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SOME COINCIDENCE POINT THEOREMS FOR SEMI-NONSELF
HYBRID PAIR WITH ERROR ESTIMATES OF f-PICARD SEQUENCES

Muhammad Usman Ali', Quanita Kiran?, Tayyab Kamran®

In this paper, we prove some coincidence and common fized point theorems
for semi-nonself and for self hybrid pairs. Owur results not only provide the iterative
scheme to locate the coincidence point but also provide the error estimates of f-Picard
sequence. In the support of our results we give some nontrivial examples. The results of
this paper, extend and generalize many existing results in literature. The observation of
Haghi [R. H. Haghi, Sh. Rezapour, N. Shahzad, Some fized point generalization are not
real generalizations, Nonlinear Anal., 74 (2011) 1799-1803.] in general is not applicable
for our results.
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1. Introduction

Markin [1] and Nadler [2] initiated the study of fixed point theorems for multivalued
mappings. Assad and Kirk [3] gave sufficient condition for nonself multivalued mapping to
have a fixed point. Ahmed and Khan [4] proved some common fixed point theorems for
nonself hybrid pair of mappings. Subsequently, Singh and Mishra [5] and Ciric et al. [6]
also proved some coincidence and common fixed point theorems for nonself hybrid pair in
metrically convex metric space. In this paper, we prove some coincidence point and common
fixed point theorems for semi-nonself and self hybrid pairs with error estimates of f-Picard
sequence in a complete metric space.

Let (X,d) be a metric space and D C X. For each x € X and A C X, d(x,A) =
inf{d(x,y) : y € A}. We denote by CL(X) the class of all nonempty closed subsets of X.
A point = € X is said to be a fixed point of T : X — CL(X) if x € Tz. A point x € D
is said to be a coincidence point of f : D — X and T : X — CL(X) if fo € Tz. A
point € D is said to be a common fixed point of f : D — X and T : X — CL(X) if
x = fax € Tx. If for g € X, there exists a sequence {z,} in X such that =, € Tx,_1,
then O(T, zo) = {xo, 1,22, -} is said to be the orbit of T': X — CL(X). If for zg € X,
f:X—>XandT:X — CL(X), then a sequence {fz,} in fX of the form fx, € Tz, is
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said to be an f-Picard sequence. If for g € D and f : D — X there exists a sequence { fz,}
in fD such that fz, € Tx,_1, then O;(x¢) = {fz1, fra, frs,---} is said to be an f-orbit of
T:X — CL(X). A mapping g : X — R is said to be lower semi-continuous at £ if for any
sequence {z,} in X with x,, — &, implies ¢g(§) < liminf,, o, g(z,). Throughout this paper
J denotes an interval on R, containing 0, that is an interval of the form [0, A],[0, A) or
[0,00) and S,,(t) denotes the polynomial S,,(t) = 1+t +...+t""1. We use the abbreviation
™ for the nth iterate of a function ¢ : J — J.

Definition 1.1. [7] Let r > 1. A function ¢ : J — J is said to be a gauge function of
order r on J if it satisfies the following conditions:
2 (1) e(At) < XN (t) for all A € (0,1) and t € J;
2 (1) o(t) <t forallt € J—{0}.
It is easy to see that the first condition of Definition 1.1 is equivalent to the following;:
©(0) = 0 and o(¢)/t" is nondecreasing on J — {0}.

Definition 1.2. [7, 8/ A nondecreasing function ¢ : J — J is said to be a Bianchini-
Grandolfi gauge function on J if

Z O™ (t) < o0, for allt e J.

n=0

Remark 1.1. Let the nondecreasing function ¢ : J — J is such that
o(t) = Z " (t) < oo, forallte J. (1)
n=0

Then Ptak [9] called ¢ : J — J a rate of convergence on J and noticed that ¢ satisfies the
following functional equation

o(t) =o(p(t)) +t. (2)
Remark 1.2. [7] Every gauge function of order r > 1 on J is a Bianchini-Grandolfi gauge

function on J.

Lemma 1.1. [2] Let (X,d) be a metric space. Let B € CL(X) and x € X. Then for each
€ > 0, there exists b € B such that d(x,b) < d(x, B) + €.

Lemma 1.2. [7] Let ¢ be a gauge function of order v > 1 on J. If ¢ is a nonnegative and
nondecreasing function on J satisfying

o(t) =to(t) for all t € J, (3)
then it has the following properties:
: (1) 0< o) <1 forallteJ;
2 (i) p(M) S N TLp(t) for all X € (0,1) and t € J.
Moreover, for each n > 0 we have
s (iii) " (t) < tp(t)5(") for all t € J,
s (iv) o(™(t)) < o) for allt € J.

Definition 1.3. [10] Let (X,d) be a metric space. A real number o > 0 is called an order
of convergence of {x,}, provided x,, — & and there exists X\ > 0 such that

li d(xn-i-l?f)

im =\
n—00 (d(xm é—))a
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2. Main Results
We start this section with the following theorem:

Theorem 2.1. Let (X, d) be a metric space, let D be a nonempty closed subset of X and
let ¢ be a Bianchini-Grandolfi gauge function on an interval J. Let T : X — CL(X) and
f:D — X be two mappings such that TD C fD, Te N D # () and

d(fy, Ty N D) < p(d(fz, fy)), (4)
for all x € D and fy € Tx N D with d(fx, fy) € J. Moreover, the strict inequality holds
when d(fx, fy) #0. Let fD be a complete metric subspace of X. Suppose that there exists
xg € D such that d(fxo, fz) € J for some fz € TxoN D. Then:

: (i) there exists an f-orbit {fx,} of T in D and f€ € D such that lim,, fx, = f¢;
: (i) € is a coincidence point of f and T if and only if the function g(x) := d(fx, TxND)
is lower semi-continuous at &;

2 (4ii) if ffE = f€ then f and T have a common fized point.
Proof. By hypothesis, we have o € D such that fax; € TxogN D and d(fzo, fz1) € J. We

assume that d(fxo, fx1) # 0, for otherwise zg is a coincidence point of f and T. Define
po = o(d(fxo, fx1)), where o is defined by (1). From (2), o(t) > ¢t. We have
d(fxo, fz1) < po. (5)

Notice that fx1 € S(fxo,po) = {fz € fD : d(fzo, fx) < po}. It follows from (4) that
d(fxy,Tx1 N D) < o(d(fxo, fr1)). We choose €; > 0 such that

d(fx1,Te1 N D)+ e < @(d(fxo, fr1)). (6)
It follows from Lemma 1.1 that there exists fxo € Tx1 N D such that
d(fr1, fre) < d(fry,Ter N D) + €. (7)

We assume that d(fx1, fxs) # 0, otherwise z7 is a coincidence point of f and T. From
inequalities (6) and (7), we have

d(fz1, fra) < (d(fxo, fr1)). (8)
Note that d(fx1, fz2) € J. Further, fzs € S(fxg, po), since
d(f.’[o,fl’g) S d(fx07f$1)+d fxlafo)

—~

< d(fzo, fx1) + @(d(fxo, f71))
< d(fwo, far) + o(e(d(fxo, f71)))
= o(d(fzo, fz1)) (using (2))
= Po-
Again choose €5 > 0 such that
d(fxe, Txo N D)+ €2 < o(d(fx1, fx2)). (9)
It again follows from Lemma 1.1 that there exists fxz € Txo N D such that
d(fxa, frs) < d(fze,Tzo N D)+ €. (10)

We assume that d(fxs, fxs) # 0, otherwise x5 is a coincidence point of f and T. From
inequalities (8), (9) and (10), we have

d(faa, fr3) < ¢*(d(fwo, f21)). (11)
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Note that d(fxo, fz3) € J. Further, fzz € S(fxg, po), since

d(fzo, frs) < d(fxo, fz1) +d(fr1, fre) +d(fra, fr3)
< d(fxo, fx1) + @(d(fxo, f21)) + ©*(d(fxo, f21)))

> @I (d(fxo, f21))
j=0

= o(d(fxo, fr1)) = po.

Repeating the above argument, inductively we obtain a sequence { fz, }nen such that

(
(

IN

fr, €Tx, 1ND, (12)
d(fmnafanrl) < <pn(d(fx0afx1))a (13)
d(fxnflvfxn) € J> and fxn Eg(fxo,m) (14)

We claim that {fz,} is a Cauchy sequence. For n > p € N, from (13), we have

d(fn, fxp) < d(frn, frag) Fd(fen, fonge) o+ d(fxp—lvxp)
< @Md(fro, fr1)) + -+ 9P Hd(fxo, far))

Z (pj(d(fajm fl‘]))

IN

Using (1), it follows from the above inequality that {fz,} is a Cauchy sequence in S(fxq, po)-
Thus there exists f¢& € S(fwo,po) with fx, — f¢. Note that f¢& € D, as well, since
fxn € Txy—1 N D. Tt follows from (13) that

d(fzn, Te, N D) < d(frn, frae) < @"(d(fro, f21))- (15)
Letting n — oo, from (15), we get

lim d(fx,, Tz, ND)=0. (16)

n—oo

Suppose g(z) = d(fz,Tx N D) is lower semi-continuous at . Then
d(f¢&, T¢ND) =g < lin_ljnfg(xn) = lin_l)infd(fxn,Txn N D) =0.

Hence, f¢ € T¢, since T€ is closed. Conversely, if £ is a coincidence point of f and T, then

g(§) = 0 < liminf, g(z,). Suppose we have f§ = f(f§). Let z = f§, 2 = f& = f(f§) =
fze€T&ND. Then from (4), we have

d(fz,TzN D) < @(d(f¢§, fz)) = ¢(0) = 0.
Thus z = fz € Tz. |

Example 2.1. Let X = {0,1} U {2—% in € N} be endowed with the usual metric d. Let

D:{O}U{%:neN} and J = [0,1]. Define T: X — CL(X) by
0,1}, ifz =0,1
Tx = {O,%}, ifx =

1
2
{27L1+13 2n1—1 }; me == % n 2 2,
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and f: D — X by

1, ife=0
_ o1
Je=40, ifr =735

Note that TD C fD and fD is complete. Taking ¢(t) = % for eacht € J. Further, all other
conditions of Theorem 2.1 hold. Thus f and T have a coincidence point.

Theorem 2.2. Let (X, d) be a metric space, let D be a nonempty closed subset of X and
let ¢ be a Bianchini-Grandolfi gauge function on an interval J. Let T : X — CL(X) and
f: X — X be two mappings such that TD C fX, TeND # 0 and

d(fy, TyN D) < p(d(fx, fy)),

for all x € D and fy € Tx N D with d(fx, fy) € J. Moreover, the strict inequality holds
when d(fx, fy) #0. Let fX be a complete metric subspace of X. Suppose that there exists
xo € D such that d(fxo, fz) € J for some fz € TxoN D. Then:

: (i) there exists an f-orbit {fx,} of T in D and f€ € D such that lim,, fx,, = f¢;

(1) € is a coincidence point of f and T if and only if the function g(x) := d(fx, TxND)
is lower semi-continuous at &;

2 (@) if ff€ = f€ then f and T have a common fixed point.

Proof. The proof of this theorem is similar to the proof of Theorem 2.1. |

Example 2.2. Let X =R be endowed with the usual metric d. Let D = {0} U {71I ‘n e N}
and J =[0,1]. Define T : X — CL(X) by

(—o0,z], ifz <0

{0}, ifx=0
o= { i i b Ulnoo), o =1 1<n<s

O,n%rl}u[n,oo), ifx:%:n>6

[2z,00), otherwise,

and f: X — X by

0, ifx <0

n%rl, ifx:%:neN

2, ifxE[O,l}—{%:neN}U{O},
5, ifr>1

fz

Note that TD C fX and fX is complete. Taking p(t) = % for each t € J. We see that
all the conditions of Theorem 2.2 are satisfied. Thus f and T have a coincidence point.
Moreover, fO = ff0. Thus 0 is a common fixed point of f and T'.

Theorem 2.3. Let (X,d) be a metric space, let D be a nonempty closed subset of X, let ¢
be a gauge function of order r > 1 on an interval J and let ¢ : J — RT be a nondecreasing
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function defined by (3). Let T : X — CL(X) and f : D — X be two mappings such that
TDC fD, TrND #0 and

d(fy, Ty N D) < o(d(fx, fy)), (17)

for all x € D and fy € Tz N D with d(fx, fy) € J. Moreover, the strict inequality holds
when d(fx, fy) #0. Let fD be a complete metric subspace of X. Suppose that there exists

xog € D such that d(fxo, fz) € J for some fz € TxoN D. Then:
: (i) there exists an f-orbit {fx,} of T in S(fwxo,po) = {fr € fD : d(fxo, fz) < po}
that converges with rate of convergence at least v to a point f& € S(fxg,po), where

po = o(d(fxo, fx1)) and o is defined by (1);
: (i) for each n > 0, we have the following a priori estimate

)\Sn(’f‘)d(fxo’ fxl)

d(fan, f6) < "R, (18)
where A = ¢(d(fxo, f21));
s (iii) for each n > 1, we have the following a posteriori estimate
d(fmn,ff) < @(d(fx'mfxn—l)) . (19)

1- [¢(d(fxnv fwnfl))}r ’

2 () for each n > 1, we have

A(f2n, fTns1) < AOd(fao, f21); (20)

: (v) € is a coincidence point of [ and T if and only if the function g(z) := d(fx, TxND)
is lower semi-continuous at &;
2 (vi) if ffE = f& then f and T have a common fized point.

Proof. (i) Theorem 2.1 insures the existence of an f-orbit {fwz,} of T in S(fzo,po) that
converges to f& which belongs to S(fxo, po).
(ii) For m > n, using (13) and Lemma 1.2-(iii) we have

m—1
A(fan, frm) < Y d(fai, frin)
i=n
m—1 )
< Z ()DZ(d(fI07fﬂj1))
- m—1
< d(fxo, frr) Y AT,
Jj=n
Keeping n fixed and letting m — oo, we get
d(fon, £§) < d(fxo, fz1) Y A, (21)
j=n
Note that,
Z A5 = \Sn(r) L \Sna(r) 4oL
j=n
_ )\Sn(r) [1 +)\r" +>\r"+r"‘+1 +)\r"+rn+l+r"+2 + .- ]
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Since r > 1, therefore
R R e L= LT
and hence,
AT‘”L+T‘"L+1 < )\27"" )\T'n+7"”+1+7'n+2 < )\37"" .
since 0 < A < 1. Thus,
> " 0 g ASn ()
Z)\Sj(r) < )\Sn(r)[l N AT N3 Jr} — VR
j=n
Substituting this in (21), we get
A\Sn (r)
(fxﬂ7f§)<d(fx07fxl) )\7‘"'
(iii) For each n > 0, from (21), we have
d(fn, 1€) < d(fo, fr1) Z d(fo, fo1))] ).
Putting n = 0,y9 = fx,, and y; = fz1, we have
d(yo, 1€) < d(yo,1) Y _[6(dlyo, 1)) 5.
§=0
Setting yo = fxn, and y; = fx,41, we have
A(fn, f§) < d(frn, frni) Y [0(d(f2n, frni1))] %) (22)
7=0
< @(d(fn, frn1)) Y [d((d(fn, frn-1)))] "
7=0
< @(d(fn, frn1)) Y [0((d(fn, f2n-1)))
7=0
1- ( (d(fzn, fxn—l)))
since S;(r) > j. Now by Lemma 1.2-(iv), we have
o(e(d(fan, frn-1))) < [P(d(fn, fra-1))]",
which means that,
1 1
(24)

1= o(p(d(fzm Frn 1)) — 1= [0@d(fzm fon )T

For each n > 1, from (23), we have

p(d(fzn, frn-1))

= o(e(d(fan, frn-1)))
< @(d(fxmfxnfl))

B — [p(d(frn, frn-1))]"

d(fzn, f§) <

(using (24)).
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(iv) For n > 1, using (13) and Lemma 1.2, we have

d(fxnv fxn+1) < gon(d(fxm fl‘l))

< d(fao, fr)o(d(fao, f21)) 5"
= d(fzo, fe)A.
The proofs of part (v) and (vi) are similar as in the proof of Theorem 2.1. O

Theorem 2.4. Let (X,d) be a metric space, let D be a nonempty closed subset of X, let ¢
be a gauge function of order r > 1 on an interval J and let ¢ : J — RT be a nondecreasing
function defined by (3). Let T : X — CL(X) and f : X — X be two mappings such that
TDC fX, TxND # 0 and

d(fy, Ty N D) < p(d(fz, fy)),
for all x € D and fy € Ta N D with d(fx, fy) € J. Moreover, the strict inequality holds
when d(fx, fy) #0. Let fX be a complete metric subspace of X. Suppose that there exists
xo € D such that d(fxo, fz) € J for some fz € TxoN D. Then:
: (i) there exists an orbit { fx,} of T in S(fzo, po) that converges with rate of convergence
at least v to a point f& € S(fxo,po), where py = o(d(fxo, fr1)) and o is defined by
(1);
: (i) for each n > 0, we have the following a priori estimate
XS (Vd(fao, f1)
1—A ’

d(fzn, f€) <

where A = ¢(d(fxo, f21));
: (iii) for each n > 1, we have the following a posteriori estimate

d(fmn f§) S w(d(fx”“ fxn—l))

1= [0(d(frn, fn D)
: () for each n > 1, we have

d(fxnu fxn+1) S )\S”(T)d(fx07 f$1)7

2 (v) € is a coincidence point of f and T if and only if the function g(z) := d(fx, TxND)
is lower semi-continuous at &.
2 (vi) if ffE = f€ then f and T have a common fized point.

Proof. The proof of this theorem is similar to the proof of Theorem 2.3. |

Remark 2.1. We can note the rate of convergence from the a priori estimate (18) as follows:

d(fni1, &) AT d(fwo, fau) ( 1=\ )T
(d(fan, fE))" L=t ASn () d( fo, fr)
A (1—=\")r
(d(fxo, far))r=t 1=t
Taking the limit when n — oo, we get

lim d(f$n+17f§) _ A
n—oo (d(fzn, fE))"  (d(fzo, fz1))

then by Definition 1.3 the rate of convergence of the sequence {fx,} is r with asymptotic
error constant

A
(d(fzo,fx1))" 1"
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Remark 2.2. In Haghi et al. [11] showed that some coincidence point theorem for hybrid
maps (f,T) follows from the corresponding fized point theorems for multivalued map T. Now
the question is that can our theorems follow from the corresponding fixed point theorems for
multivalued map T with f as an identity map, that is, Can Theorem 2.1 follows from the
result obtain by considering f = I in Theorem 2.1. By looking closely at the proof of [11,
Theorem 2.16], the answer to this question in general is negative because our contractive
condition holds for x € D and fy € TyN D.

3. Consequences

By considering f = I, Theorem 2.2 and Theorem 2.4 generalize and extend: Theorem
5 of Mizoguchi and Takahashi [12]; Theorem 2.1 of Kamran [13]; Theorem 2.11 and Theorem
2.15 of Kiran and Kamran [14], respectively; Also by taking f = I and T : D — X, then
from Theorem 2.2 and Theorem 2.4, we obtain Theorem 4.1 and Theorem 4.2 of Proinov [7],
respectively.
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