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ON SET COUNTING AND ORDERING

Alina PETRESCU-NITA'

This paper presents some of properties of lattices and gives several examples
of complete ordered monoids. Properties of the ordered sets relative to counting and
searching are presented in section 2, and some counting consequences of countable
sets are presented in section 3, the main results of the paper are proposition 3.1 and
proposition 3.2.
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1. Complete lattices, complete ordered monoids

Let M be a nonempty set and Ay = {(x,x)/x € M} be the diagonal of M.
If R is a binary relation on M, then by R~ we denote the inverse relation and
RoR = {(a,b) € M X M/3c € M,aRc and cRb}. Obviously, R is a partial order
relation if and only if Ay, C R,RoR c R,and R N R™! c A,,. We get a total order
if RUR™ = M x M. Every pair (M , R), where R is a partial order relation, is
called an ordered set or "poset". In this case, for a subset A € M it is known the
meaning of a majorant, max A4, sup 4, a maximal element and the duals of these.

Examples

1) If E is a nonempty set and M = P (E), ordered by inclusion, then for any
A,B€EM ,sup{ A B}=Av Bandinf{ 4, B }=A4 N B. Similarly, if V' is a (real)
vector space and M is the collection of the subspaces of V' then for any

A, BEM,sup{4,B} =A+Bandinf{4, B} =4n B.
2) If M = N* ordered by the relation of division “I”, then for any @, b € M,
sup{ a, b} =cmmmc (a, b)and inf{ a, b } = cmmdc (a, b).

Proposition 1.1. If N is a countable set and M = P(N), ordered by the
inclusion, then the set M contains a totally ordered and non-countable subset.

Proof. We fix a bijective application ¢ : N = Q. For any real number o, we
consider the set X, = {n € N/@(n) > a}. The non-countable family (X,), o« € R
is a totally ordered subset of M ; indeed, if @ < f, then Xp < X,,.
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Recall that a lattice is an ordered set (L, <) such that for any @, b € L, there
existanb =inf{a, b } and a v b = sup{ a, b }. The lattice is called complete if
for any nonempty subset S € L, there exist sup S and inf S; [3], [5].

Example. (P(E), ©) is a complete lattice. The same occur for the lattice of
subspaces of a vector space. Also, the collection of convex sets in R" is complete,
as well as (N*,1). But (Z, <) is not a complete lattice, as well as the lattice R"
with the lexicographic order.

Proposition 1.2. A lattice ( L, <) is complete iff there exists max L and for
any nonempty subset S c L, there exists inf S.

Proof. The implication direct is obvious since max L = sup L. For the
converse implication, let S < L and T be the set of majorants of S. Then T is
nonempty (since max L € T') and according to the assumption, there exists inf 7.
But this is sup S.

Corollary. Let M be a nonempty set and L be the equivalence relations
set on M. Then L is a complete lattice relative to the inclusion.

Proof. Obviously, M X M = max L. According to the Proposition 1.2., it
is sufficient to show that any collection S = (R;), i € I of equivalence relations on
M has an inferior margin, namely ﬂRi and this is in fact inf S.

iel

Any monoid (M, - ,e) is said to be a complete ordered monoid if it has and
a structure of a complete lattice (M, <) and moreover, for any subsets 4, B of M,
sup(4 - B)=(sup A4) - (sup B), where we denote A - B={a-b/a € A, b € B}; [6].

If ( M'x,e") is another complete ordered monoid, then any morfism of
monoids f: M — M’ such that for any A € M, f (sup 4) = sup f (A4) is calles
morfism. In particular, if x <y in M and we take A={x, y}, then it follows that
f(x) < f(y) and, that means that the application f is monotone.

Proposition 1.3. If (M, -,e) is a monoid, then (P(E), -,{e}) is a
complete ordered monoid.

Indeed, it is sufficient to show that for every two collection 4, B of subsets
of M, we have sup (A - B) = (supA) - (supB),

ie. c=(Ua]'[UbJ.

ceAB acA beB

Corollary. If X is an arbitrary nonempty alphabet and M = X* is a free
generated monoid by X (relative to the concatenation of words), then the set of
languages relative to the product of the languages is a complete ordered monoid.
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Proposition 1.4. If M is a nonempty set, then the set of equivalence relation
on M is a complete ordered monoid relative to the composition of the relations,
having Ay as neutral element.

Proof. According to Proposition 1.2., we have a complete lattice. It remains
to show that the composition of the relations is distributive with respect to the
unions, that is, for any collection 4, B of equivalence relations on M, we have

U (a-b)z[Uaj-(Ub] )
acA,beB acA beB
which is easy to verify.
In that follows, we give a special example of a complete ordered monoid.

Definition. We name calculation generator a 6-tuple G = (S,[,T,P, R, 1),
where § is a finite set of states (or data sets), I € S is the set of initial states,
T c S the set of terminal states, P is a collection of predicates on S (called
conditions), R a collection of binary relations on S (called state transitions) and ©
is an application 7: P — R that associates to every predicate p € P a transition
w(p); [7]

Since S is a finite set, it follows that the sets I,T,P,R are finite. Any
condition p € P, is an application p: S — B, B = {0,1}, and any transition p € R
isasubsetp € S X S.

Let s, € I be an initial state. Two cases appear:

a) If for any p € P we have p (sy) = 0, then we consider that s, € T and
the generator stops.

b) If there exits p € P such that p(s,) = 1, than we apply 7 and let
p = T(p) be the associated transition. If there doesn't exist s € S such that syps ,
then we consider s € T and the generator stops. On the contrary, there exists
s; € S such that syps; and the previous generator process is restarted for s, in the
same way it was applied for s; .

In this way we obtain a sequence of states s;,S;,S,,... which is called
calculation generated by G, starting with the state s,. To every calculation
generator G one may associate a graph having S as vertex set. The (finite)
calculations appear as paths in this graph.

Proposition 1.5. If G is a calculation generator, than the set of the (finite)
calculations sets is a completely ordered monoid.

Proof. Let ¢ = {sy, Sy, --.,Sm} and ¢’ = {t;, t,, ..., t,,} be two calculation sets
generated by G. These calculations are called compostable if s,, = t, and in this
case, one define the calculation ¢ * ¢’ = {sy, Sy, ..., Sy, t1, -, tn} Of length
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m + n - 1. The operation "*" is not a concatenation. We consider the category G
having just one subject, namely S, the morphisms being the calculations in S and
the composition of morphisms is given by "*". If 4, B are subsets of the set of
morphisms, one defineA-B ={fg /f € A, g € B and f, g compostable}.

2. Ordered sets with the property PF.

The Knaster-Tarski fix point theorem is well known:" If (L, <) is a
complete lattice, then any monotone application ¢: L — L has a fix point and the
set of fixed points is a complete lattice relative to the relation " < "; [2], [4], [5].

Let (M, <) be an ordered set and ¢: M — M be a monotone application; we
denote F, = {x € M / ¢(x) = x} the set of fix points of. We say that the set M
has the property PF if for any monotone application ¢: M — M , the set F,, is not
empty.

The previous proposition shows that every complete lattice has the property
PF.

If (M,<) is a finite ordered set, one may consider the simplex complex
K(M) having the vertices the elements of M and as simplexes the chains of M (for
example, {x; < x, < -+ <x,} € M is a typical simplex).We denote by |K(M)]|
the polyhedron defined by the simplex complex K( M ) with H,(M, Q) the group
of rational homology in dimension ¢ of |K(M)[; henceH,(M,Q) =
H,(|K(M)|, Q). The ordered set M is called acyclic if Hy(M, Q) = 0 for any
q € Z. If M has just one element or if there exists x € M comparable with any
other element of M, then M is acyclic. Baclawski ad Bjorner have proved in [1]
that any finite ordered subset M and acyclic has the property PF.

We limit our interest to the study the ordering of finite sets by simple tools.

Let (M, <) be a finite ordered set.

Proposition 2.1. For any two elements a,b € M with a < b, there exists a
sequence xo = a < x; < - < x, =b such that for any i, 1<i < k, we have
X;i_q1 < x;, if there doesn't existy € M with x;_; <y < x;.

Proof. Let n be the number of those y € M for which a < y < b. We
proceed by induction over n. For n = 0, the assertion is obvious, let us suppose
n = 1 and let a < ¢ < b. Then the number of those y for which a < y < ¢ and those
z such that ¢ < z < b is at most n-/ (since we exclude c¢). According to the
induction assumption, there exist sequences which connect @ with ¢ and ¢ with b,
and so these can be concatenate.

Proposition 2.2. The elements of M can be disposed such that
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M = {x1,X3, ..., X} and x; < x; if and only if i < j. (In this case we say that
there exists a counting of the elements of M compatible with the order.)

Proof. Let M = {ay,a4, ...,a,_1} and we denote My = {ay, ay, ..., ax_1},
for1<k<n.LetS,={0,1,..,n—1} forany n>1. We construct by induction
the bijective application ¢;: Sy = Sk, 1 < k < n such that if we denote
ak = Ay (i) L € Sk, we have: My, = {ak,ak, ...,af_, }and af < a]'-‘ implyi<j.
Then it follows that M,, = M and we put x; = al’. For k =1, ¢; is unique
determinate. We suppose that the bijective application @p_q:Sx_1 = Sk—1 18
already constructed with the indicated property and let p = min {i € S;_; /a; <
af‘l}. We consider then the bijective application ¢;: S, — S defined by
o) =iifi<p;ei)=k—-11ifi=p and @, (I)) =i—1 if i > p.

Remark. It is known that the winning numbers of a lottery are increasing
ordered; similarly, looking for a word in a dictionary is simplified if these are
ordered (for example, lexicographical).

If there exists an ordering like in Proposition 2.2, then to include a new
element u between the elements of M, we have a problem of searching and we
have n + 1 possibilities. If x;, <u (for 1 < k < n), it is established if the place
is between 1 and & or between £+ 1 and n + 1. If k£ is in the middle comparison
X <u is reduced twice. This is the halving algorithm. The number of
comparisons is equal to [log,(n + 1)], where [«] is the smallest integer > a.

As a consequence, any finite ordered set has minimal and maximal
elements. We recover the following characterization of the finite sets (owned to
Tarski):

Proposition 2.3. A set M is finite if and only if any nonempty subset of
P (M) has a maximal element relative to the inclusion.

Proof. If M is finite, then P (M) is finite and has a maximal element.
Conversely, if M would be infinite, then the set of finite parts of M would be a
nonempty part of P (M), which has no maximal element.

Remark. Let M = {ay,a,, ..., a,} be a finite set, with a given order of the
elements. For any subset 7 M, one can consider the sequence of n bits
€1,Cyy ey Cpy , where ¢, =1 if aqy €T and ¢, =0 on the contrary
(for 1 < k < n). Then the application ¢: P(M) - B", T = c; ... ¢, is bijective.

3. Counting

If S is a nonempty finite or countable set, every surjective application
v: N - Sis called a counting of S.



190 Alina Petrescu-Nita

Proposition 3.1. Any infinite subset A € N admits a counting v:N = A
(which can be called canonical).

Proof. For any n € N, we consider the application
fniSp = A, f,(0) =infA and f,(k) =inf(A\ {f,,(0), ..., f,(k —1)}) for
1<k<nlIfS,cS,thenf, |S, = f, and we define v: N = A by
v|S, = fn foranyn € N.

Let p; <py, <+ <p, < be the infinite sequence of prime numbers.

We define an injective application on the free monoid M generated by N ( must
not be confused with N \ {0}), g: M — N, g(A4) = 0 and for any
X1%5 o X € N¥ gy ox) = Pyt - py? - v D * - In this way, we geta
bijection h: M » g(M) and f = h™°v: N > g(M) - M is a counting of M.

Corollary. For any infinite alphabet A4 there exists a counting v4: N = A*.
It is sufficient to use the fact that the dictionary 4 * is a countable set.

In 1873, G. Cantor proved that the set R is not countable and stated the
conjecture that if M c R is a non-countable set, then it is equipotent with R. In
1963, P. Cohen showed that this problem is non decidable in the usual system of
axioms of Zermelo-Fraenkel (ZF) in the theory of sets. All mathematical theorems
can be formulated according to these axioms. K. Godel proved in 1931 that the
axiomatique ZF (supposed to be non contradictory) is not complete, thas is, not
any assertion formulated in this framework is decidable; [8].

The idea of the proof is based by the use of the prime numbers to obtain a
adequate counting of the assertion in the system ZF, which isi in fact a
formalization of the axiomatique A of arithmetic.

Any arithmetic formula is a syntactic word relative to the alphabet
A={+,-,%,...,0,1,...,9} and is a combination of different symbols to which we
associate respectively code numbers; for example,
+/1;-/2;%/3;:/4;)/5,(/6;,=/7,0/8;1/9;2/10;,3/11;,4/12;...;9/17.

We fix now the strict increasing sequence of the prime numbers:
p1=2<p,=3<p3=5<p,=7<...; with the convention the arithmetic
formula 1 + 2 = 3 has the Godel code : p] pi-pi0p]-pil =29.31.510.77.1111,
Further, 1 =28, and the number 120 = 23-31.51 decomposed in prime factors
corresponds to the formula x++ from A*. The dot"" is the symbol of
multiplication and of concatenation. In this way, to any arithmetic formula (from
A"); one can associate just one natural number coded type Godel and vice versa.
We obtain now an injective application A*— N. In the ZF axiomatic we further
add a finite number of symbols (such as €,U ,N ,{,}, as well as the variables x,
y, z, etc.) and again the set of formulae is countable. Using a procedure that
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reminds the diagonal of Cantor, Godel had an assertion that is non decidable as
well as his negation.

We illustrate this procedure as an answer to a simpler question.

In some papers of computer programming appear the assertion that any
program P, written in some programming language, associates to any initial data
daresult P (d) . To avoid the situation when the computer cycles ( as in the case
of writing the decimals for 2/3 or 1/7) or when the computer cannot finalize an
operation, it would be useful to exist an algorithmic procedure that decide if the
program P ends .

Proposition 3.2. These is no algorithmic procedure to decide if a program
like P ends or not.

Proof. Let us suppose that there exists such procedure A; the programs
form a countable set and according to the Corollary of Proposition 3.1. these can
be counted pgy,p1, .- , Pn ---- - We suppose that for any input data 4 , the
respective programs give the results dg, d¢, ..., dyp , ... .

Then, we consider the following infinite matrix :

Po(do) po(d1) ... Po(da)
p1(do) p1(d1) ... p1(dyn)

and take the diagonal, that is the sequence of results po(dy), p1(d1), ... ,Pr(dr)
,... . Now, let us consider the program P which associates to any data d = d,,, the
result P(d) = py(d) + 1 if the result py(d) is attained, and P(d) = 0 on the
contrary. According to the assumption, this program is finalized by the procedure
A, so it coincides with one of the programs of the previous sequence; for example
P = p,,. Two situations erase: either p,,(m) is not defined and then

P(m) = 0 (that is P(m) # p,, (m), contradiction), or p,,(m) is defined and then
P(m) = p,,(m) + 1 (that is P (m) # p,,(m), again a contradiction).
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