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ON SET COUNTING AND ORDERING 

Alina PETRESCU-NIŢǍ1 

This paper presents some of properties of lattices and gives several examples 
of complete ordered monoids. Properties of the ordered sets relative to counting and 
searching are presented in section 2, and some counting consequences of countable 
sets are presented in section 3, the main results of the paper are proposition 3.1 and 
proposition 3.2. 
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1. Complete lattices, complete ordered monoids 

Let M  be a nonempty set and ∆ெൌ ሼሺݔ, ݔ/ሻݔ א  .ሽ be the diagonal of Mܯ
If R is a binary relation on M, then by ܴିଵ we denote the inverse relation and  
ܴ݋ܴ ൌ ሼሺܽ, ܾሻ א ܯ ൈ ܿ׌/ܯ א ,ܯ ܴܽܿ and ܴܾܿሽ. Obviously, R is a partial order 
relation if and only if ∆ெؿ ܴ, ܴ݋ܴ ,ܴ ؿ and ܴ ת ܴିଵ  ெ. We get a total order∆ ؿ
if ܴ ׫ ܴିଵ ൌ ܯ ൈ  Every pair (M , R), where R is a partial order relation, is .ܯ
called an ordered set or "poset". In this case, for a subset  ܣ ؿ  it is known the  ܯ
meaning of a majorant, max A, sup A, a maximal element and the duals of these. 

Examples 

1) If E is a nonempty set and ܯ ൌ ࣪ሺܧሻ, ordered by inclusion, then for any 
,ܣ ܤ א  sup{ A, B }= A∪  B and inf{ A, B }= A ∩ B. Similarly, if V is a (real) , ܯ
vector space and M  is the collection of the subspaces of V  then for any   

A, B א M, sup{ A, B } = A + B and inf{ A, B } = A∩  B. 
2) If  ܯ ൌ Գכ ordered by the relation of division “׀”, then for any a, b א M, 

sup{ a, b } = cmmmc ( a, b ) and inf{ a, b } = cmmdc ( a, b ). 
 
Proposition 1.1. If  N is a countable set and ܯ ൌ ࣪ሺܰሻ, ordered by the 

inclusion, then the set M contains a totally ordered and non-countable subset. 
Proof. We fix a bijective application ߮ ׷ ܰ ՜ Է. For any real number , we 

consider the set ܺఈ ൌ ሼ݊ א ܰ/߮ሺ݊ሻ ൐ ሽ. The non-countable family ሺܺఈሻ, αߙ א Թ 
is a totally ordered subset of M ;  indeed, if  ߙ ൑ then ఉܺ ,ߚ ؿ ܺఈ. 
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Recall that a lattice is an ordered set (L, ≤) such that for any a, b א L, there 
exist a ∧ b = inf{ a, b } and a ∨ b = sup{ a, b }. The lattice is called complete if 
for any nonempty subset S  L, there exist sup S and inf  S; [3], [5]. 
 

Example. (࣪ሺEሻ,  is a complete lattice. The same occur for the lattice of (ك
subspaces of a vector space. Also, the collection of convex sets in Թ୬ is complete, 
as well as  ሺԳכ, ,ሻ. But ሺԺ׀ ൑ሻ is not a complete lattice, as well as the lattice  Թ୬  
with the lexicographic order. 

 
Proposition 1.2. A lattice ( L, ≤ )  is complete iff  there exists max L and for 

any nonempty subset S ⊂ L, there exists inf  S. 
Proof.  The implication direct is obvious since max L = sup L. For the 

converse implication, let S ⊂ L and T be the set of majorants of  S. Then T is 
nonempty (since max L א T ) and according to the assumption, there exists inf  T. 
But this is sup S. 
 

Corollary. Let M  be a nonempty set and L be the equivalence relations 
set on M. Then L is a complete lattice relative to the inclusion. 

Proof.  Obviously, ܯ ൈ ܯ ൌ  max ܮ. According to the Proposition 1.2., it 
is sufficient to show that any collection ܵ ൌ ሺܴ௜ሻ, ݅ א  of equivalence relations on ܫ
M  has an inferior margin, namely i

i I

R
∈
∩  and this is in fact inf S. 

Any monoid (M, · ,e) is said to be a complete ordered monoid if it has and 
a structure of a complete lattice (M, ≤ ) and moreover, for any subsets A, B of M, 
sup(A · B)=(sup A) · (sup B), where we denote A · B = {a · b / a א A, b א B}; [6]. 

If ( כ,′ܯ , ݁′ ) is another complete ordered monoid, then any morfism of 
monoids  f : M ՜ M’ such that for any ܣ  M, f (sup A) = sup f (A) is calles ؿ
morfism. In particular, if  ݔ ൑ y  in M and we take A={x, y}, then it follows that  
݂ሺݔሻ ൑ ݂ሺݕሻ and, that means that the application  f  is monotone. 

 
Proposition 1.3. If  ሺܯ, ൉ , ݁ሻ is a monoid, then ሺ࣪ሺܧሻ, ൉ , ሼ݁ሽሻ is a 

complete ordered monoid. 
Indeed, it is sufficient to show that for every two collection A, B of subsets 

of M, we have sup  ሺܣ ൉ ሻܤ ൌ ሺsup ሻܣ ൉ ሺsup   ,ሻܤ

i.e. 
c A B a A b B

c a b
∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠i

∪ ∪ ∪ . 

 
Corollary. If X is an arbitrary nonempty alphabet and ܯ ൌ  is a free כܺ

generated monoid by X (relative to the concatenation of words), then the set of 
languages relative to the product of the languages is a complete ordered monoid. 
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Proposition 1.4. If M is a nonempty set, then the set of equivalence relation 

on M is a complete ordered monoid relative to the composition of the relations, 
having ΔM as neutral element. 

Proof. According to Proposition 1.2., we have a complete lattice. It remains 
to show that the composition of the relations is distributive with respect to the 
unions, that is, for any collection A, B of equivalence relations on M, we have 

( )
,a A b B a A b B

a b a b
∈ ∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
⋅ = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∪ ∪ ∪  , 

which is easy to verify. 
In that follows, we give a special example of a complete ordered monoid. 

 
Definition. We name calculation generator a 6-tuple ܩ ൌ ሺܵ, ,ܫ ܶ, ࣪, ࣬, ߬ሻ, 

where S is a finite set of states (or data sets), ܫ ؿ ܵ is the set of initial states, 
ܶ ؿ ܵ the set of terminal states, ࣪ is a collection of predicates on S (called 
conditions), ࣬ a collection of binary relations on S (called state transitions) and ߬ 
is an application ߬: ࣪ ՜ ࣬ that associates to every predicate ݌ א ࣪ a transition 
߬ሺ݌ሻ; [7]. 

 Since S is a finite set, it follows that the sets ܫ, ܶ, ࣪, ࣬ are finite. Any 
condition ݌ א ࣪,  is an application ݌: ܵ ՜ ९, ९ ൌ ሼ0,1ሽ, and any transition ߩ א ࣬  
is a subset ߩ ؿ ܵ ൈ ܵ. 

 Let ݏ଴ א  :be an initial state. Two cases appear ܫ
 a) If for any ݌ א ࣪ we have ݌ ሺݏ଴ሻ ൌ 0 , then we consider that ݏ଴ א ܶ and 

the generator stops. 
 b) If there exits ݌ א ࣪ such that ݌ሺݏ଴ሻ ൌ 1, than we apply ߬ and let 

ߩ ൌ ߬ሺ݌ሻ be the associated transition. If there doesn't exist ݏ א ܵ such that ݏ଴ݏߩ , 
then we consider ݏ א ܶ and the generator stops. On the contrary, there exists 
ଵݏ א ܵ such that ݏ଴ݏߩଵ and the previous generator process is restarted for ݏଵ in the 
same way it was applied for ݏ଴ . 

 In this way we obtain a sequence of states ݏ଴, ,ଵݏ ,ଶݏ …  which is called 
calculation generated by G, starting with the state ݏ଴. To every calculation 
generator G one may associate a graph having S as vertex set. The (finite) 
calculations appear as paths in this graph. 

 
Proposition 1.5. If G is a calculation generator, than the set of the (finite) 

calculations sets is a completely ordered monoid. 
Proof. Let ܿ ൌ ሼݏ଴, ,ଵݏ … , ′ܿ ௠ሽ andݏ ൌ ሼݐଵ, ,ଶݐ … ,  ௡ሽ be two calculation setsݐ

generated by G. These calculations are called compostable if ݏ௠ ൌ  ଴ and in thisݐ
case, one define the calculation ܿ כ ܿ′ ൌ ሼݏ଴, ,ଵݏ … , ,௠ݏ ,ଵݐ … ,   ௡ሽ of lengthݐ
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m + n - 1. The operation "*" is not a concatenation. We consider the category G 
having just one subject, namely S, the morphisms being the calculations in S and 
the composition of morphisms is given by "*". If A, B are subsets of the set of 
morphisms, one define ܣ ൉ ܤ ൌ ሼ݂݃ / ݂ א ,ܣ ݃ א ,݂ and ܤ ݃ compostableሽ. 

2. Ordered sets with the property PF. 

The Knaster-Tarski fix point theorem is well known:" If ሺܮ, ൑ሻ is a 
complete lattice, then any monotone application ߮: ܮ ՜  has a fix point and the  ܮ
set of fixed points is a complete lattice relative to the relation " ൑ "; [2], [4], [5]. 

Let ሺܯ, ൑ሻ be an ordered set and ߮: ܯ ՜  be a monotone application; we ܯ
denote ܨఝ ൌ ሼݔ א ሻݔሺ߮  / ܯ ൌ   ሽ the set of fix points of. We say that the set Mݔ
has the property PF if for any monotone application ߮: ܯ ՜  ఝ is notܨ the set , ܯ
empty. 

 The previous proposition shows that every complete lattice has the property 
PF.  

If ሺܯ, ൑ሻ is a finite ordered set, one may consider the simplex complex 
K(M) having the vertices the elements of M and as simplexes the chains of M  (for 
example, ሼݔଵ ൏ ଶݔ ൏ ڮ ൏ ௡ሽݔ ؿ  |ሻܯሺܭ| is a typical simplex).We denote by ܯ
the polyhedron defined by the simplex complex K( M ) with ܪ௤ሺܯ, Էሻ the group 
of rational homology in dimension q of |ܭሺܯሻ|; henceܪ௤ሺܯ, Էሻ ൌ 
,|ሻܯሺܭ| ௤ሺܪ Էሻ. The ordered set M  is called acyclic if ܪ௤ሺܯ, Էሻ ൌ 0 for any  
q א  Ժ. If M  has just one element or if there exists ݔ א  comparable with any ܯ
other element of M, then M  is acyclic. Baclawski ad Björner have proved in [1] 
that any finite ordered subset M and acyclic has the property PF. 

We limit our interest to the study the ordering of finite sets by simple tools. 
 

          Let ሺܯ, ൑ሻ  be a finite ordered set. 
 
Proposition 2.1. For any two elements ܽ, ܾ א  with a < b, there exists a ܯ

sequence ݔ଴ ൌ ܽ ൏ ଵݔ ൏ ڮ ൏ ௞ݔ ൌ ܾ such that for any i, l൑ ݅ ൑ ݇, we have 
௜ିଵݔ ൑ ݕ ௜, if there doesn't existݔ א ௜ିଵݔ with ܯ ൏ ݕ ൏  .௜ݔ

Proof. Let n be the number of those ݕ א  for which a < y < b. We ܯ
proceed by induction over n. For n = 0,  the assertion is obvious, let us suppose 
݊ ൒ 1 and let a < c < b. Then the number of those y for which a < y < c and those 
z  such that c < z < b is at most n-1 (since we exclude c). According to the 
induction assumption, there exist sequences which connect a with c and c with b, 
and so these can be concatenate. 

 
Proposition 2.2. The elements of M can be disposed such that 
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ܯ  ൌ ሼݔଵ, ,ଶݔ … , ௜ݔ ௡ሽ andݔ ൏  ௝ if and only if  i < j. (In this case we say thatݔ
there exists a counting of the elements of M compatible with the order.) 

Proof. Let ܯ ൌ ሼܽ଴, ܽଵ, … , ܽ௡ିଵሽ and we denote ܯ௞ ൌ ሼܽ଴, ܽଵ, … , ܽ௞ିଵሽ, 
for 1 ൑ ݇ ൑ ݊. Let ܵ௡ ൌ ሼ0, 1, … , ݊ െ 1ሽ for any 1n ≥ . We construct by induction 
the bijective application ߮௞: ܵ௞ ՜ ܵ௞, 1 ൑ ݇ ൑ ݊  such that if we denote  
 ܽ௜

௞ ൌ ܽఝೖሺ௜ሻ, ݅ א ܵ௞, we have: ܯ௞ ൌ ሼܽ଴
௞, ܽଵ

௞, … , ܽ௞ିଵ
௞  ሽ and ܽ௜

௞ ൏ ௝ܽ
௞ imply i ൏ ݆ . 

Then it follows that ܯ௡ ൌ ௜ݔ and we put ܯ ൌ ܽ௜
௡. For ݇ ൌ 1, ߮ଵ is unique 

determinate. We suppose that the bijective application ߮௞ିଵ: ܵ௞ିଵ ՜ ܵ௞ିଵ  is 
already constructed with the indicated property and let ݌ ൌ min ሼ݅ א ܵ௞ିଵ /ܽ௞ ൏
ܽ௜

௞ିଵሽ. We consider then the bijective application ߮௞: ܵ௞ ՜ ܵ௞ defined by 
 ߮௞ሺ݅ሻ ൌ ݅  if  ݅ ൏ ௞ሺ݅ሻ߮ ; ݌ ൌ ݇ െ 1  if ݅ ൌ and  ߮௞ሺ݅ሻ  ݌ ൌ ݅ െ 1  if  ݅ ൐  .݌
 

Remark. It is known that the winning numbers of a lottery are increasing 
ordered; similarly, looking for a word in a dictionary is simplified if these are 
ordered (for example, lexicographical). 

If there exists an ordering like in Proposition 2.2, then to include a new 
element u between the elements of M, we have a problem of searching and we 
have n + 1 possibilities. If ݔ௞ ൏ for 1 ) ݑ ൑ ݇ ൑ ݊ ), it is established if the place 
is between 1 and k or between k + 1 and n + 1. If k  is in the middle comparison 
x୩ ൏  is reduced twice. This is the halving algorithm. The number of  ݑ
comparisons is equal to ሾlogଶሺ݊ ൅ 1ሻሿ, where ሾߙሿ is the smallest integer ൒ α. 

As a consequence, any finite ordered set has minimal and maximal 
elements. We recover the following characterization of the finite sets (owned to 
Tarski): 
 

Proposition 2.3. A set M is finite if and only if any nonempty subset of 
࣪ሺܯሻ has a maximal element relative to the inclusion. 

Proof. If M  is finite, then ࣪ሺܯሻ is finite and has a maximal element. 
Conversely, if M  would be infinite, then the set of finite parts of M would be a 
nonempty part of ࣪ሺܯሻ, which has no maximal element. 
 

Remark. Let  ܯ ൌ ሼܽଵ, ܽଶ, … , ܽ௡ሽ be a finite set, with a given order of the 
elements. For any subset T M⊂ ,  one can consider the sequence of n bits 
ܿଵ, ܿଶ, … , ܿ௡, , where ܿ௞ ൌ 1 if ܽ௞ א ܶ and ܿ௞ ൌ 0 on the contrary               
ሺfor 1 ൑ ݇ ൑ ݊ሻ. Then the application φ: ࣪ሺMሻ ՜ ९୬, T ՜ cଵ … c୬ is bijective. 

3. Counting 

If S is a nonempty finite or countable set, every surjective application 
Գ :ݒ ՜ S is called a counting of S. 
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Proposition 3.1. Any infinite subset ܣ ؿ Գ admits a counting ݒ: Գ ՜ A 
(which can be called canonical). 

Proof. For any n א Գ , we consider the application  
௡݂: ܵ௡ ՜ ௡݂ሺ0ሻ ,ܣ ൌ inf and ௡݂ሺ݇ሻ ܣ ൌ infሺܣ ך ሼ ௡݂ሺ0ሻ, … , ௡݂ሺ݇ െ 1ሻሽ ሻ for 

1 ൑ ݇ ൑ ݊. If  ܵ௡ ؿ ܵ௠ then ௠݂ | ܵ௡ ൌ  ௡݂  and we define ݒ: Գ ՜   by ܣ
௡ܵ | ݒ ൌ ௡݂, for any ݊ א Գ. 

Let ݌ଵ ൏ ଶ݌ ൏ ڮ  ൏ ௡݌ ൏  .be the infinite sequence of prime numbers ڮ
We define an injective application on the free monoid ࣧ generated by Գ ( must 
not be confused with Գ ך ሼ0}),  ݃: ࣧ ՜ Գ, ݃ሺ߉ሻ ൌ 0 and for any  
ଶݔଵݔ ௞ݔ …  א  Գ௞, ݃ሺݔଵݔଶ … ௞ሻݔ ൌ ଵ݌ 

௫భ · ଶ݌
௫మ · … · ௞݌

௫ೖ . In this way, we get a  
bijection ݄: ࣧ ՜ ݃ሺࣧሻ and ݂ ൌ ݄ିଵ°ݒ ׷  Գ ՜ ݃ሺࣧሻ ՜ ࣧ is a counting of ࣧ. 
 
          Corollary. For any infinite alphabet A there exists a counting ݒ஺: Գ ՜  .כܣ 
 

It is sufficient to use the fact that the dictionary A* is a countable set. 
 
In 1873, G. Cantor proved that the set Թ is not countable and stated the 

conjecture that if ܯ ؿ Թ is a non-countable set, then it is equipotent with Թ. In 
1963, P. Cohen showed that this problem is non decidable in the usual system of 
axioms of Zermelo-Fraenkel (ZF) in the theory of sets. All mathematical theorems 
can be formulated according to these axioms. K. Gödel proved in 1931 that the 
axiomatique ZF (supposed to be non contradictory) is not complete, thas is, not 
any assertion formulated in this framework is decidable; [8]. 

The idea of the proof is based by the use of the prime numbers to obtain a 
adequate counting of the assertion in the system ZF, which isi in fact a 
formalization of the axiomatique ࣛ of arithmetic. 

Any arithmetic formula is a syntactic word relative to the alphabet  
ࣛ= {+, -, ×, …, 0, 1, …,9} and is a combination of different symbols to which we 
associate respectively code numbers; for example,  
 + / 1; - / 2; × / 3; : / 4; ) / 5; ( / 6; = / 7; 0 / 8; 1 / 9; 2 / 10; 3 / 11; 4 / 12; …; 9 / 17. 

We fix now the strict increasing sequence of the prime numbers: 
ଵ݌ ൌ 2 ൏ ଶ݌ ൌ 3 ൏ ଷ݌ ൌ 5 ൏ ସ݌ ൌ 7 ൏ . . . ; with the convention the arithmetic 
formula 1 + 2 = 3 has the Gödel code : ݌ଵ

ଶ݌·ૢ
૚·݌ଷ

૚૙·݌ସ
ૠ·݌ହ

૚૚ ≡ 2ૢ·3૚·5૚૙·7ૠ·11૚૚. 
Further, 1 ≡ 2ૡ, and the number 120 = 2૜·3૚·5૚ decomposed in prime factors 
corresponds to the formula ×+ +  from כܣ. The dot '' ''i  is the symbol of 
multiplication and of concatenation. In this way, to any arithmetic formula (from 
 .one can associate just one natural number coded type Gödel and vice versa ;(כܣ
We obtain now an injective application כܣ→ Գ. In the ZF axiomatic we further 
add a finite number of symbols (such as א , ڂ  , ځ  , ሼ , ሽ , as well as the variables x, 
y, z, etc.) and again the set of formulae is countable. Using a procedure that 
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reminds the diagonal of Cantor, Gödel had an assertion that is non decidable as 
well as his negation. 

We illustrate this procedure as an answer to a simpler question. 
In some papers of computer programming appear the assertion that any 

program ࣪, written in some programming language, associates to any initial data 
d a result ࣪ ሺd ሻ . To avoid the situation when the computer cycles ( as in the case 
of writing the decimals for 2/3 or 1/7) or when the computer cannot finalize an 
operation, it would be useful to exist an algorithmic procedure that decide if the 
program ࣪ ends . 

 
Proposition 3.2. These is no algorithmic procedure to decide if a program 

like ࣪ ends or not. 
Proof. Let us suppose that there exists such procedure ࣛ; the programs 

form a countable set and according to the Corollary of Proposition 3.1. these can 
be counted ݌૙,݌૚, … , ࢔݌, …. . We suppose that for any input data d , the 
respective programs give the results  ݀૙, ݀૚, … , ݀࢔ , … . 
Then, we consider the following infinite matrix : 
 
 …   ሻ࢔૙ሺ݀݌   …   ૙ሺ݀૚ሻ݌   ૙ሺ݀૙ሻ݌                                       
 …   ሻ࢔૚ሺ݀݌   …   ૚ሺ݀૚ሻ݌   ૚ሺ݀૙ሻ݌                                       
                                      ……………………….. 
 …  ሻ࢔ሺ݀࢓݌   …   ሺ݀૚ሻ࢓݌   ሺ݀૙ሻ࢓݌                                       
                                      ………………………….. 
and take the diagonal, that is the sequence of results ݌૙ሺ݀૙ሻ, ݌૚ሺ݀૚ሻ, … ,࢑݌ሺ݀࢑ሻ 
,… . Now, let us consider the program ࣪ which associates to any data d ࢔݀ ؠ, the 
result ࣪ሺ݀ሻ ൌ ௗሺ݀ሻ݌  ൅ 1 if the result ݌ௗሺ݀ሻ is attained, and ࣪ሺ݀ሻ ൌ 0 on the 
contrary. According to the assumption, this program is finalized by the procedure 
ࣛ, so it coincides with one of the programs of the previous sequence; for example  
࣪ ൌ   ௠ሺ݉ሻ is not defined and then݌ ௠. Two situations erase: either݌
࣪ሺ݉ሻ ൌ 0 (that is ࣪ሺ݉ሻ ്   ௠ሺ݉ሻ is defined and then݌ ௠ሺ݉ሻ, contradiction), or݌
࣪ሺ݉ሻ ൌ ௠ሺ݉ሻ݌ ൅ 1 (that is ࣪ (m) ≠ ݌௠ሺ݉ሻ, again a contradiction). 

R E F E R E N C E S 

 [1] Baclawski, K., Björner A.- Fixed Points in Partially Ordered Sets, Advances in math., 31, 263-
287, 1979. 

 [2] Blyth, T.S. - Lattices and ordered Algebraic Structures, Springer, Berlin, 2005. 
 [3] Căzănescu, V., Introducere în teoria limbajelor formale (Introduction to the Theory of formal 

languages), Ed. Academiei Române, 1983 (in Romanian) 
 [4] Rus, I.- Principii şi aplicaţii ale teoriei punctului fix (Principles and applications of fixed point 

theory), Ed. Dacia, Cluj-Napoca, 1979 
 [5] Scott, D.- Continous lattices, Lecture Notes in Math., 274, 1972 



192                                                     Alina Petrescu-Niţă 

 [6] Stănăşilă, O.- Notiuni şi tehnici de matematică discretă (Discrete mathematics concepts and 
techniques), Ed. Ştiinţifică şi Enciclop., Bucureşti, 1985 (in Romanian) 

 [7] Thantcher, J.W., Wagner, E.G., Wright, J.B.- Notes on algebraic fundamentals for theoretical 
computer Science, I.B.M. Thomas Watson, 109, 1979. 

 [8] Ţiplea, F.- Fundamentele algebrice ale informaticii (The algebraic foundamentals of computer 
science), Editura Polirom, Bucureşti, 2006. (in Romanian) 

 


