section, we first compare our results with those of obtained from

the exact algorithm on the small datasets. Then we compare our algorithm with

previous studies such as [13], [15] and [27] on the uniform datasets of 2019 CG

Challenge [18, 19]. We implement the divide and conquer [15] and randomized

incremental [13] algorithms to compare with our approach. Fig. 7 shows the

results of these algorithms on the same set of 100 points. We also compare the

algorithms on the non-uniform datasets which are collections of the separate point

sets. Finally, we run our algorithm on existing datasets such as TSPLIB, SPAETH

and instances of 2019 CG Challenge and obtain approximated minimum area

polygon on these datasets.

Fig. 7. (a) The wavy shape polygon constructed by divide and conquer algorithm, (b) The

constructed polygon by randomized incremental algorithm.

A parallel approximation algorithm for minimum area polygonization based on clustering 117

Table 1 shows the results of analyses of datasets of 6-11 points. On each

dataset, our algorithm is compared with the exact full search algorithm. In table 1,

the area values are the average over 100 instances for each size. The average of

execution time for each size is compared as shown in Fig. 8.

Table 1

Comparison of our algorithm with the exact algorithm

Dataset size Minimum area Approximated area Percentage

6 1375.66 1421.23 96.80

7 1568.535 1762.48 89.00

8 1485.43 1887.93 78.68

9 1504.080808 2020.707071 74.43

10 1496.782828 2033.838384 73.59

11 1396.35 1945.9 71.75

Fig. 8. Comparison of the execution time of our algorithm and the exact algorithm.

We run our algorithm on a collection of benchmark instances of 2019 CG

Challenge [18]. We compare our result with that of obtained by the approximation

algorithm, APX, presented in [15], the randomized algorithm, RAND, presented

in [13] and the greedy algorithm, Greedy, presented in [27]. The Greedy

algorithm is one of the best approximation algorithms presented in 2019 CG

Challenge (See [19]). We compare the scores obtained by the algorithms in Fig. 9.

The score obtained by an algorithm for each instance is the ratio given by the area

of the computed polygon using that algorithm divided by the area of the convex

hull.

118 Saeed Asaeedi, Mahsa Soheil Shamaee

Fig. 9. The comparison results of our algorithm, APX, RAND and Greedy on uniform datasets.

Since our algorithm is based on clustering, it works better than other

algorithms on datasets with the collections of the separate parts, i.e., the points are

not located uniformly over the plane. Fig. 10 shows an example of these datasets

and the results of our algorithm and Greedy algorithm on it. Also, Fig. 11

illustrates the efficiency of our algorithm compared with APX, RAND and

Greedy on these datasets. In Fig. 11, the average scores are computed over 100

instances of non-uniform datasets of 10, 15, ..., 500 points.

Fig. 10. (a) A non-uniform dataset of points, (b) The polygon computed by our algorithm, (c) The

polygon computed by Greedy.

A parallel approximation algorithm for minimum area polygonization based on clustering 119

Fig. 11. The comparison results of our algorithm, APX, RAND and Greedy on non-uniform

datasets.

Table 2 shows the results of our algorithm on datasets of TSPLIB,

SPAETH and CG Challenge. In this table, U100, U200 and U500 are uniform-

0000100-1, uniform-0000200-1 and uniform-0000500-1 instances of 2019 CG

Challenge, respectively. Also, bier127, pr439 and ali535 are instances of TSPLIB

and spaeth04, spaeth06 and spaeth08 are instances of SPAETH. The outputs of

our algorithm on U500, spaeth06 and bier127 are depicted in Fig. 12.

Table 2

Approximated minimum area polygon on instances of TSPLIB, SPAETH and 2019 CG

Challenge

Dataset
Approximated

minimum area

Execution time

(Seconds)

U100 6246074 351.1284912

U200 28521846 2880.690073

U500 168670866 33502.14948

d198 23297.26 2760.576258

ch150 96407.25203 957.4282641

bier127 31123728 444.6934746

spaeth04 387.5 261.4493785

spaeth06 148 111.4929528

spaeth08 379 227.0705052

Remark 3.1. We run our algorithm for the different values of the fixed

cluster size. Fig. 13 and Fig. 14 show the average score obtained by our algorithm

and the execution time of our algorithm over the datasets of 10, 20, 50, 80 and

100 points for the cluster size of 4, 5, 6, 7 and 8 points, respectively.

120 Saeed Asaeedi, Mahsa Soheil Shamaee

Fig. 12. The computed polygon by our algorithm on (a) instance uniform-0000500-1 of 2019 CG

Challenge, (b) spaeth06 and (c) bier127.

Fig. 13. The average score obtained by our algorithm over the datasets of 10, 20, 50, 80 and 100

points for the different cluster sizes.

Fig. 14. The average execution time of our algorithm over the datasets of 10, 20, 50, 80 and 100

points for the different cluster sizes.

A parallel approximation algorithm for minimum area polygonization based on clustering 121

4. Conclusions and future work

In this paper, we presented a parallel approximation algorithm for

minimum area polygonization based on clustering. On a set S of points, we

clustered S to meaningful parts and split the large parts to small enough subsets.

Parallelly, minimum area polygon is computed on each final subsets by exact

algorithm. Finally, the minimum area polygons are merged together to construct

an approximated polygon with minimum area on S. Based on our experimental

results, our algorithm is shown to be more efficient than previous studies on non-

uniform datasets. As a future work, we are going to use this algorithm to solve

maximum area polygonization and minimum and maximum perimeter

polygonization. Also, the constraints on the angles, area and perimeter can be

added to the considered problem. As another future work, the algorithm can be

extended to work with the points on the higher dimensions.121

Acknowledgements

The research of the first author is partially supported by the University of

Kashan under grant number 991449/2.

R E F E R E N C E S

[1]. S. P. Fekete, On simple polygonalizations with optimal area, Discrete & Computational

Geometry 23 (1) (2000) 73–110.

[2]. S. P. Fekete, W. R. Pulleyblank, Area optimization of simple polygons, in: Proceedings of the

ninth annual symposium on Computational geometry, ACM, 1993, pp. 173–182.

[3]. S. P. Fekete, Geometry and the travelling salesman problem., University of Waterloo, 1992.

[4]. S. Asaeedi, F. Didehvar, A. Mohades, α-concave hull, a generalization of convex hull,

Theoretical Computer Science 702 (2017) 48–59.

[5]. Y. Bartal, L.-A. Gottlieb, R. Krauthgamer, The traveling salesman problem: low

dimensionality implies a polynomial time approximation scheme, SIAM Journal on

Computing 45 (4) (2016) 1563–1581.

[6]. Y. Bartal, L.-A. Gottlieb, A linear time approximation scheme for euclidean tsp, in: 2013

IEEE 54th Annual Symposium on Foundations of Computer Science, IEEE, 2013, pp. 698–

706.

[7]. V. Traub, Approximation algorithms for traveling salesman problems.

[8]. V. Traub, J. Vygen, An improved approximation algorithm for atsp, in: Proceedings of the

52nd Annual ACM SIGACT Symposium on Theory of Computing, 2020, pp. 1–13.

[9]. W. Kongkaew, J. Pichitlamken, A survey of approximate methods for the traveling salesman

problem, Kasetsart Engineering Journal 27 (89) (2014) 79–87.

[10]. C. Qi, An ant colony system hybridized with randomized algorithm for tsp, in: Eighth ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing (SNPD 2007), Vol. 3, IEEE, 2007, pp. 461–465.

[11]. M. T. Taranilla, E. O. Gagliardi, G. Hern´andez Pe˜nalver, Approaching minimum area

polygonization.

[12]. L. Crombez, G. D. da Fonseca, Y. Gerard, Greedy and local search heuristics to build area-

optimal polygons, arXiv preprint arXiv:2106.14728.

122 Saeed Asaeedi, Mahsa Soheil Shamaee

[13]. J. Peethambaran, A. D. Parakkat, R. Muthuganapathy, An empirical study on randomized

optimal area polygonization of planar point sets, Journal of Experimental Algorithmics

(JEA) 21 (1) (2016) 1–10.

[14]. V. Muravitskiy, V. Tereshchenko, Generating a simple polygonalizations, in: 2011 15th

International Conference on Information Visualisation, IEEE, 2011, pp. 502–506.

[15]. M. Osiponok, V. Tereshchenko, The” divide and conquer” technique to solve the minimum

area polygonalization problem, in: 2019 IEEE International Conference on Advanced

Trends in Information Theory (ATIT), IEEE, 2019, pp. 336–339.

[16]. J. Peethambaran, A. Dev Parakkat, R. Muthuganapathy, A randomized approach to volume

constrained polyhedronization problem, Journal of Computing and Information Science in

Engineering 15 (1) (2015) 011009.

[17]. S. P. Fekete, A. Haas, P. Keldenich, M. Perk, A. Schmidt, Computing area-optimal simple

polygonalizations, Journal of Experimental Algorithmics.

[18]. Cg:shop 2019, https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2019, accessed: 2021-08-

18.

[19]. Demaine, E.D.; Fekete, S.P.; Keldenich, P.; Krupke, D.; Mitchell, J.S. Area-optimal simple

polygonalizations: The CG challenge 2019. Journal of Experimental Algorithmics (JEA)

2022, 27, 1–12..

[20]. I. Lee, V. Estivill-Castro, Polygonization of point clusters through cluster boundary

extraction for geographical data mining, in: Advances in Spatial Data Handling, Springer,

2002, pp. 27–40.

[21]. I. Lee, V. Estivill-Castro, Fast cluster polygonization and its applications in data-rich

environments, Geoinformatica 10 (4) (2006) 399–422.

[22]. K. R. Zalik, B. ˇ Zalik, A sweep-line algorithm for spatial clustering, Advances in

Engineering Software 40 (6) (2009) 445–451.

[23]. J. MacQueen, et al., Some methods for classification and analysis of multivariate

observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, Vol. 1, Oakland, CA, USA, 1967, pp. 281–297.

[24]. A. Nourollah, M. Movahedinejad, A genetic based algorithm to generate random simple

polygons using a new polygon merge algorithm, International Journal of Computer and

Information Engineering 9 (1) (2015) 230–236.

[25]. Spaeth cluster analysis datasets,

https://people.sc.fsu.edu/~jburkardt/datasets/spaeth/spaeth.html, accessed: 2021-08-18.

[26]. Tsplib, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95, accessed: 2021-08-18.

[27]. Crombez, L.; da Fonseca, G.D.; Gerard, Y. Greedy and Local Search Heuristics to Build

Area-Optimal Polygons. ACM Journal of Experimental Algorithmics (JEA) 2022, 27, 1–11.

