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LOCALIZATION OPERATORS RELATED TO α-WINDOWED FOURIER

TRANSFORM

Viorel Catană1, Ioana-Maria Flondor2, Mihaela-Graţiela Scumpu3

In this paper, we introduce the localization operators Lασ,ϕ,ψ : L2(R) →
L2(R) related to α-WFT, where ϕ, ψ ∈ L2(R) \ {0} are two window functions and

σ ∈ Lp(R2), 1 ≤ p ≤ ∞ is a symbol. We study the L2-boundedness, compactness
and Schatten-von Neumann properties for this class of linear operators. We establish a

two sided estimate for the trace class norm of localization operators when σ ∈ L1(R2).

Moreover, we can prove that those inequalities are sharp when ϕ = ψ and σ is a real-
valued and non-negative function in L1(R2). Finally, an inequality regarding the trace

class norm of the power n of a product of two localization operators is given.
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1. Introduction

The Fourier transform give a representation of a signal using global, periodic functions.
However, to achieve localized descriptions, it’s necessary to concentrate Fourier analysis on
specific segments of the signal. This can be realised by applying a window function, ϕ(x),
which isolates a portion of the signal for analysis. The window can then be shifted across
different time intervals to cover the entire time domain of interest. This method is referred
to as the windowed Fourier transform (WFT) or short-time Fourier transform (STFT), a
concept introduced by Gabor in [10].

Daubechies in the paper [5] introduced a category of bounded linear operators known
as time-frequency localization operators and studied them in the context of signal analysis.
These linear operators were subsequently referred to as Daubechies operators in references
[8] and [9].

There are a lot of time-frequency transforms such as short-time Fourier transfom
(STFT), wavelet transform, Stockwel transform, linear canonical transform, ridgelet trans-
form, curvelet transform and many others which constitute very important tools used in
time-frequency analysis. For more details concerning the time-frequency transforms see for
example [1], [5]-[7], [10]-[12] and [14].

The aim of this paper is to introduce and study localization operators related to
α-WFT.

The paper is organized as follows. Section 2 is dedicated to providing preliminary
results related to α-window Fourier transform (α-WFT), including the orthogonality relation
and the inversion formula. The localization operators associated to α-WFT are introduced
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in Section 3. Within this section, we present some results regarding the L2-boundedness
of localization operators. In the last section, Section 4, we focus on the compactness and
Schatten-von Neumann properties for this class of linear operators. We also give a trace
formula for the trace class localization operators. Further, an inequality regarding the trace
class norm of the power n of a product of two localization operators is given.

2. Preliminary results

In this section, we give a brief presentation of the α-windowed Fourier transform. For
more details concerning this notion, see [4].

Definition 2.1 (WFT). For a fixed function ϕ ∈ L2(R) \ {0} (called the window function),
its window daughter function or its windowed Fourier kernel is denoted by ϕω,u and is defined
by

ϕω,u(x) = ϕ(x− u) exp{iωx},
for all x ∈ R. The WFT of f ∈ L2(R) with respect to the window function ϕ ∈ L2(R) \ {0}
is defined by

Gϕf(ω, u) =

∫
R
f(x)ϕω,u(x)dx,

for all (ω, u) ∈ R2.

Definition 2.2. [4] For a window function ϕ ∈ L2(R)\{0} together with a fixed real number
α ̸= nπ, n ∈ Z (called the fractional parameter), a family of functions Fαϕ(ω, u) is defined by

Fαϕ(ω, u) =

{
ϕαω,u(x) := ϕ(x− u) exp

{
iωx− i(x2 − u2) cotα

2

}
;ω, u, x ∈ R

}
.

Lemma 2.1. For ϕ ∈ L2(R) \ {0} it follows that ϕαω,u ∈ L2(R) and∥∥ϕαω,u∥∥L2(R) = ∥ϕ∥L2(R).

The proof of this lemma is straightforward.

Definition 2.3 (α-WFT,[4]). Let ϕ ∈ L2(R) \ {0} be a window function and let α be a
fractional parameter such that α ̸= nπ, n ∈ Z. Then, the α-WFT of f ∈ L2(R) with respect
to ϕ and α is defined by

Gαϕf(ω, u) =
(
f, ϕαω,u

)
L2(R) =

∫
R
f(x)ϕαω,u(x)dx

=

∫
R
f(x)ϕ(x− u) exp

{
iωx− i(x2 − u2) cotα

2

}
dx

=

∫
R
f(x)ϕ(x− u) exp

{
−iωx+

i(x2 − u2) cotα

2

}
dx,

for all (ω, u) ∈ R2.

Now, we recall some fundamental properties for the α-WFT that will be used in this
paper. These results were obtained in the paper [4].

Proposition 2.1 (Orthogonality relation). Let ϕ, ψ ∈ L2(R) \ {0} be two window functions
and let α be a fractional parameter. Then∫

R

∫
R
Gαϕf(ω, u)G

α
ψg(ω, u)dωdu = 2π (ψ, ϕ)L2(R) (f, g)L2(R),

for all f, g ∈ L2(R). Moreover, if f = g and ϕ = ψ, then
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R

∫
R

∣∣Gαϕf(ω, u)∣∣2 dωdu = 2π ∥ϕ∥2L2(R) ∥f∥
2
L2(R),

or equivalently ∥∥Gαϕf∥∥L2(R) = (2π)
1
2 ∥ϕ∥L2(R) ∥f∥L2(R).

Proposition 2.2 (Inversion formula). Let ϕ, ψ ∈ L2(R) \{0} be two window functions such
that (ψ, ϕ)L2(R) ̸= 0 and let α be a fractional parameter. Then, any function f ∈ L2(R) can
be reconstructed as follows

f(x) =
1

2π (ψ, ϕ)L2(R)

∫
R

∫
R
Gαϕf(ω, u)ψ

α
ω,u(x)dωdu,

for all x ∈ R. Moreover, if ϕ = ψ, we obtain

f(x) =
1

2π ∥ϕ∥2L2(R)

∫
R

∫
R
Gαϕf(ω, u)ϕ

α
ω,u(x)dωdu

for all x ∈ R.

3. Localization operators related to α-WFT

In this section we introduce the localization operator Lασ,ϕ,ψ : L2(R) → L2(R) related
to α-WFT, where ϕ, ψ ∈ L2(R) \ {0} are two window functions and σ : R2 → C is a fixed
function (called the symbol). To this end, we use the inversion formula (or the reconstruction
formula) from Proposition 2.3 by inserting a symbol. As soon as we have a reconstruction
formula for some time-frequency transform, we are interested to study localization operators
as in [2]-[5] and [15]. The idea of a localization operator is to pick out different areas of
interests by inserting a weight function or a symbol into a reconstruction formula (or in a
resolution of the identity formula). Throughout this paper, B(X) is the set of all bounded
linear operators from the Hilbert space X to itself.

Definition 3.1. Let ϕ, ψ ∈ L2(R) \ {0} be two window functions and let α be a fractional
parameter such that α ̸= nπ, n ∈ Z. Then, the operator Lασ,ϕ,ψ : L2(R) → L2(R) weakly
defined by (

Lασ,ϕ,ψf, g
)
L2(R) =

∫
R

∫
R
σ(ω, u)Gαϕf(ω, u)G

α
ψg(ω, u)dωdu

=

∫
R

∫
R
σ(ω, u)

(
f, ϕαω,u

)
L2(R)

(
ψαω,u, g

)
L2(R) dωdu,

(1)

for all f, g ∈ L2(R) or strongly defined by

Lασ,ϕ,ψf =

∫
R

∫
R
σ(ω, u)

(
f, ϕαω,u

)
L2(R) ψ

α
ω,udωdu,

for all f ∈ L2(R), is called the localization operator related to α-WFT with respect to the
symbol σ ∈ L1(R2) ∪ L∞(R2).

In the sequel, we will give some results concerning the L2-boundedness of localization
operator Lασ,ϕ,ψ : L2(R) → L2(R) when σ ∈ Lp(R2), 1 ≤ p ≤ ∞.

Proposition 3.1. Let σ ∈ L1(R2) be a symbol, let ϕ, ψ ∈ L2(R) \ {0} be two window
functions and let α be a fractional parameter such that α ̸= nπ, n ∈ Z. Then the localization
operator Lασ,ϕ,ψ : L2(R) → L2(R) is a well defined bounded linear operator and∥∥Lασ,ϕ,ψ∥∥B(L2(R)) ≤ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2) .
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Proof. Let f, g ∈ L2(R). Then, using Cauchy–Schwarz inequality for the Hilbert space and
Lemma 2.1 we have∣∣∣(Lασ,ϕ,ψf, g)L2(R)

∣∣∣ = ∣∣∣∣∫
R

∫
R
σ(ω, u)

(
f, ϕαω,u

)
L2(R)

(
ψαω,u, g

)
L2(R) dωdu

∣∣∣∣
≤
∫
R

∫
R
|σ(ω, u)|

∣∣∣(f, ϕαω,u)L2(R)

∣∣∣ ∣∣∣(ψαω,u, g)L2(R)

∣∣∣ dωdu
≤
∫
R

∫
R
|σ(ω, u)| ∥f∥L2(R)

∥∥ϕαω,u∥∥L2(R)

∥∥ψαω,u∥∥L2(R) ∥g∥L2(R) dωdu

≤ ∥f∥L2(R) ∥g∥L2(R) ∥ϕ∥L2(R) ∥ψ∥L2(R)

∫
R

∫
R
|σ(ω, u)| dωdu

≤ ∥f∥L2(R) ∥g∥L2(R) ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2) .

Thus, the proof is complete. □

Proposition 3.2. Let σ ∈ L∞(R2) be a symbol, let ϕ, ψ ∈ L2(R) \ {0} be two window
functions and let α be a fractional parameter such that α ̸= nπ, n ∈ Z. Then the localization
operator Lασ,ϕ,ψ : L2(R) → L2(R) is a well defined bounded linear operator and∥∥Lασ,ϕ,ψ∥∥B(L2(R)) ≤ 2π ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L∞(R2) .

Proof. Let f, g ∈ L2(R). Then, using the Cauchy-Schwarz inequality and the orthogonality
relation (see Proposition 2.1) we have∣∣∣(Lασ,ϕ,ψf, g)L2(R)

∣∣∣ = ∣∣∣∣∫
R

∫
R
σ(ω, u)

(
f, ϕαω,u

)
L2(R)

(
ψαω,u, g

)
L2(R) dωdu

∣∣∣∣
≤
∫
R

∫
R
|σ(ω, u)|

∣∣∣(f, ϕαω,u)L2(R)

∣∣∣ ∣∣∣(ψαω,u, g)L2(R)

∣∣∣ dωdu
≤ ∥σ∥L∞(R2)

∫
R

∫
R

∣∣∣(f, ϕαω,u)L2(R)

∣∣∣ ∣∣∣(ψαω,u, g)L2(R)

∣∣∣ dωdu
≤ ∥σ∥L∞(R2)

(∫
R

∫
R

∣∣∣(f, ϕαω,u)L2(R)

∣∣∣2 dωdu) 1
2
(∫

R

∫
R

∣∣∣(ψαω,u, g)L2(R)

∣∣∣2 dωdu) 1
2

= ∥σ∥L∞(R2)

∥∥Gαϕf∥∥L2(R)

∥∥Gαψg∥∥L2(R)

= 2π ∥σ∥L∞(R2) ∥f∥L2(R) ∥g∥L2(R) ∥ϕ∥L2(R) ∥ψ∥L2(R) .

Thus, the proof is complete. □

Theorem 3.1. Let σ ∈ Lp(R2), 1 ≤ p ≤ ∞ be a symbol, let ϕ, ψ ∈ L2(R) \ {0} be two
window functions and let α be a fractional parameter such that α ̸= nπ, n ∈ Z. Then there
exists a unique bounded linear operator Lασ,ϕ,ψ : L2(R) → L2(R) such that∥∥Lασ,ϕ,ψ∥∥B(L2(R)) ≤ (2π)

1
p′ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥Lp(R2) ,

where p and p′ are conjugate indices to each other
(
i.e. 1

p +
1
p′ = 1

)
and Lασ,ϕ,ψ is given by

(1) for all f, g ∈ L2(R) and all simple functions (the finite linear combinations with complex
coefficients of characteristic functions of measurable sets) σ on R2 for which µ{(ω, u) ∈ R2 :
σ(ω, u) ̸= 0} <∞.

Proof. (i). Existence: Let S : L2(R) → L2(R) be a unitary operator. Let σ ∈ L1(R2).

Then, by Proposition 3.1, the linear operator L̃ασ,ϕ,ψ : L2(R) → L2(R) defined by L̃ασ,ϕ,ψ =

SLασ,ϕ,ψS
−1 is a bounded operator and∥∥∥L̃ασ,ϕ,ψ∥∥∥

B(L2(R))
≤ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2) . (2)
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Let σ ∈ L∞(R2). Then, by Proposition 3.2, the linear operator L̃ασ,ϕ,ψ is also a
bounded operator and∥∥∥L̃ασ,ϕ,ψ∥∥∥

B(L2(R))
≤ 2π ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L∞(R2) . (3)

Let D be the set of all simple functions σ on R2 such that µ{(ω, u) ∈ R2 : σ(ω, u) ̸=
0} <∞. Let f ∈ L2(R) and T be the linear transformation from D to the set of all functions
in L2(R) defined by

Tσ = L̃ασ,ϕ,ψf, ∀σ ∈ D.

Then, from (2), it follows that:

∥Tσ∥L2(R) =
∥∥∥L̃ασ,ϕ,ψf∥∥∥

L2(R)
≤
∥∥∥L̃ασ,ϕ,ψ∥∥∥

B(L2(R))
∥f∥L2(R)

≤ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2)∥f∥L2(R)

and, from (3), it follows that:

∥Tσ∥L2(R) =
∥∥∥L̃ασ,ϕ,ψf∥∥∥

L2(R)
≤
∥∥∥L̃ασ,ϕ,ψ∥∥∥

B(L2(R))
∥f∥L2(R)

≤ 2π ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L∞(R2)∥f∥L2(R)

for all σ ∈ D.
If we take α1 = 1, α2 = 0, α = 1

p , β1 = β2 = β = 1
2 , M1 = ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥f∥L2(R)

and M2 = 2π ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥f∥L2(R) in the Riesz-Thorin interpolation theorem (see

Theorem 12.4 in [15]), we get

∥Tσ∥L2(R) =
∥∥∥L̃ασ,ϕ,ψf∥∥∥

L2(R)
≤ (2π)

1
p′ ∥σ∥Lp(R2) ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥f∥L2(R)

for all σ ∈ D, where p′ is the conjugate index of p.
Therefore, ∥∥∥L̃ασ,ϕ,ψ∥∥∥

B(L2(R))
≤ (2π)

1
p′ ∥σ∥Lp(R2) ∥ϕ∥L2(R) ∥ψ∥L2(R)

for all σ ∈ D.
Let σ ∈ Lp(R2), 1 < p < ∞. Then there exists a sequence {σj}j≥1 of functions in D

such that σj −→ σ in Lp(R2) as j → ∞. Then∥∥∥L̃ασi,ϕ,ψ − L̃ασj ,ϕ,ψ

∥∥∥
B(L2(R))

≤ (2π)
1
p′ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σi − σj∥Lp(R2) −→ 0

as i, j → ∞. Therefore,
{
L̃ασj ,ϕ,ψ

}
j≥1

is a Cauchy sequence in B
(
L2(R)

)
.

Using the completeness of B
(
L2(R)

)
, we can find a bounded linear operator L̃ασ,ϕ,ψ :

L2(R) → L2(R) such that L̃ασj ,ϕ,ψ
−→ L̃ασ,ϕ,ψ in B

(
L2(R)

)
as j → ∞. So,∥∥∥L̃ασ,ϕ,ψ∥∥∥

B(L2(R))
≤
∥∥∥L̃ασ,ϕ,ψ − L̃ασj ,ϕ,ψ

∥∥∥
B(L2(R))

+
∥∥∥L̃ασj ,ϕ,ψ

∥∥∥
B(L2(R))

≤
∥∥∥L̃ασ,ϕ,ψ − L̃ασj ,ϕ,ψ

∥∥∥
B(L2(R))

+ (2π)
1
p′ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σj∥Lp(R2)

−→ (2π)
1
p′ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥Lp(R2)

as j → ∞. Thus the operator Lασ,ϕ,ψ = S−1L̃ασ,ϕ,ψS belongs to B(L2(R)) and satisfies the

conclusion of the theorem if σ ∈ Lp(R2), 1 < p <∞.
(ii). Uniqueness: Let σ ∈ Lp(R2), 1 < p <∞ and suppose that Pσ : L2(R) → L2(R) is

another bounded linear operator satisfying the conclusion of the theorem. Let Q : Lp(R2) →
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B(L2(R)) be the linear operator defined by Qσ = Lασ,ϕ,ψ − Pσ, for all σ ∈ Lp(R2). In this
case,

∥Qσ∥B(L2(R)) =
∥∥Lασ,ϕ,ψ − Pσ

∥∥
B(L2(R)) ≤ 2

1+p′
p′ π

1
p′ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥Lp(R2)

for all σ ∈ Lp(R2).
Since Lασ,ϕ,ψ and Pσ are bounded linear operators satisfying the conclusions of the

theorem, the operator Qσ = Lασ,ϕ,ψ−Pσ is equal to the zero operator on L2(R) for all σ ∈ D.

Thus, Q : Lp(R2) → B(L2(R)) is a bounded linear operator that is equal to zero on the
dense subspace D of Lp(R2). Therefore Pσ = Lασ,ϕ,ψ for all functions σ ∈ Lp(R2). □

4. Sp norm inequalities, 1 ≤ p ≤ ∞

In this section, we prove that the localization operator Lασ,ϕ,ψ : L2(R) → L2(R) related
to α-WFT is in the Schatten-von Neumann class Sp, 1 ≤ p ≤ ∞.

We begin by recalling the definition of Schatten-von Neumann classes. To this end,
we first remind a well-known result concerning the canonical form for a compact operator.
Let X be a separable and complex Hilbert space in which the inner product and the norm
are denoted by (·, ·) and ∥·∥ respectively.

Theorem 4.1 (see [15]). Let T : X → X be a compact operator. Then we can find an
orthonormal basis {un}n≥1 for N(T )⊥ (the orthogonal complement of the null space N(T )

of T ) consisting of eigenvectors of |T | = (T ∗T )
1
2 : X → X and an orthonormal set {vn}n≥1

in X such that

T =

∞∑
n=1

sn(T )(·, un)vn,

where sn(T ), n ≥ 1 are the positive singular values of T : X → X (i.e. sn(T ) is the
eigenvalues of |T | : X → X corresponding to the eigenvectors {un}n≥1) and the series
converges to T strongly.

Definition 4.1. A compact operator T : X → X is said to be in the Schatten-von Neumann
class Sp, 1 ≤ p <∞, if

∞∑
n=1

(sn(T ))
p
<∞.

Thus, Sp, 1 ≤ p <∞, is a complex Banach space in which the norm ∥ · ∥Sp is given by

∥T∥Sp =

( ∞∑
n=1

(sn(T ))
p

) 1
p

, T ∈ Sp.

We let S∞ be the C∗-algebra B(X) of all bounded linear operators on X. Thus,
∥ · ∥S∞ = ∥ · ∥B(X), where ∥ · ∥B(X) denotes the norm in B(X). Let us remark that Sp ⊆
Sq, 1 ≤ p ≤ q ≤ ∞. Usually, S1 is called the trace class and S2 is the Hilbert-Schmidt class.

Definition 4.2. If T : X → X is a bounded linear operator in the trace class S1, then we
can define the trace tr(T ) by

tr(T ) =

∞∑
n=1

(Tφn, φn),

where {φn}n≥1 is any orthonormal basis for X (the fact that the trace is independent of the
specific orthonormal basis follows from Proposition 2.6 in [15]).

It can be proven that if T : X → X is a positive operator in the trace class S1, then

∥T∥S1 = tr(T ),
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see Proposition 2.7 in [15]. For more details concerning the Schatten-von Neumann classes,
see [15]. Let us recall the following theorem.

Theorem 4.2 (Theorem 1.4.8 in [16]). Suppose that T is a compact operator from X into
X. Then T is in Sp, 1 ≤ q <∞ if and only if

∞∑
n=1

|(Tφn, ξn)|p <∞,

for all orthonormal sequences {φn}n≥1 and {ξn}n≥1 in X. Moreover,

∥T∥Sp
= sup

{ ∞∑
n=1

|(Tφn, ξn)|p ; {φn}n≥1, {ξn}n≥1 orthonormal sequences of X

}
.

Proposition 4.1. Let σ ∈ L1(R2) be a symbol, let ϕ, ψ ∈ L2(R) \ {0} be two window
functions and let α be a fractional parameter such that α ̸= nπ, n ∈ Z. Then the localization
operator Lασ,ϕ,ψ : L2(R) → L2(R) is in the Hilbert-Schmidt class S2 and∥∥Lασ,ϕ,ψ∥∥2S2

=

∞∑
n=1

∥∥Lασ,ϕ,ψξn∥∥2L2(R),

where {ξn}n≥1 is any orthonormal basis for L2(R).

Proof. Let {ξn}n≥1 be an orthonormal basis for L2(R). Using Fubini’s Theorem, Parseval’s
identity in a Hilbert space, Cauchy–Schwarz inequality and Lemma 2.1, we have

∞∑
n=1

∥∥Lασ,ϕ,ψξn∥∥2L2(R) =

∣∣∣∣∣
∞∑
n=1

(
Lασ,ϕ,ψξn, L

α
σ,ϕ,ψξn

)
L2(R)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

∫
R

∫
R
σ(ω, u)

(
ξn, ϕ

α
ω,u

)
L2(R)

(
ψαω,u, L

α
σ,ϕ,ψξn

)
L2(R) dωdu

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

∫
R

∫
R
σ(ω, u)

(
ξn, ϕ

α
ω,u

)
L2(R)

((
Lασ,ϕ,ψ

)∗
ψαω,u, ξn

)
L2(R)

dωdu

∣∣∣∣∣
=

∣∣∣∣∫
R

∫
R
σ(ω, u)

((
Lασ,ϕ,ψ

)∗
ψαω,u, ϕ

α
ω,u

)
L2(R)

dωdu

∣∣∣∣
≤
∫
R

∫
R
|σ(ω, u)|

∥∥∥(Lασ,ϕ,ψ)∗∥∥∥
B(L2(R))

∥∥ψαω,u∥∥L2(R)

∥∥ϕαω,u∥∥L2(R) dωdu

=
∥∥∥(Lασ,ϕ,ψ)∗∥∥∥

B(L2(R))
∥ψ∥L2(R) ∥ϕ∥L2(R) ∥σ∥L1(R2) <∞,

where
(
Lασ,ϕ,ψ

)∗
: L2(R) → L2(R) is the adjoint operator of Lασ,ϕ,ψ. So, according to the

previous inequality and using Proposition 2.8 in [15], the linear operator Lασ,ϕ,ψ : L2(R) →
L2(R) is in the Hilbert–Schmidt class S2 and hence compact. □

In the following we give some results concerning Schatten-von Neumann properties of
the localization operator Lασ,ϕ,ψ : L2(R) → L2(R), when its symbol σ ∈ Lp(R2), 1 ≤ p ≤ ∞.

Proposition 4.2. Let σ ∈ L1(R2) be a symbol, let ϕ, ψ ∈ L2(R) \ {0} be two window
functions and let α be a fractional parameter such that α ̸= nπ, n ∈ Z. Then the localization
operator Lασ,ϕ,ψ : L2(R) → L2(R) is in the trace class S1 and∥∥Lασ,ϕ,ψ∥∥S1

≤ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2).
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Proof. By Proposition 4.1 it follows that the localization operator Lασ,ϕ,ψ is in S2 and thus

it is compact. Let {φn}n≥1 and {ξn}n≥1 be two orthonormal sequences for L2(R). Then,
by Cauchy-Schwarz inequality we get∣∣∣(Lασ,ϕ,ψφn, ξn)L2(R)

∣∣∣ ≤ ∫
R

∫
R
|σ(ω, u)|

∣∣∣(φn, ϕαω,u)L2(R)

∣∣∣ ∣∣∣(ψαω,u, ξn)L2(R)

∣∣∣ dωdu
≤
(∫

R

∫
R
|σ(ω, u)|

∣∣∣(φn, ϕαω,u)L2(R)

∣∣∣2 dωdu) 1
2
(∫

R

∫
R
|σ(ω, u)|

∣∣∣(ψαω,u, ξn)L2(R)

∣∣∣2 dωdu) 1
2

,

for all n ∈ N.
Summing over n ∈ N and using once again Cauchy-Schwarz inequality, we obtain

∞∑
n=1

∣∣∣(Lασ,ϕ,ψφn, ξn)L2(R)

∣∣∣ ≤ ( ∞∑
n=1

∫
R

∫
R
|σ(ω, u)|

∣∣∣(φn, ϕαω,u)L2(R)

∣∣∣2 dωdu) 1
2

×

( ∞∑
n=1

∫
R

∫
R
|σ(ω, u)|

∣∣∣(ψαω,u, ξn)L2(R)

∣∣∣2 dωdu) 1
2

.

Using Fubini’s Theorem, Bessel’s inequality, Lemma 2.1 and the assumptions stated
in the theorem we get

∞∑
n=1

∫
R

∫
R
|σ(ω, u)|

∣∣∣(φn, ϕαω,u)L2(R)

∣∣∣2 dωdu =

∫
R

∫
R
|σ(ω, u)|

∞∑
n=1

∣∣∣(φn, ϕαω,u)L2(R)

∣∣∣2 dωdu
≤
∫
R

∫
R
|σ(ω, u)|

∥∥ϕαω,u∥∥2L2(R) dωdu

= ∥ϕ∥2L2(R) ∥σ∥L1(R2) ,

and similarly we can write

∞∑
n=1

∫
R

∫
R
|σ(ω, u)|

∣∣∣(ψαω,u, ξn)L2(R)

∣∣∣2 dωdu ≤ ∥ψ∥2L2(R) ∥σ∥L1(R2) .

Thus
∞∑
n=1

∣∣∣(Lασ,ϕ,ψφn, ξn)L2(R)

∣∣∣ ≤ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2).

Then, by Theorem 4.2 it follows that the localization operator Lασ,ϕ,ψ : L2(R) → L2(R)
is in the trace class S1 and∥∥Lασ,ϕ,ψ∥∥S1

≤ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2).

This completes the proof. □

The following proposition gives a compactness result regarding the localization oper-
ator Lασ,ϕ,ψ : L2(R) → L2(R), with its symbol σ ∈ Lp(R2), 1 ≤ p <∞.

Proposition 4.3. Let σ ∈ Lp(R2), 1 ≤ p < ∞ be a symbol, let ϕ, ψ ∈ L2(R) \ {0} be two
window functions and let α be a fractional parameter such that α ̸= nπ, n ∈ Z. Then the
localization operator Lασ,ϕ,ψ : L2(R) → L2(R) is compact.

Proof. We denote by D the set of all simple functions σ on R2 such that µ{(ω, u) ∈ R2 :
σ(ω, u) ̸= 0} <∞. Let {σk}k≥1 be a sequence of functions in D such that σk −→ σ in Lp(R2)
as k −→ ∞. Then by Theorem 3.1, we get∥∥Lασk,ϕ,ψ

− Lασ,ϕ,ψ
∥∥
B(L2(R)) ≤ (2π)

1
p′ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σk − σ∥Lp(R2) −→ 0,
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as k −→ ∞, when p′ is the conjugate index of p
(
i.e. 1

p +
1
p′ = 1

)
. So Lασk,ϕ,ψ

−→ Lασ,ϕ,ψ in

B(L2(R)) as k −→ ∞. Since, by Proposition 4.2, Lασk,ϕ,ψ
: L2(R) → L2(R) is in the trace class

S1 and hence compact for all k ∈ N, it follows that Lασ,ϕ,ψ : L2(R) → L2(R) is compact. □

Theorem 4.3. Let σ ∈ Lp(R2), 1 ≤ p ≤ ∞ be a symbol, let ϕ, ψ ∈ L2(R) \ {0} be two
window functions and let α be a fractional parameter such that α ̸= nπ, n ∈ Z. Then the
localization operator Lασ,ϕ,ψ : L2(R) → L2(R) is in the Schatten-von Neumann class Sp and∥∥Lασ,ϕ,ψ∥∥Sp

≤ (2π)
1
p′ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥Lp(R2),

where p and p′ are conjugate indices to each other.

Proof. By Proposition 4.2, we have∥∥Lασ,ϕ,ψ∥∥S1
≤ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2) (4)

for all σ ∈ L1(R). By Proposition 3.2, we have∥∥Lασ,ϕ,ψ∥∥S∞
=
∥∥Lασ,ϕ,ψ∥∥B(L2(R)) ≤ 2π ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L∞(R2). (5)

for all σ ∈ L∞(R2).
So, by (4), (5) and the interpolation Theorems 2.10 and 2.11 in [15], the proof is

complete. □

In the following, a two sided estimate of the trace class norm of the localization
operators Lασ,ϕ,ψ : L2(R) → L2(R), when σ ∈ L1(R2), is given.

Theorem 4.4. Let σ ∈ L1(R2) be a symbol, let ϕ, ψ ∈ L2(R) \ {0} be two window functions
and let α be a fractional parameter such that α ̸= nπ, n ∈ Z. Then, we have

1

π
(
∥ϕ∥2L2(R) + ∥ψ∥2L2(R)

) ∥σϕ,ψ∥L1(R2) ≤
∥∥Lασ,ϕ,ψ∥∥S1

≤ ∥ϕ∥L2(R) ∥ψ∥L2(R) ∥σ∥L1(R2), (6)

where σϕ,ψ : R2 → C is given by

σϕ,ψ(ω, u) =
(
Lασ,ϕ,ψϕ

α
ω,u, ψ

α
ω,u

)
L2(R).

Proof. By Proposition 4.2 it follows that the localization operator Lασ,ϕ,ψ is in the trace class

S1 and its trace class norm satisfies the estimate in the right-hand side of the relation (6).
Now, we want to prove that the estimate in the left-hand side of the relation (6) is also valid.

To this end, we firstly prove that σϕ,ψ is in the trace class S1. Using Theorem 4.1,
Fubini’s Theorem and the orthogonality relation, we get

∥σϕ,ψ∥L1(R2) =

∫
R

∫
R
|σϕ,ψ(ω, u)| dωdu =

∫
R

∫
R

∣∣∣(Lασ,ϕ,ψϕαω,u, ψαω,u)L2(R)

∣∣∣ dωdu
=

∫
R

∫
R

∣∣∣∣∣
∞∑
n=1

sn
(
Lασ,ϕ,ψ

) (
ϕαω,u, un

)
L2(R)

(
vn, ψ

α
ω,u

)
L2(R)

∣∣∣∣∣ dωdu
≤ 1

2

∞∑
n=1

sn
(
Lασ,ϕ,ψ

)(∫
R

∫
R

∣∣∣(ϕαω,u, un)L2(R)

∣∣∣2 dωdu+

∫
R

∫
R

∣∣∣(vn, ψαω,u)L2(R)

∣∣∣2 dωdu)

=
1

2

∞∑
n=1

sn
(
Lασ,ϕ,ψ

) (∥∥Gαϕun∥∥2L2(R) +
∥∥Gαψvn∥∥2L2(R)

)
≤ π

(
∥ϕ∥2L2(R) + ∥ψ∥2L2(R)

)∥∥Lασ,ϕ,ψ∥∥S1

Therefore,

1

π
(
∥ϕ∥2L2(R) + ∥ψ∥2L2(R)

) ∥σϕ,ψ∥L1(R2) ≤
∥∥Lασ,ϕ,ψ∥∥S1
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and this completes the proof of the theorem. □

Now, we give a formula for the trace tr
(
Lασ,ϕ,ψ

)
of the localization operator Lασ,ϕ,ψ :

L2(R) → L2(R) when σ ∈ L1(R2).

Proposition 4.4. Under the assumptions of Theorem 4.3, the trace tr
(
Lασ,ϕ,ψ

)
of the

localization operator Lασ,ϕ,ψ is given by

tr
(
Lασ,ϕ,ψ

)
=

∫
R

∫
R
σ(ω, u)

(
ψαω,u, ϕ

α
ω,u

)
L2(R) dωdu.

Proof. By Proposition 4.2, the localization operator Lασ,ϕ,ψ belongs to the trace class S1.

Let {ξn}n∈N be an orthonormal basis for L2(R). Then, by Definition 4.2, Fubini’s Theorem
and Parseval’s identity, we get

tr
(
Lασ,ϕ,ψ

)
=

∞∑
n=1

(
Lασ,ϕ,ψξn, ξn

)
=

∞∑
n=1

∫
R

∫
R
σ(ω, u)

(
ϕαω,u, ξn

)
L2(R)

(
ξn, ψ

α
ω,u

)
L2(R) dωdu

=

∫
R

∫
R
σ(ω, u)

∞∑
n=1

(
ϕαω,u, ξn

)
L2(R)

(
ξn, ψ

α
ω,u

)
L2(R) dωdu

=

∫
R

∫
R
σ(ω, u)

(
ψαω,u, ϕ

α
ω,u

)
L2(R) dωdu.

and the proof is complete. □

Remark 4.1. If σ is a real-valued and non-negative function in L1(R2) and ϕ = ψ, then
the estimates of the relation (6) are sharp.

Proof. Firstly, using Proposition 2.7 in [15] and Proposition 4.4, we get∥∥Lασ,ϕ,ϕ∥∥S1
= tr(Lασ,ϕ,ϕ) = ∥ϕ∥L2(R)∥σ∥L1(R2).

Therefore, the right-hand side estimate of the relation (6) is sharp. Using Fubini’s Theorem,
the orthogonality relation and Lemma 2.1, we get

∥σϕ,ϕ∥L1(R2) =

∫
R

∫
R
σϕ,ϕ(ω, u)dωdu =

∫
R

∫
R

(
Lασ,ϕ,ϕϕ

α
ω,u, ϕ

α
ω,u

)
L2(R) dωdu

=

∫
R

∫
R

(∫
R

∫
R
σ(ω′, u′)

(
ϕαω,u, ϕ

α
ω′,u′

)
L2(R)

(
ϕαω′,u′ , ϕαω,u

)
L2(R) dω

′du′
)
dωdu

=

∫
R

∫
R
σ(ω′, u′)

(∫
R

∫
R

∣∣∣(ϕαω,u, ϕαω′,u′

)
L2(R)

∣∣∣2 dωdu) dω′du′

=

∫
R

∫
R
σ(ω′, u′)

∥∥Gαϕϕαω′,u′

∥∥2
L2(R) dω

′du′

= 2π

∫
R

∫
R
σ(ω′, u′)

∥∥ϕαω′,u′

∥∥2
L2(R) ∥ϕ∥

2
L2(R) dω

′du′ = 2π ∥ϕ∥4L2(R) ∥σ∥L1(R2) .

Thus, the left-hand side estimate of the realation (6) is also sharp. □

Now we state a result concerning the trace class norm of the power n of a product of
two localization operators.

Proposition 4.5. Let σ1, σ2 be two real-valued and non-negative functions in L1(R2) and let
ϕ be a window function in L2(R) \ {0}. Suppose that Lασ1,ϕ,ϕ

: L2(R) → L2(R) and Lασ2,ϕ,ϕ
:

L2(R) → L2(R) commute with each other and the operator Lασ1,ϕ,ϕ
Lασ2,ϕ,ϕ

: L2(R) → L2(R)
is a positive one. Then, the linear operators Lασ1,ϕ,ϕ

, Lασ2,ϕ,ϕ
and Lασ1,ϕ,ϕ

Lασ2,ϕ,ϕ
are positive

and in the trace class S1. Moreover,
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α
σ2,ϕ,ϕ

)n∥∥
S1

≤
∥∥Lασ1,ϕ,ϕ

∥∥n
S1

∥∥Lασ2,ϕ,ϕ

∥∥n
S1
,∀n ∈ N.

Proof. By Proposition 4.1, the linear operators Lασ1,ϕ,ϕ
, Lασ2,ϕ,ϕ

are in the Hilbert-Schmidt

class S2 and by Proposition 4.2, these are in the trace class S1. Using Lemma 1.4.13 in [16]
we can state that the operator Lασ1,ϕ,ϕ

Lασ2,ϕ,ϕ
: L2(R) → L2(R) is in trace class S1. So, by

Proposition 2.7 in [15] it follows that∥∥Lασ1,ϕ,ϕL
α
σ2,ϕ,ϕ

∥∥
S1

= tr
(
Lασ1,ϕ,ϕL

α
σ2,ϕ,ϕ

)
.

Now, we recall Theorem 1 in [13] which states that if A and B (defined from the Hilbert
space H to itself) are positive operators in the trace class S1, then

tr(AB)n ≤ (tr(A))
n
(tr(B))

n
,

for all n ∈ N. But from the assumptions of the theorem it follows that the operators Lασ1,ϕ,ϕ
,

Lασ2,ϕ,ϕ
, Lασ1,ϕ,ϕ

Lασ2,ϕ,ϕ
are positive operators in the trace class S1. So, using Theorem 1 in

[13], we get∥∥Lασ1,ϕ,ϕL
α
σ2,ϕ,ϕ

∥∥
S1

= tr
(
Lασ1,ϕ,ϕL

α
σ2,ϕ,ϕ

)
≤ tr

(
Lασ1,ϕ,ϕ

)
tr
(
Lασ2,ϕ,ϕ

)
=
∥∥Lασ1,ϕ,ϕ

∥∥
S1

∥∥Lασ2,ϕ,ϕ

∥∥
S1
.

Using the fact that Sp ⊆ Sq, 1 ≤ p ≤ q ≤ ∞, Lemma 1.4.13 in [16] and mathematical

induction we can prove that
(
Lασ1,ϕ,ϕL

α
σ2,ϕ,ϕ

)n
is in the trace class S1, for all n ∈ N. We

also can prove that the operator
(
Lασ1,ϕ,ϕ

Lασ2,ϕ,ϕ

)n
is a positive one, for all n ∈ N, using

the mathematical induction, the hypotheses that Lασ1,ϕ,ϕ
Lασ2,ϕ,ϕ

is a positive operator and

that the operators Lασ1,ϕ,ϕ
, Lασ2,ϕ,ϕ

commute with each other. By Proposition 2.7 in [15] and

Theorem 1 in [13], we get∥∥(Lασ1,ϕ,ϕL
α
σ2,ϕ,ϕ

)n∥∥
S1

= tr
(
Lασ1,ϕ,ϕL

α
σ2,ϕ,ϕ

)n ≤
(
tr
(
Lασ1,ϕ,ϕ

))n (
tr
(
Lασ2,ϕ,ϕ

))n
=
∥∥Lασ1,ϕ,ϕ

∥∥n
S1

∥∥Lασ2,ϕ,ϕ

∥∥n
S1
,

for all n ∈ N. Therefore, the proof is complete. □
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