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LOCALIZATION OPERATORS RELATED TO o-WINDOWED FOURIER
TRANSFORM

Viorel Catani', Toana-Maria Flondor?, Mihaela-Gratiela Scumpu?®

In this paper, we introduce the localization operators Lg¢ v L?(R) —

L2(R) related to a-WFT, where ¢,vp € L2(R) \ {0} are two window functions and
o € LP(RQ),I < p < oo is a symbol. We study the L?-boundedness, compactness
and Schatten-von Neumann properties for this class of linear operators. We establish a
two sided estimate for the trace class norm of localization operators when o € L'(R?).
Moreover, we can prove that those inequalities are sharp when ¢ = ¢ and o is a real-
valued and non-negative function in LY(R2). Finally, an inequality regarding the trace
class norm of the power n of a product of two localization operators is given.
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1. Introduction

The Fourier transform give a representation of a signal using global, periodic functions.
However, to achieve localized descriptions, it’s necessary to concentrate Fourier analysis on
specific segments of the signal. This can be realised by applying a window function, ¢(x),
which isolates a portion of the signal for analysis. The window can then be shifted across
different time intervals to cover the entire time domain of interest. This method is referred
to as the windowed Fourier transform (WFT) or short-time Fourier transform (STFT), a
concept introduced by Gabor in [10].

Daubechies in the paper [5] introduced a category of bounded linear operators known
as time-frequency localization operators and studied them in the context of signal analysis.
These linear operators were subsequently referred to as Daubechies operators in references
[8] and [9].

There are a lot of time-frequency transforms such as short-time Fourier transfom
(STFT), wavelet transform, Stockwel transform, linear canonical transform, ridgelet trans-
form, curvelet transform and many others which constitute very important tools used in
time-frequency analysis. For more details concerning the time-frequency transforms see for
example [1], [5]-[7], [10]-[12] and [14].

The aim of this paper is to introduce and study localization operators related to
a-WFT.

The paper is organized as follows. Section 2 is dedicated to providing preliminary
results related to a-window Fourier transform (a-WFT), including the orthogonality relation
and the inversion formula. The localization operators associated to a-WFT are introduced
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in Section 3. Within this section, we present some results regarding the L?-boundedness
of localization operators. In the last section, Section 4, we focus on the compactness and
Schatten-von Neumann properties for this class of linear operators. We also give a trace
formula for the trace class localization operators. Further, an inequality regarding the trace
class norm of the power n of a product of two localization operators is given.

2. Preliminary results

In this section, we give a brief presentation of the a-windowed Fourier transform. For
more details concerning this notion, see [4].

Definition 2.1 (WFT). For a fired function ¢ € L*(R)\ {0} (called the window function),
its window daughter function or its windowed Fourier kernel is denoted by ¢, ., and is defined

by

d)w,u(x) = ¢<-’17 - ’u) eXp{iW.}?}7
for all x € R. The WFT of f € L*(R) with respect to the window function ¢ € L*(R)\ {0}
is defined by

Gof(rn) = [ @)@
for all (w,u) € R?,

Definition 2.2. [4] For a window function ¢ € L?(R)\ {0} together with a fived real number
a # nm,n € Z (called the fractional parameter), a family of functions Fg(w,u) is defined by

T (w,u) = { () == ¢(x —u)exp {iwx - W} JW, U, T E R} .

Lemma 2.1. For ¢ € L*(R)\ {0} it follows that ¢Z ,, € L*(R) and
||¢gv“||L2(R) = ||¢HL2(]R)
The proof of this lemma is straightforward.

Definition 2.3 (a-WFT,[4]). Let ¢ € L?(R) \ {0} be a window function and let « be a
fractional parameter such that o # nw,n € Z. Then, the a-WFT of f € L*(R) with respect
to ¢ and « is defined by

Ggflw,u) = (f 2 wu L2(R) /f
/f x_u exp{iww_i(xtuz)COta}d.’E

2

2
/f d(r—u exp{—zwx—&—(xqé)mta}dx,

for all (w,u) € R?,

Now, we recall some fundamental properties for the a-WFT that will be used in this
paper. These results were obtained in the paper [4].

Proposition 2.1 (Orthogonality relation). Let ¢,v € L*(R)\ {0} be two window functions
and let a be a fractional parameter. Then

|| [ Gt n)GEaamdudn = 2 (16,0) oy (1)1
for all f,g € L*(R). Moreover, if f = g and ¢ = 1), then
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2
[ [ 163w dudu = 2 101aay 171 ey
or equivalently
1
165 1 acay = @) 6y -

Proposition 2.2 (Inversion formula). Let ¢, € L*(R)\ {0} be two window functions such
that (1, ¢)L2(R) # 0 and let a be a fractional parameter. Then, any function f € L*(R) can
be reconstructed as follows

1 « «

for all x € R. Moreover, if ¢ =1, we obtain

1 « (o7
f(x) = WM/R/RG¢f(W7U)¢w,u($)de“

for all x € R.

3. Localization operators related to a-WFT

In this section we introduce the localization operator LS , , : L*(R) — L*(R) related
to a-WFT, where ¢,1 € L?(R) \ {0} are two window functions and o : R? — C is a fixed
function (called the symbol). To this end, we use the inversion formula (or the reconstruction
formula) from Proposition 2.3 by inserting a symbol. As soon as we have a reconstruction
formula for some time-frequency transform, we are interested to study localization operators
as in [2]-[5] and [15]. The idea of a localization operator is to pick out different areas of
interests by inserting a weight function or a symbol into a reconstruction formula (or in a
resolution of the identity formula). Throughout this paper, B(X) is the set of all bounded
linear operators from the Hilbert space X to itself.

Definition 3.1. Let ¢,¢ € L2(R) \ {0} be two window functions and let o be a fractional
parameter such that o # nm,n € Z. Then, the operator Ly , , : L?(R) — L?(R) weakly
defined by

(Lg,dy,wfa g) L2(R) = /]R~/Ro-(w’ U)Ggf(% u)Gf[}g(w, u)deu

_ N .
= /R/RO'(Wy U) (fa (bw,u)LQ (R) (1%,1“ g) L2(R) d(,ddu7
for all f,g € L*(R) or strongly defined by

Lg,as,wf:/R/RU(w,U) (/88 0) L2y V8 wdwdu,

for all f € L*(R), is called the localization operator related to a-WFT with respect to the
symbol o € L'(R?) U L>°(R?).

(1)

In the sequel, we will give some results concerning the L2-boundedness of localization
operator Lg , L*(R) — L*(R) when o € LP(R?),1 < p < oo.

Proposition 3.1. Let 0 € LY(R?) be a symbol, let ¢,vb € L*(R) \ {0} be two window
functions and let « be a fractional parameter such that o # nw,n € Z. Then the localization
operator Ly ;. L?(R) — L?(R) is a well defined bounded linear operator and

|’Lg,¢,wH3(L2(R)) < H(b”L?(]R) ||w||L2(R) ”OHLl(RZ) :
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Proof. Let f,g € L?*(R). Then, using Cauchy—Schwarz inequality for the Hilbert space and
Lemma 2.1 we have

(58 0.07:9) 2| :‘ [ ) (708 1oy (009) o e
< [ 1ol | (02 ey | (05.009) g i
< [ 1o a0y 15l oy 19l e sy it

< g Mol 160y Iz | [l )]

< ||f||L2(]R) H9HL2(JR) ||¢||L2(R) H¢||L2(R) ||0||L1(R2) :

Thus, the proof is complete. O

Proposition 3.2. Let 0 € L>®(R?) be a symbol, let ¢,vp € L*(R) \ {0} be two window
functions and let « be a fractional parameter such that o # nmw,n € Z. Then the localization
operator LY , , : L*(R) — L*(R) is a well defined bounded linear operator and

HLg@ﬂZ’H‘B(LQ(R)) <27 ||¢HL2(]R) ”wHLz(R) ||U||L°°(]R2) .

Proof. Let f,g € L*(R). Then, using the Cauchy-Schwarz inequality and the orthogonality
relation (see Proposition 2.1) we have

‘( O’(]ﬁ’(l)f? L2(R)‘ ‘// W U/ fa wu)LQ(R)( wu,g)LQ( )dwdu
//lgwu|’ f7 LQ(R)H wuvg Lz(R’deu
< ||J||L°°(R2)// ’ f7 wu L2(R) ’ ’ wu,g L2(R) ’de’LL

1
2 2
S ||0||L°°(R2) (\/DQA‘(f, o.)u L2 R)‘ de'LL> (AA‘ wu?g L2(R ‘ d(JJdU>

= lloll g m2) HGngL?(]R) HGwQHLZ(R)
=27 ”O'”Loo(R?) ”fHL?(]R) ”g”L?(R) ||¢||L2(R) ||¢||L2(R)
Thus, the proof is complete. O

Theorem 3.1. Let 0 € LP(R?),1 < p < 0o be a symbol, let ¢,¢p € L*(R) \ {0} be two
window functions and let o be a fractional parameter such that o # nmw,n € Z. Then there
exists a unique bounded linear operator L% ¢ o+ L(R) = L*(R) such that

HL ¢w||3 L2(R)) — (27")p ||¢HL2(R ||7/’||L2(R ||O.||LP(R2)’

where p and p' are conjugate indices to each other (z.e. 5+ ? ) and Lg , ., is gien by
(1) for all f,g € L*(R) and all simple functions (the finite linear combmatwns with complex
coefficients of characteristic functions of measurable sets) o on R? for which u{(w,u) € R? :
o(w,u) # 0} < oo.

Proof. (i). Euwistence: Let S : L?*(R) — L*(R) be a unitary operator. Let o € L'(R?).
Then, by Proposition 3.1, the linear operator L ; ,, : L*(R) — L*(R) defined by Lj , , =
SLg 4. wS is a bounded operator and

|7

769 qu(LZ(]R))

< H¢||L2(1R) ||¢||L2(R) ||‘7||L1(R2) : (2)
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Let 0 € L*®(R?). Then, by Proposition 3.2, the linear operator Z?;Ki%d; is also a
bounded operator and

Let D be the set of all simple functions o on R? such that p{(w,u) € R? : o(w,u) #
0} < co. Let f € L?(R) and T be the linear transformation from D to the set of all functions
in L?(R) defined by

Lt gy < 27 1902wy 190 2y oy - 3)

To = Z?7¢,¢f, VU S D.
Then, from (2), it follows that:

L3,¢,wf‘

< ‘
L2 (R)
< ||¢||[2(R) ||¢||(2(R) ||0||L1(R2)||f||L2(R)

Tollisce) = | iz
1T L2 r) LX) P Il 2 )

and, from (3), it follows that:

Toliaw = L0 f | ey = [E5s]
|To |l L2 () & ey = 1 Fe0 |l o, £l 22 (m)

<27 ||¢HL2(1R) ||1/JHL2(1R) o/l oo m2) | f1l L2 )
for all o € D.

If wetake iy =1, ap =0, a = %, Br=pBs=B=3% M = 60l L2y 191 2y 1 f I L2®)
and My = 27 [|§|| p2(r) 19l 2w [ fllz2(r) in the Riesz-Thorin interpolation theorem (see
Theorem 12.4 in [15]), we get
L5501

1
L2(R) < (2m)¥ HUHLP(]R2) H(b”LQ(R) ”w”LQ(R) ||f||L2(R)

I1To|lr2®) =

for all o € D, where p’ is the conjugate index of p.
Therefore,
for all ¢ € D.

Let 0 € LP(R?),1 < p < oo. Then there exists a sequence {o;};>1 of functions in D
such that o; — o in LP(R?) as j — co. Then

as i,j — oo. Therefore, {Zg‘ o w} is a Cauchy sequence in B (L2 (R))
00 ) =1

1
< (2m)7" ol e @) 19l L2y 191 22wy

Er
i EIZTES

~ .
200~ L8000 g S 07 W0l [l 7 = 04l oy = 0

Using the completeness of B (L2 (R)), we can find a bounded linear operator E§7¢7¢ :
L*(R) — L*(R) such that Zgj,d))w — Z?mw in B (L*(R)) as j — co. So,

|

SN e
Y, BLAR)) — o,p.1p 05,1 B(LQ(]R))+ 05,9 B(L2(R))

<]

L8 60 = L5, 000 g gy + @7 1911 W12 1 e

1
= 2m) 7" |8l L2 gy 191l L2 ) o]l Lo (R2)

as j — oo. Thus the operator Ly ; , = S—lfg’d,,ws belongs to B(L?(R)) and satisfies the
conclusion of the theorem if o € LP(R?),1 < p < co.

(ii). Uniqueness: Let o € LP(R?),1 < p < oo and suppose that P, : L?(R) — L?(R) is
another bounded linear operator satisfying the conclusion of the theorem. Let Q : LP(R?) —
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B(L?*(R)) be the linear operator defined by Qo = Lg 4, — Py, for all o € LP(R?). In this

case,
+lp/

1
Q0|52 ) = 1L 6.6 — Pollgpamy, <277

for all o € LP(R?).

Since Lg , ,, and P, are bounded linear operators satisfying the conclusions of the
theorem, the operator Qo = L;“’é,w — P, is equal to the zero operator on L?(R) for all o € D.
Thus, @ : LP(R?) — B(L?(R)) is a bounded linear operator that is equal to zero on the

dense subspace D of LP(R?). Therefore P, = Lg ., for all functions o € LP (R?). O

1
T |Bl L2y 191 L2y o]l e (r2)

4. S, norm inequalities, 1 <p < oo

In this section, we prove that the localization operator L ; . : L*(R) — L*(R) related
to a-WF'T is in the Schatten-von Neumann class Sp,1 < p < o0.

We begin by recalling the definition of Schatten-von Neumann classes. To this end,
we first remind a well-known result concerning the canonical form for a compact operator.
Let X be a separable and complex Hilbert space in which the inner product and the norm
are denoted by (-,-) and ||-|| respectively.

Theorem 4.1 (see [15]). Let T : X — X be a compact operator. Then we can find an
orthonormal basis {un}n>1 for N(T): (the orthogonal complement of the null space N(T)
1

of T') consisting of eigenvectors of |T'| = (I*T)? : X — X and an orthonormal set {v, }n>1
in X such that

T = Z Sn(T)(; un)vnv

where s, (T),n > 1 are the positive singular values of T : X — X (i.e. s,(T) is the
eigenvalues of |T| : X — X corresponding to the eigenvectors {un}tn>1) and the series
converges to T strongly.

Definition 4.1. A compact operator T : X — X is said to be in the Schatten-von Neumann
class Sp,1 < p < oo, if

o0

D (5a(T)) < o0.

n=1

Thus, Sp,1 < p < 00, is a complexr Banach space in which the norm || - ||s, is given by

1

1T, = (Z (sn(T))p> , TES,.
n=1

We let So, be the C*-algebra B(X) of all bounded linear operators on X. Thus,

|- lse = Il - ll(x), where || - |[3(x) denotes the norm in B(X). Let us remark that S, C

Sq;1 <p < g < oo. Usually, S is called the trace class and S is the Hilbert-Schmidt class.

Definition 4.2. If T : X — X is a bounded linear operator in the trace class S1, then we
can define the trace tr(T) by

tr(T) =Y (Tn,@n);
n=1
where {¢n}n>1 s any orthonormal basis for X (the fact that the trace is independent of the
specific orthonormal basis follows from Proposition 2.6 in [15]).

It can be proven that if T': X — X is a positive operator in the trace class Sy, then
ITl[s, = tr(T),
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see Proposition 2.7 in [15]. For more details concerning the Schatten-von Neumann classes,
see [15]. Let us recall the following theorem.

Theorem 4.2 (Theorem 1.4.8 in [16]). Suppose that T is a compact operator from X into
X. Then T is in Sp,1 < q < oo if and only if

S [(Tpm &) < o0
n=1

for all orthonormal sequences {¢n}n>1 and {{p}n>1 in X. Moreover,

T s, = sup {Z (Ton, &) 5 {ontn>1, {€ntn>1 orthonormal sequences ofX}.

n=1

Proposition 4.1. Let 0 € L'(R?) be a symbol, let ¢,7p € L*(R) \ {0} be two window
functions and let « be a fractional parameter such that o # nw,n € Z. Then the localization
operator LY, : L*(R) — L*(R) is in the Hilbert-Schmidt class Sy and

| o¢w”52 ZH aaswanm(Ry

where {&,}n>1 s any orthonormal basis for LQ(R),

Proof. Let {&,}n>1 be an orthonormal basis for L?(R). Using Fubini’s Theorem, Parseval’s
identity in a Hilbert space, Cauchy—Schwarz inequality and Lemma 2.1, we have

8

ZH o¢w£nHL2(R)
= Z_:/I%/I%U(wyu) (§ﬂ7¢g,u)L2(R) (w57u7L3x¢xw§")L2(R) deU
= Z// oW, u §m wu)L2(]R ((L?,¢,¢) wz,u,§n>L2(R) dwdu

= /]R/RU(W7U) (Lo',dmb) w’u7¢w’u)L2(R) dwdu
S//|<7(w,u)\H(Lg‘@w)*
R JR

191l 2 ey 191 22 @y o]l 1 2y < 00

Z LG 0€n LG 6,08n) 12

B(L2(R)) |’¢z»u||L2(R) ||¢S,uHL2(R) dwdu

- H (L26.0) B(L2(R))

where (L?@ﬂb) : L*(R) — L*(R) is the adjoint operator of L$ ; ;. So, according to the
previous inequality and using Proposition 2.8 in [15], the linear operator L b L*(R) —
L3(R) is in the Hilbert—Schmidt class S2 and hence compact. O

In the following we give some results concerning Schatten-von Neumann properties of
the localization operator Lg ; , L?(R) — L%*(R), when its symbol o € LP(R?),1 < p < oc0.

Proposition 4.2. Let 0 € LY(R?) be a symbol, let ¢,%b € L*(R) \ {0} be two window
functions and let o be a fractional parameter such that o # nw,n € Z. Then the localization
operator Ly ;. L*(R) — L*(R) is in the trace class Si and

HL ¢1¢’H51 < H¢||L2 (R) ‘|¢||L2 (R) HUHLI(R?)
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Proof. By Proposition 4.1 it follows that the localization operator Ly ; , is in Sy and thus

it is compact. Let {¢y,}n>1 and {&,}n>1 be two orthonormal sequences for L?(R). Then,
by Cauchy-Schwarz inequality we get

’(L?@ﬂbgpn’gn)L?(R)‘ SAA|J(W7U)|‘(¢H’ 37“)L2(R)H( S,u?gn)Lz(R)‘deu

< (/}R/]R lo(w, u)l ‘(S"nﬁg,u)m(mrdwdu)% (/R/R lo(w,u)l ‘Wiuafn)m(m’zdwdu)é,

for all n € N.

Summing over n € N and using once again Cauchy-Schwarz inequality, we obtain
1

i\(Liqa,wm&n)mR)( < (i [ 1ot on 3,u)L2(R)’2dwdu>2
. (i [ [ 1ot 1(wz,u,§n)L2(R)\2dwdu> -

Using Fubini’s Theorem, Bessel’s inequality, Lemma 2.1 and the assumptions stated
in the theorem we get

oo ) - )
;/IR/RM(W,UH‘(WW Wv“)L2(R)’ deuz/]R/]R|U(W,U)|nz_:l‘(‘Pna¢w7u)L2(R)’ dwdu

« 2
S\/R/R|O'(W,U)|||¢w,u||L2(R)dwdu

2
= ||¢||L2(]R) ||0||L1(R2) )

and similarly we can write

i 2
S [ [t [ (08 €0) g | e < 1ol ol e
n=1

Thus
o0
Z ’(Lg,¢7w<ﬁna§7L)L2(R)‘ S ||¢||L2(R) ||¢||L2(R) ||O-||L1(]R2)'
n=1

Then, by Theorem 4.2 it follows that the localization operator L , , : L?(R) — L*(R)
is in the trace class S; and

||L?,¢,¢HSI SNl pzy 1l L2y lloll 2 rey-
This completes the proof. O

The following proposition gives a compactness result regarding the localization oper-
ator Ly , L?(R) — L?(R), with its symbol o € LP(R?),1 < p < oo.

o

Proposition 4.3. Let 0 € LP(R?),1 < p < o be a symbol, let ¢,v» € L*(R) \ {0} be two
window functions and let « be a fractional parameter such that o # nm,n € Z. Then the
localization operator Lg , L?(R) — L?(R) is compact.

Proof. We denote by D the set of all simple functions o on R? such that u{(w,u) € R? :
o(w,u) # 0} < co. Let {0k }r>1 be a sequence of functions in D such that o, — o in LP(R?)
as k — oo. Then by Theorem 3.1, we get

1
125, 00 = Lo s sl ramy < @07 10l ce@y 19 L2y lox = olliogez) = 0,
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as k — oo, when p’ is the conjugate index of p ( e. %—f— i ) So Lg, 4. — Lo s, in
B(L*(R)) as k — oo. Since, by Proposition 4.2, LG, o0 L*(R) — L*(R) is in the trace class
Sy and hence compact for all k € N, it follows that Lg , , : L*(R) — L*(R) is compact. O

Theorem 4.3. Let 0 € LP(R?),1 < p < 0o be a symbol, let ¢,9p € L*(R) \ {0} be two
window functions and let a be a fractional parameter such that o # nw,n € Z. Then the
localization operator Lg , ., L*(R) — L*(R) is in the Schatten-von Neumann class S, and
128.6.lls, < @m)7 191l 2y %]l 22 gy ol oqee).
where p and p’ are conjugate indices to each other.
Proof. By Proposition 4.2, we have
HL ¢¢H51 < ||¢||L2(R ||1/’||L2(R ||U||L1 R2) (4)

for all o € L*(R). By Proposition 3.2, we have

125 6.0l = 1286011512y < 27 19] L2y 1¥1] oy N0l oo - (5)

for all o € L>(R?).
So, by (4), (5) and the interpolation Theorems 2.10 and 2.11 in [15], the proof is
complete. (|

In the following, a two sided estimate of the trace class norm of the localization
operators LY ; , : L*(R) — L*(R), when o € L*(R?), is given.

Theorem 4.4. Let o € L'(R?) be a symbol, let ¢, € L*(R)\ {0} be two window functions
and let a be a fractional parameter such that o # nmw, n € Z. Then, we have

1
m (18122 @) + 112
where 0y : R? — C is given by
op (W, u) = (Lg,qa wQSg.u, ¢5.u)L2(R)-

Proof. By Proposition 4.2 it follows that the localization operator L¢ o 18 In the trace class
S1 and its trace class norm satisfies the estimate in the right-hand side of the relation (6).
Now, we want to prove that the estimate in the left-hand side of the relation (6) is also valid.

To this end, we firstly prove that o4 is in the trace class S;. Using Theorem 4.1,
Fubini’s Theorem and the orthogonality relation, we get

sl = / Jvetennldudu= [ [ (150,008 0002 e | ot

(e}

Sn 07¢7¢) ( w,u? un)L2(]R) (vna 7/’3,11)[/2(]}@)

2 2
izsn( ?4”/) (//‘ wu? )LQ(R)‘ deu‘i‘/R/R’(Umwg,u)L2(R)‘ d"‘)du>
n=1

1
5D s (L) (1650 sy + 1G5 ey) < (1olEmy + W0y 5,
n=1

Therefore,

) || ¢w||L1 (R2) = HL ¢wH51 < ||¢HL2(]R) ||'(/)HL2(]R) ||U||L1 R2); (6)

dwdu

\ /\

1
2 2
m (16122 + 9172

) log,wll ey < L0 lls,
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and this completes the proof of the theorem. O

Now, we give a formula for the trace tr (Lg‘ %w) of the localization operator Lg , , :
L?(R) — L*(R) when o € L'(R?).

Proposition 4.4. Under the assumptions of Theorem 4.3, the trace tr (Lg,qb’w) of the
localization operator Lg , ,, is given by

tr (L;W[,) z/R/Rcr(w,u) s P u)L2(R dwdu.

Proof. By Proposition 4.2, the localization operator Lg 4, belongs to the trace class S1.

Let {&,}nen be an orthonormal basis for L?(R). Then, by Definition 4.2, Fubini’s Theorem
and Parseval’s identity, we get

oo

(L) = 3 (o) = 3 /R /IR 0 (60,) (63 0 60) 1y (60U ) 1oy oo

n=1

://U(W,U Z wu’gn L2(R) (gna WU)LQ(R) dwdu
n=1
// o(w,u) (¥ wu’(ﬁwu)Lz(R)dwdu.

and the proof is complete. O

Remark 4.1. If o is a real-valued and non-negative function in L*(R?) and ¢ = 1, then
the estimates of the relation (6) are sharp.

Proof. Firstly, using Proposition 2.7 in [15] and Proposition 4.4, we get

||L§,¢,¢Hsl =tr(Lg 4.4) = |6l lloll L1 (r2)-

Therefore, the right-hand side estimate of the relation (6) is sharp. Using Fubini’s Theorem,
the orthogonality relation and Lemma 2.1, we get

||0’¢7¢”L1(R2) :/R/Ra@d,(w,u)dwdu:AA(L?7¢7¢¢g)u,¢g7u)L2(R) dwdu
:// (//U(w/,u/)( g,wﬁbg/,u/)Lz(R) (¢w s Do ) dw du)dwdu
// 7 (//’ o O LZ(R)‘ deu) dw'du’
// O.) u |G w’ u’
=or [ [ o) g

Thus, the left-hand side estimate of the realation (6) is also sharp. g

dw du’

(R ||¢HL2(JR) dw'du’ = 2 ||¢HL2(R ol @) -

Now we state a result concerning the trace class norm of the power n of a product of
two localization operators.

Proposition 4.5. Let 01,09 be two real-valued and non-negative functions in L*(R?) and let
¢ be a window function in L*(R)\ {0}. Suppose that LY 4o L*(R) — L*(R) and L3, s
L?(R) — L%(R) commute with each other and the operator Ly soLle, s L?(R) — L3(R)
is a positive one. Then, the linear operators Ly, , ., Ly, o, and Ly o Lo o, are positive

and in the trace class S1. Moreover,
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(L5, 0.0L0200) |15, < 1L610.6ll5, L6200, - ¥n € N.

Proof. By Proposition 4.1, the linear operators L3 4.6 Lo, 4.4 are in the Hilbert-Schmidt
class Sy and by Proposition 4.2, these are in the trace class S;. Using Lemma 1.4.13 in [16]
we can state that the operator LS 4 ;LS 4 5@ L*(R) — L*(R) is in trace class Si. So, by
Proposition 2.7 in [15] it follows that

126, 6.6Ls 00lls, = tr (L5, 6015, 6.0)-

Now, we recall Theorem 1 in [13] which states that if A and B (defined from the Hilbert
space H to itself) are positive operators in the trace class S, then

tr(AB)" < (tr(A))" (tr(B))",

for all n € N. But from the assumptions of the theorem it follows that the operators Lg &
L3, 4.6 Lo, 6.6L5, 6, are positive operators in the trace class S1. So, using Theorem 1 in
[13], we get

15, 6.6 Lonsolls, =t (L5, 0.0 Lonp0) <17 (L3, 6.6) tr (Loss0) = L5, 0.6l s, 126200l s, -

Using the fact that S, € S;,1 < p < ¢ < oo, Lemma 1.4.13 in [16] and mathematical

induction we can prove that (L§‘17¢,¢L§27¢)¢)n is in the trace class 57, for all n € N. We
n

also can prove that the operator (L§1’¢)¢Lg‘27¢’¢) is a positive one, for all n € N, using

the mathematical induction, the hypotheses that Ly , ,Lg. 4, is a positive operator and
that the operators Lg, , 4, Ly, , , commute with each other. By Proposition 2.7 in [15] and
Theorem 1 in [13], we get

(L5, 6.6L60.0.0) |5, = 1 (L8, 0.6L600.0) " < (87 (L3, 5.6))" (tr (LS, 6.0))"

- HL 1,9, ¢HSI HL02a¢ ¢HSl
for all n € N. Therefore, the proof is complete. O
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