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A PARALLEL APPROXIMATION ALGORITHM FOR 

MINIMUM AREA POLYGONIZATION BASED ON 

CLUSTERING 

Saeed ASAEEDI1, Mahsa Soheil SHAMAEE2 

Minimum area polygonization is a well-known NP-complete problem in 

computational geometry. It is the problem of finding a simple polygon with minimum 

area for a given set of points in the plane. We present a parallel approximation 

algorithm based on clustering to solve this problem in polynomial time. The 

algorithm has four phases: clustering the points into the meaningful parts, 

reclustering the big clusters to the smaller ones, finding minimum area polygon for 

each cluster and, finally merging the polygons. We implement the algorithm and 

present the results of experiments by comparing the previous works. We compare 

the average score obtained by our algorithm and that of the previous methods. The 

score obtained by an algorithm is the ratio given by the area of the computed 

polygon using that algorithm divided by the area of the convex hull. 
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1. Introduction 

Minimum Area Polygonization (MAP) was shown to be NP-complete by 

Fekete [1, 2], who also proved that no polynomial time approximation algorithm 

exists for MAP [3]. It is proved in [4] that computing α-Concave hull, as a 

generalization of MAP, is still NP-complete. The α-Concave hull on a set of 

points is the minimum area simple polygon containing those points with angular 

constraint. 

The most related problem to MAP is Traveling Salesman Problem (TSP). 

Although there exist many algorithms to approximate and randomize TSP [5, 6, 7, 

8, 9, 10], there are few studies on MAP. Taranilla et al. [11] presented three 

heuristic algorithms to obtain approximate solutions for MAP. Crombez et al. [12] 

proposed two algorithms, greedy method and local search, to find the maximum 

and minimum area polygons on a set of points. Maximum area polygonization 

(MAXP) is NP-hard same as MAP [1, 2]. Fekete presented a 1/2-approximation 
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algorithm for MAXP [3]. Using the technique of randomized incremental 

construction, Peethambaran et al. [13] presented a greedy heuristic for MAP and 

MAXP. Muravitskiy and Tereshchenko [14] gave a greedy algorithm to solve 

MAP. The idea of the algorithm is simple: Compute the convex hull of the points 

and remove the largest possible triangle constructed by the inner points 

decrementally. Osiponok and Tereshchenko proposed a divide and conquer 

algorithm [15]: Divide the set of points into two subsets, construct approximated 

minimum area polygon recursively, and finally merge them. 

In [16] a randomized approximation algorithm is presented for minimal 

and maximal volume polyhedronization of three-dimensional point sets. As the 

recent study, Fekete et al. [17] developed exact methods for MAP and MAXP 

based on integer programming. In recent years, a workshop was held at the 2019 

Computational Geometry Week (CG Week) in Portland that focused on optimum 

area polygonization [18, 19]. 

In [20, 21] cluster polygonization had investigated by Lee and Estivill-

Castro. They presented a linear time algorithm to transform point clusters into 

polygons. In this paper, we use clustering algorithms to split the points into small 

enough subsets, then transform each cluster into minimum area polygon locally 

and finally merge the computed polygons trying to keep minimality. 

Two main categories of clustering are partitioning and hierarchical. 

Agglomerative or divisive hierarchical algorithms try to build a hierarchy of 

clusters and they are generally parameter-less. In this paper, we use the 

agglomerative hierarchical clustering algorithm presented in [22] to cluster the 

points into the meaningful parts. In this step, the number of clusters is not 

determined exactly, and it depends on the position of the points. The k-means 

algorithm [23] is a well-known partitional clustering method. Here, we use the k-

means algorithm to recluster the big clusters to the fixed size smaller ones. We 

find the minimum area polygon on each cluster and then merge them to construct 

the approximated minimum area polygon on the points. In [24, 15] some polygon 

merging algorithms are shown. We present a new merging algorithm to keep 

minimality as much as possible. The rest of the paper is as follows: In the section 

2, the parallel approximation algorithm is presented to solve MAP. In section 3, 

the numerical results are presented and discussed. Finally in section 4, we 

conclude the paper highlighting its achievements. 

2. Approximation algorithm for MAP 

Let S be a set of points in the plane and Pm(S) be the simple polygon on S 

with the smallest possible area. In this section, we present a parallel 

approximation algorithm to compute Pm(S). The algorithm has four phases: (1) 

classify S into clusters of points close to each other by using agglomerative 
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hierarchical clustering algorithm, (2) recluster the big clusters containing more 

than 6 points into fixed size partitions, (3) parallelly, compute Pm(si) for each final 

cluster si of points, and (4) merge all polygons Pm(si) by adding connecting 

rectangles with smallest areas. 

In [22], an agglomerative hierarchical clustering algorithm using a 

sweeping approach was presented. The algorithm uses two horizontal sweep-lines 

moving through S from bottom to top, and the clusters were constructed during 

this process. The time complexity of the algorithm is O(n log n). We use this 

clustering technique for the first phase of our algorithm. Fig. 1.b, Fig. 2.b and Fig. 

3.b show how clustering algorithm works for random points, the dataset taken 

from SPAETH cluster analysis database [25] and sample points from TSPLIB 

benchmark data [26], respectively. 

 

 
Fig. 1. (a) Set of 500 random points, (b) Output of first phase, (c) Output of second phase. 

 
Fig. 2. (a) Set spaeth06 of SPAETH, (b) Output of first phase, (c) Output of second phase. 

 
Fig. 3. (a) Instance a280 of TSPLIB, (b) Output of first phase, (c) Output of second phase. 
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The presented algorithm in this paper is a divide and conquer algorithm. 

The algorithm first split the points into the small enough subsets, then compute 

minimum area polygon on each subset using the exact algorithm, and finally 

merge the computed polygons. Some clusters obtained from the first phase may 

be too large and therefore the exact algorithm is not efficient for these clusters. As 

the second phase, we use a partitional clustering algorithm to recluster the big 

clusters for obtaining small subsets. 

We use the k-means algorithm to split the big clusters into fixed size 

partitions. Since any exact algorithm is fast enough on the set of 6 points, we 

consider this fixed size to be 6. We investigate the effect of different values for 

this cluster size on the efficiency of our algorithm in section 3. Let Si be the set of 

ni points of ith cluster such that ni>6. We run the k-means algorithm on Si with 

k=ni/6 centroids. Fig. 1.c, Fig. 2.c and Fig. 3.c depict the subclusters on random 

points, SPAETH and TSPLIB, respectively. 

The outputs of the second phase of the algorithm are clusters each of 

which contains at most 6 points. In the next phase, we parallelly compute the 

minimum area polygon on each cluster using an exact algorithm. The exact 

algorithm is a full search of all simple polygons to find the minimum one. The 

time complexity of this algorithm is constant, O(6!). Fig. 4.b, Fig. 5.b and Fig. 6.b 

show the output of this phase for the sets of 100, 200 and 500 random points, 

respectively.  

As the final phase, we merge the polygons computed from the previous 

phase. We connect the polygons with minimum area rectangles. To address this 

issue, we use a greedy method: find the minimum area empty simple rectangle R 

that connects two polygons without intersecting with others, and merge them 

using R. Fig. 4.c, Fig. 5.c and Fig. 6.c illustrate how this greedy method works on 

the sets of 100, 200 and 500 random points, respectively. 

 

Fig. 4. (a) Final clusters on a set of 100 points, (b) Minimum area polygon on each cluster, (c) 

Merge the polygons to compute the approximated minimum area polygon. 
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Fig. 5. (a) Final clusters on a set of 200 points, (b) Minimum area polygon on each cluster, (c) 

Merge the polygons to compute the approximated minimum area polygon. 

 
Fig. 6. (a) Final clusters on a set of 500 points, (b) Minimum area polygon on each cluster, (c) 

Merge the polygons to compute the approximated minimum area polygon. 

 

Consequently, the pseudo code of our algorithm is shown in algorithm 2.1. 

The function agglomerativeClustering partitions the input parameter, points, to 

the clusters based on the presented algorithm in [22]. kMeans is a function with 

parameters s (the input points) and n/6 (n=the size of s) that returns n/6 clusters of 

s based on k-means method. The function parallelExactAlgorithm runs the exact 

algorithm of MAP on each cluster of "secondClusters", parallelly. The polygons 

returned by parallelExactAlgorithm are merged together by mergePolygons. 
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The function mergePolygons is described in algorithm 2.2: 

 
 

Since the time complexity of other phases are less than that of phase 4, 

algorithm 2.2 and therefore algorithm 2.1 runs in O(n4) time where n is the 

number of points. 

3. Numerical results 

In this section, we first compare our results with those of obtained from 

the exact algorithm on the small datasets. Then we compare our algorithm with 

previous studies such as [13], [15] and [27] on the uniform datasets of 2019 CG 

Challenge [18, 19]. We implement the divide and conquer [15] and randomized 

incremental [13] algorithms to compare with our approach. Fig. 7 shows the 

results of these algorithms on the same set of 100 points. We also compare the 

algorithms on the non-uniform datasets which are collections of the separate point 

sets. Finally, we run our algorithm on existing datasets such as TSPLIB, SPAETH 

and instances of 2019 CG Challenge and obtain approximated minimum area 

polygon on these datasets. 

 
Fig. 7. (a) The wavy shape polygon constructed by divide and conquer algorithm, (b) The 

constructed polygon by randomized incremental algorithm. 



A parallel approximation algorithm for minimum area polygonization based on clustering   117 

Table 1 shows the results of analyses of datasets of 6-11 points. On each 

dataset, our algorithm is compared with the exact full search algorithm. In table 1, 

the area values are the average over 100 instances for each size. The average of 

execution time for each size is compared as shown in Fig. 8. 
 

Table 1 

Comparison of our algorithm with the exact algorithm 

Dataset size Minimum area Approximated area Percentage 

6 1375.66 1421.23 96.80 

7 1568.535 1762.48 89.00 

8 1485.43 1887.93 78.68 

9 1504.080808 2020.707071 74.43 

10 1496.782828 2033.838384 73.59 

11 1396.35 1945.9 71.75 

 

 
Fig. 8. Comparison of the execution time of our algorithm and the exact algorithm. 

 

We run our algorithm on a collection of benchmark instances of 2019 CG 

Challenge [18]. We compare our result with that of obtained by the approximation 

algorithm, APX, presented in [15], the randomized algorithm, RAND, presented 

in [13] and the greedy algorithm, Greedy, presented in [27]. The Greedy 

algorithm is one of the best approximation algorithms presented in 2019 CG 

Challenge (See [19]). We compare the scores obtained by the algorithms in Fig. 9. 

The score obtained by an algorithm for each instance is the ratio given by the area 

of the computed polygon using that algorithm divided by the area of the convex 

hull. 
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Fig. 9. The comparison results of our algorithm, APX, RAND and Greedy on uniform datasets. 

 

Since our algorithm is based on clustering, it works better than other 

algorithms on datasets with the collections of the separate parts, i.e., the points are 

not located uniformly over the plane. Fig. 10 shows an example of these datasets 

and the results of our algorithm and Greedy algorithm on it. Also, Fig. 11 

illustrates the efficiency of our algorithm compared with APX, RAND and 

Greedy on these datasets. In Fig. 11, the average scores are computed over 100 

instances of non-uniform datasets of 10, 15, ..., 500 points. 

 

 
Fig. 10. (a) A non-uniform dataset of points, (b) The polygon computed by our algorithm, (c) The 

polygon computed by Greedy. 

 



A parallel approximation algorithm for minimum area polygonization based on clustering   119 

 
Fig. 11. The comparison results of our algorithm, APX, RAND and Greedy on non-uniform 

datasets. 

 

Table 2 shows the results of our algorithm on datasets of TSPLIB, 

SPAETH and CG Challenge. In this table, U100, U200 and U500 are uniform-

0000100-1, uniform-0000200-1 and uniform-0000500-1 instances of 2019 CG 

Challenge, respectively. Also, bier127, pr439 and ali535 are instances of TSPLIB 

and spaeth04, spaeth06 and spaeth08 are instances of SPAETH. The outputs of 

our algorithm on U500, spaeth06 and bier127 are depicted in Fig. 12. 
 

Table 2 

Approximated minimum area polygon on instances of TSPLIB, SPAETH and 2019 CG 

Challenge 

Dataset 
Approximated 

minimum area 

Execution time 

(Seconds) 

U100 6246074 351.1284912 

U200 28521846 2880.690073 

U500 168670866 33502.14948 

d198 23297.26 2760.576258 

ch150 96407.25203 957.4282641 

bier127 31123728 444.6934746 

spaeth04 387.5 261.4493785 

spaeth06 148 111.4929528 

spaeth08 379 227.0705052 

 

Remark 3.1. We run our algorithm for the different values of the fixed 

cluster size. Fig. 13 and Fig. 14 show the average score obtained by our algorithm 

and the execution time of our algorithm over the datasets of 10, 20, 50, 80 and 

100 points for the cluster size of 4, 5, 6, 7 and 8 points, respectively. 
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Fig. 12. The computed polygon by our algorithm on (a) instance uniform-0000500-1 of 2019 CG 

Challenge, (b) spaeth06 and (c) bier127. 

 
Fig. 13. The average score obtained by our algorithm over the datasets of 10, 20, 50, 80 and 100 

points for the different cluster sizes. 

 
Fig. 14. The average execution time of our algorithm over the datasets of 10, 20, 50, 80 and 100 

points for the different cluster sizes. 
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4. Conclusions and future work 

In this paper, we presented a parallel approximation algorithm for 

minimum area polygonization based on clustering. On a set S of points, we 

clustered S to meaningful parts and split the large parts to small enough subsets. 

Parallelly, minimum area polygon is computed on each final subsets by exact 

algorithm. Finally, the minimum area polygons are merged together to construct 

an approximated polygon with minimum area on S. Based on our experimental 

results, our algorithm is shown to be more efficient than previous studies on non-

uniform datasets. As a future work, we are going to use this algorithm to solve 

maximum area polygonization and minimum and maximum perimeter 

polygonization. Also, the constraints on the angles, area and perimeter can be 

added to the considered problem. As another future work, the algorithm can be 

extended to work with the points on the higher dimensions.121 
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