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SOME COINCIDENCE POINT THEOREMS FOR SEMI-NONSELF

HYBRID PAIR WITH ERROR ESTIMATES OF f-PICARD SEQUENCES

Muhammad Usman Ali1, Quanita Kiran2, Tayyab Kamran3

In this paper, we prove some coincidence and common fixed point theorems

for semi-nonself and for self hybrid pairs. Our results not only provide the iterative

scheme to locate the coincidence point but also provide the error estimates of f-Picard

sequence. In the support of our results we give some nontrivial examples. The results of

this paper, extend and generalize many existing results in literature. The observation of

Haghi [R. H. Haghi, Sh. Rezapour, N. Shahzad, Some fixed point generalization are not

real generalizations, Nonlinear Anal., 74 (2011) 1799-1803.] in general is not applicable

for our results.
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1. Introduction

Markin [1] and Nadler [2] initiated the study of fixed point theorems for multivalued

mappings. Assad and Kirk [3] gave sufficient condition for nonself multivalued mapping to

have a fixed point. Ahmed and Khan [4] proved some common fixed point theorems for

nonself hybrid pair of mappings. Subsequently, Singh and Mishra [5] and Ciric et al. [6]

also proved some coincidence and common fixed point theorems for nonself hybrid pair in

metrically convex metric space. In this paper, we prove some coincidence point and common

fixed point theorems for semi-nonself and self hybrid pairs with error estimates of f -Picard

sequence in a complete metric space.

Let (X, d) be a metric space and D ⊆ X. For each x ∈ X and A ⊆ X, d(x,A) =

inf{d(x, y) : y ∈ A}. We denote by CL(X) the class of all nonempty closed subsets of X.

A point x ∈ X is said to be a fixed point of T : X → CL(X) if x ∈ Tx. A point x ∈ D

is said to be a coincidence point of f : D → X and T : X → CL(X) if fx ∈ Tx. A

point x ∈ D is said to be a common fixed point of f : D → X and T : X → CL(X) if

x = fx ∈ Tx. If for x0 ∈ X, there exists a sequence {xn} in X such that xn ∈ Txn−1,

then O(T, x0) = {x0, x1, x2, · · · } is said to be the orbit of T : X → CL(X). If for x0 ∈ X,

f : X → X and T : X → CL(X), then a sequence {fxn} in fX of the form fxn ∈ Txn−1 is
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said to be an f -Picard sequence. If for x0 ∈ D and f : D → X there exists a sequence {fxn}
in fD such that fxn ∈ Txn−1, then Of (x0) = {fx1, fx2, fx3, · · · } is said to be an f -orbit of

T : X → CL(X). A mapping g : X → R is said to be lower semi-continuous at ξ if for any

sequence {xn} in X with xn → ξ, implies g(ξ) ≤ lim infn→∞ g(xn). Throughout this paper

J denotes an interval on R+ containing 0, that is an interval of the form [0, A], [0, A) or

[0,∞) and Sn(t) denotes the polynomial Sn(t) = 1+ t+ ...+ tn−1. We use the abbreviation

φn for the nth iterate of a function φ : J → J .

Definition 1.1. [7] Let r ≥ 1. A function φ : J → J is said to be a gauge function of

order r on J if it satisfies the following conditions:

: (i) φ(λt) ≤ λrφ(t) for all λ ∈ (0, 1) and t ∈ J ;

: (ii) φ(t) < t for all t ∈ J − {0}.

It is easy to see that the first condition of Definition 1.1 is equivalent to the following:

φ(0) = 0 and φ(t)/tr is nondecreasing on J − {0}.

Definition 1.2. [7, 8] A nondecreasing function φ : J → J is said to be a Bianchini-

Grandolfi gauge function on J if
∞∑

n=0

φn(t) < ∞, for all t ∈ J.

Remark 1.1. Let the nondecreasing function φ : J → J is such that

σ(t) =
∞∑

n=0

φn(t) < ∞, for all t ∈ J. (1)

Then Ptak [9] called φ : J → J a rate of convergence on J and noticed that φ satisfies the

following functional equation

σ(t) = σ(φ(t)) + t. (2)

Remark 1.2. [7] Every gauge function of order r ≥ 1 on J is a Bianchini-Grandolfi gauge

function on J .

Lemma 1.1. [2] Let (X, d) be a metric space. Let B ∈ CL(X) and x ∈ X. Then for each

ϵ > 0, there exists b ∈ B such that d(x, b) ≤ d(x,B) + ϵ.

Lemma 1.2. [7] Let φ be a gauge function of order r ≥ 1 on J . If ϕ is a nonnegative and

nondecreasing function on J satisfying

φ(t) = tϕ(t) for all t ∈ J, (3)

then it has the following properties:

: (i) 0 ≤ ϕ(t) < 1 for all t ∈ J ;

: (ii) ϕ(λt) ≤ λr−1ϕ(t) for all λ ∈ (0, 1) and t ∈ J .

Moreover, for each n ≥ 0 we have

: (iii) φn(t) ≤ tϕ(t)Sn(r) for all t ∈ J ,

: (iv) ϕ(φn(t)) ≤ ϕ(t)r
n

for all t ∈ J .

Definition 1.3. [10] Let (X, d) be a metric space. A real number α > 0 is called an order

of convergence of {xn}, provided xn → ξ and there exists λ > 0 such that

lim
n→∞

d(xn+1, ξ)

(d(xn, ξ))α
= λ.
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2. Main Results

We start this section with the following theorem:

Theorem 2.1. Let (X, d) be a metric space, let D be a nonempty closed subset of X and

let φ be a Bianchini-Grandolfi gauge function on an interval J . Let T : X → CL(X) and

f : D → X be two mappings such that TD ⊂ fD, Tx ∩D ̸= ∅ and

d(fy, Ty ∩D) ≤ φ(d(fx, fy)), (4)

for all x ∈ D and fy ∈ Tx ∩ D with d(fx, fy) ∈ J . Moreover, the strict inequality holds

when d(fx, fy) ̸= 0. Let fD be a complete metric subspace of X. Suppose that there exists

x0 ∈ D such that d(fx0, fz) ∈ J for some fz ∈ Tx0 ∩D. Then:

: (i) there exists an f -orbit {fxn} of T in D and fξ ∈ D such that limn fxn = fξ;

: (ii) ξ is a coincidence point of f and T if and only if the function g(x) := d(fx, Tx∩D)

is lower semi-continuous at ξ;

: (iii) if ffξ = fξ then f and T have a common fixed point.

Proof. By hypothesis, we have x0 ∈ D such that fx1 ∈ Tx0 ∩D and d(fx0, fx1) ∈ J . We

assume that d(fx0, fx1) ̸= 0, for otherwise x0 is a coincidence point of f and T . Define

ρ0 = σ(d(fx0, fx1)), where σ is defined by (1). From (2), σ(t) ≥ t. We have

d(fx0, fx1) ≤ ρ0. (5)

Notice that fx1 ∈ S(fx0, ρ0) = {fx ∈ fD : d(fx0, fx) ≤ ρ0}. It follows from (4) that

d(fx1, Tx1 ∩D) < φ(d(fx0, fx1)). We choose ϵ1 > 0 such that

d(fx1, Tx1 ∩D) + ϵ1 ≤ φ(d(fx0, fx1)). (6)

It follows from Lemma 1.1 that there exists fx2 ∈ Tx1 ∩D such that

d(fx1, fx2) ≤ d(fx1, Tx1 ∩D) + ϵ1. (7)

We assume that d(fx1, fx2) ̸= 0, otherwise x1 is a coincidence point of f and T . From

inequalities (6) and (7), we have

d(fx1, fx2) ≤ φ(d(fx0, fx1)). (8)

Note that d(fx1, fx2) ∈ J . Further, fx2 ∈ S(fx0, ρ0), since

d(fx0, fx2) ≤ d(fx0, fx1) + d(fx1, fx2)

≤ d(fx0, fx1) + φ(d(fx0, fx1))

≤ d(fx0, fx1) + σ(φ(d(fx0, fx1)))

= σ(d(fx0, fx1)) (using (2))

= ρ0.

Again choose ϵ2 > 0 such that

d(fx2, Tx2 ∩D) + ϵ2 ≤ φ(d(fx1, fx2)). (9)

It again follows from Lemma 1.1 that there exists fx3 ∈ Tx2 ∩D such that

d(fx2, fx3) ≤ d(fx2, Tx2 ∩D) + ϵ2. (10)

We assume that d(fx2, fx3) ̸= 0, otherwise x2 is a coincidence point of f and T . From

inequalities (8), (9) and (10), we have

d(fx2, fx3) ≤ φ2(d(fx0, fx1)). (11)
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Note that d(fx2, fx3) ∈ J . Further, fx3 ∈ S(fx0, ρ0), since

d(fx0, fx3) ≤ d(fx0, fx1) + d(fx1, fx2) + d(fx2, fx3)

≤ d(fx0, fx1) + φ(d(fx0, fx1)) + φ2(d(fx0, fx1)))

≤
∞∑
j=0

φj(d(fx0, fx1))

= σ(d(fx0, fx1)) = ρ0.

Repeating the above argument, inductively we obtain a sequence {fxn}n∈N such that

fxn ∈ Txn−1 ∩D, (12)

d(fxn, fxn+1) ≤ φn(d(fx0, fx1)), (13)

d(fxn−1, fxn) ∈ J, and fxn ∈ S(fx0, ρ0). (14)

We claim that {fxn} is a Cauchy sequence. For n > p ∈ N, from (13), we have

d(fxn, fxp) ≤ d(fxn, fxn+1) + d(fxn+1, fxn+2) + · · ·+ d(fxp−1, xp)

≤ φn(d(fx0, fx1)) + · · ·+ φp−1(d(fx0, fx1))

≤
∞∑
j=n

φj(d(fx0, fx1)).

Using (1), it follows from the above inequality that {fxn} is a Cauchy sequence in S(fx0, ρ0).

Thus there exists fξ ∈ S(fx0, ρ0) with fxn → fξ. Note that fξ ∈ D, as well, since

fxn ∈ Txn−1 ∩D. It follows from (13) that

d(fxn, Txn ∩D) ≤ d(fxn, fxn+1) ≤ φn(d(fx0, fx1)). (15)

Letting n → ∞, from (15), we get

lim
n→∞

d(fxn, Txn ∩D) = 0. (16)

Suppose g(x) = d(fx, Tx ∩D) is lower semi-continuous at ξ. Then

d(fξ, T ξ ∩D) = g(ξ) ≤ lim inf
n→∞

g(xn) = lim inf
n→∞

d(fxn, Txn ∩D) = 0.

Hence, fξ ∈ Tξ, since Tξ is closed. Conversely, if ξ is a coincidence point of f and T , then

g(ξ) = 0 ≤ lim infn g(xn). Suppose we have fξ = f(fξ). Let z = fξ, z = fξ = f(fξ) =

fz ∈ Tξ ∩D. Then from (4), we have

d(fz, Tz ∩D) ≤ φ(d(fξ, fz)) = φ(0) = 0.

Thus z = fz ∈ Tz. �

Example 2.1. Let X = {0, 1} ∪
{

1
2n : n ∈ N

}
be endowed with the usual metric d. Let

D = {0} ∪
{

1
2n : n ∈ N

}
and J = [0, 1]. Define T : X → CL(X) by

Tx =


{0, 1}, if x = 0, 1{
0, 1

2

}
, if x = 1

2

{ 1
2n+1 ,

1
2n−1 }, if x = 1

2n : n ≥ 2,
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and f : D → X by

fx =


1, if x = 0

0, if x = 1
2

1
2n−1 , if x = 1

2n : n ≥ 2.

Note that TD ⊂ fD and fD is complete. Taking φ(t) = t
2 for each t ∈ J . Further, all other

conditions of Theorem 2.1 hold. Thus f and T have a coincidence point.

Theorem 2.2. Let (X, d) be a metric space, let D be a nonempty closed subset of X and

let φ be a Bianchini-Grandolfi gauge function on an interval J . Let T : X → CL(X) and

f : X → X be two mappings such that TD ⊂ fX, Tx ∩D ̸= ∅ and

d(fy, Ty ∩D) ≤ φ(d(fx, fy)),

for all x ∈ D and fy ∈ Tx ∩ D with d(fx, fy) ∈ J . Moreover, the strict inequality holds

when d(fx, fy) ̸= 0. Let fX be a complete metric subspace of X. Suppose that there exists

x0 ∈ D such that d(fx0, fz) ∈ J for some fz ∈ Tx0 ∩D. Then:

: (i) there exists an f -orbit {fxn} of T in D and fξ ∈ D such that limn fxn = fξ;

: (ii) ξ is a coincidence point of f and T if and only if the function g(x) := d(fx, Tx∩D)

is lower semi-continuous at ξ;

: (iii) if ffξ = fξ then f and T have a common fixed point.

Proof. The proof of this theorem is similar to the proof of Theorem 2.1. �

Example 2.2. Let X = R be endowed with the usual metric d. Let D = {0} ∪
{

1
n : n ∈ N

}
and J = [0, 1]. Define T : X → CL(X) by

Tx =



(−∞, x], if x < 0

{0}, if x = 0{
1

n+2 ,
1

n+3

}
∪ [n,∞), if x = 1

n , : 1 ≤ n ≤ 6{
0, 1

n+1

}
∪ [n,∞), if x = 1

n : n > 6

[2x,∞), otherwise,

and f : X → X by

fx =


0, if x ≤ 0
1

n+1 , if x = 1
n : n ∈ N

2
3 , if x ∈ [0, 1]−

{
1
n : n ∈ N

}
∪ {0},

x
2 , if x > 1.

Note that TD ⊂ fX and fX is complete. Taking φ(t) = 4t
5 for each t ∈ J . We see that

all the conditions of Theorem 2.2 are satisfied. Thus f and T have a coincidence point.

Moreover, f0 = ff0. Thus 0 is a common fixed point of f and T .

Theorem 2.3. Let (X, d) be a metric space, let D be a nonempty closed subset of X, let φ

be a gauge function of order r ≥ 1 on an interval J and let ϕ : J → R+ be a nondecreasing
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function defined by (3). Let T : X → CL(X) and f : D → X be two mappings such that

TD ⊂ fD, Tx ∩D ̸= ∅ and

d(fy, Ty ∩D) ≤ φ(d(fx, fy)), (17)

for all x ∈ D and fy ∈ Tx ∩ D with d(fx, fy) ∈ J . Moreover, the strict inequality holds

when d(fx, fy) ̸= 0. Let fD be a complete metric subspace of X. Suppose that there exists

x0 ∈ D such that d(fx0, fz) ∈ J for some fz ∈ Tx0 ∩D. Then:

: (i) there exists an f -orbit {fxn} of T in S(fx0, ρ0) = {fx ∈ fD : d(fx0, fx) ≤ ρ0}
that converges with rate of convergence at least r to a point fξ ∈ S(fx0, ρ0), where

ρ0 = σ(d(fx0, fx1)) and σ is defined by (1);

: (ii) for each n ≥ 0, we have the following a priori estimate

d(fxn, fξ) ≤
λSn(r)d(fx0, fx1)

1− λrn
, (18)

where λ = ϕ(d(fx0, fx1));

: (iii) for each n ≥ 1, we have the following a posteriori estimate

d(fxn, fξ) ≤ φ(d(fxn, fxn−1))

1− [ϕ(d(fxn, fxn−1))]r
; (19)

: (iv) for each n ≥ 1, we have

d(fxn, fxn+1) ≤ λSn(r)d(fx0, fx1); (20)

: (v) ξ is a coincidence point of f and T if and only if the function g(x) := d(fx, Tx∩D)

is lower semi-continuous at ξ;

: (vi) if ffξ = fξ then f and T have a common fixed point.

Proof. (i) Theorem 2.1 insures the existence of an f -orbit {fxn} of T in S(fx0, ρ0) that

converges to fξ which belongs to S(fx0, ρ0).

(ii) For m > n, using (13) and Lemma 1.2-(iii) we have

d(fxn, fxm) ≤
m−1∑
i=n

d(fxi, fxi+1)

≤
m−1∑
i=n

φi(d(fx0, fx1))

≤ d(fx0, fx1)

m−1∑
j=n

λSj(r).

Keeping n fixed and letting m → ∞, we get

d(fxn, fξ) ≤ d(fx0, fx1)
∞∑
j=n

λSj(r). (21)

Note that,

∞∑
j=n

λSj(r) = λSn(r) + λSn+1(r) + · · ·

= λSn(r)[1 + λrn + λrn+rn+1

+ λrn+rn+1+rn+2

+ · · · ].
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Since r ≥ 1, therefore

rn + rn+1 ≥ 2rn, rn + rn+1 + rn+2 ≥ 3rn · · · ,

and hence,

λrn+rn+1

≤ λ2rn , λrn+rn+1+rn+2

≤ λ3rn · · · ,

since 0 < λ < 1. Thus,

∞∑
j=n

λSj(r) ≤ λSn(r)[1 + λrn + λ2rn + λ3rn + · · · ] = λSn(r)

1− λrn
.

Substituting this in (21), we get

d(fxn, fξ) ≤ d(fx0, fx1)
λSn(r)

1− λrn
.

(iii) For each n ≥ 0, from (21), we have

d(fxn, fξ) ≤ d(fx0, fx1)
∞∑
j=n

[ϕ(d(fx0, fx1))]
Sj(r).

Putting n = 0, y0 = fxn and y1 = fx1, we have

d(y0, fξ) ≤ d(y0, y1)
∞∑
j=0

[ϕ(d(y0, y1))]
Sj(r).

Setting y0 = fxn, and y1 = fxn+1, we have

d(fxn, fξ) ≤ d(fxn, fxn+1)
∞∑
j=0

[ϕ(d(fxn, fxn+1))]
Sj(r) (22)

≤ φ(d(fxn, fxn−1))

∞∑
j=0

[ϕ(φ(d(fxn, fxn−1)))]
Sj(r)

≤ φ(d(fxn, fxn−1))
∞∑
j=0

[ϕ(φ(d(fxn, fxn−1)))]
j

=
φ(d(fxn, fxn−1))

1− ϕ(φ(d(fxn, fxn−1)))
, (23)

since Sj(r) ≥ j. Now by Lemma 1.2-(iv), we have

ϕ(φ(d(fxn, fxn−1))) ≤ [ϕ(d(fxn, fxn−1))]
r,

which means that,

1

1− ϕ(φ(d(fxn, fxn−1)))
≤ 1

1− [ϕ(d(fxn, fxn−1))]r
. (24)

For each n ≥ 1, from (23), we have

d(fxn, fξ) ≤ φ(d(fxn, fxn−1))

1− ϕ(φ(d(fxn, fxn−1)))

≤ φ(d(fxn, fxn−1))

1− [ϕ(d(fxn, fxn−1))]r
(using (24)).
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(iv) For n ≥ 1, using (13) and Lemma 1.2, we have

d(fxn, fxn+1) ≤ φn(d(fx0, fx1))

≤ d(fx0, fx1)ϕ(d(fx0, fx1))
Sn(r)

= d(fx0, fx1)λ
Sn(r).

The proofs of part (v) and (vi) are similar as in the proof of Theorem 2.1. �

Theorem 2.4. Let (X, d) be a metric space, let D be a nonempty closed subset of X, let φ

be a gauge function of order r ≥ 1 on an interval J and let ϕ : J → R+ be a nondecreasing

function defined by (3). Let T : X → CL(X) and f : X → X be two mappings such that

TD ⊂ fX, Tx ∩D ̸= ∅ and

d(fy, Ty ∩D) ≤ φ(d(fx, fy)),

for all x ∈ D and fy ∈ Tx ∩ D with d(fx, fy) ∈ J . Moreover, the strict inequality holds

when d(fx, fy) ̸= 0. Let fX be a complete metric subspace of X. Suppose that there exists

x0 ∈ D such that d(fx0, fz) ∈ J for some fz ∈ Tx0 ∩D. Then:

: (i) there exists an orbit {fxn} of T in S(fx0, ρ0) that converges with rate of convergence

at least r to a point fξ ∈ S(fx0, ρ0), where ρ0 = σ(d(fx0, fx1)) and σ is defined by

(1);

: (ii) for each n ≥ 0, we have the following a priori estimate

d(fxn, fξ) ≤
λSn(r)d(fx0, fx1)

1− λrn
,

where λ = ϕ(d(fx0, fx1));

: (iii) for each n ≥ 1, we have the following a posteriori estimate

d(fxn, fξ) ≤ φ(d(fxn, fxn−1))

1− [ϕ(d(fxn, fxn−1))]r
;

: (iv) for each n ≥ 1, we have

d(fxn, fxn+1) ≤ λSn(r)d(fx0, fx1);

: (v) ξ is a coincidence point of f and T if and only if the function g(x) := d(fx, Tx∩D)

is lower semi-continuous at ξ.

: (vi) if ffξ = fξ then f and T have a common fixed point.

Proof. The proof of this theorem is similar to the proof of Theorem 2.3. �

Remark 2.1. We can note the rate of convergence from the a priori estimate (18) as follows:

d(fxn+1, fξ)

(d(fxn, fξ))r
=

λSn+1(r)d(fx0, fx1)

1− λrn+1

( 1− λrn

λSn(r)d(fx0, fx1)

)r

=
λ

(d(fx0, fx1))r−1

(1− λrn)r

1− λrn+1 .

Taking the limit when n → ∞, we get

lim
n→∞

d(fxn+1, fξ)

(d(fxn, fξ))r
=

λ

(d(fx0, fx1))r−1
,

then by Definition 1.3 the rate of convergence of the sequence {fxn} is r with asymptotic

error constant λ
(d(fx0,fx1))r−1 .
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Remark 2.2. In Haghi et al. [11] showed that some coincidence point theorem for hybrid

maps (f, T ) follows from the corresponding fixed point theorems for multivalued map T . Now

the question is that can our theorems follow from the corresponding fixed point theorems for

multivalued map T with f as an identity map, that is, Can Theorem 2.1 follows from the

result obtain by considering f = I in Theorem 2.1. By looking closely at the proof of [11,

Theorem 2.16], the answer to this question in general is negative because our contractive

condition holds for x ∈ D and fy ∈ Ty ∩D.

3. Consequences

By considering f = I, Theorem 2.2 and Theorem 2.4 generalize and extend: Theorem

5 of Mizoguchi and Takahashi [12]; Theorem 2.1 of Kamran [13]; Theorem 2.11 and Theorem

2.15 of Kiran and Kamran [14], respectively; Also by taking f = I and T : D → X, then

from Theorem 2.2 and Theorem 2.4, we obtain Theorem 4.1 and Theorem 4.2 of Proinov [7],

respectively.
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