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YOLO-v8 IN CAPTURING IMPERFECTIONS GENERATED 

BY CHANGING 3D PRINTER PARAMETERS 

Ana-Maria TĂLÎNGĂ1, Anton HADĂR2,3,4, Marius-Valentin DRĂGOI5*, Ionuț 

NISIPEANU6, Haider Abdullah ALI7, Cosmin Petru SUCIU8 

This paper presents the design and implementation of PLA objects using 

different parameters of a 3D printer machine, and the detection of imperfections of 

components surface using a custom YOLO-v8 algorithm. The different parameters 

used by the 3D printer and environment changes can produce errors on a material 

surface, which can be classified and revealed by computer vision detection, to avoid 

flaws in the fabrication process. The implemented Windows application has been 

trained with thousands of pictures and intensely tested to recognise with a big 

precision, imperfections on PLA 3D printed objects.  
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1. Introduction 

With the promise of a more rapid and efficient production process, 3D 

printing has existed since 1945 in theory and, in somewhat more limited form, since 

1971. Beginning with the introduction of the first stereolithographic (SLA) systems 

in 1986 [1], the 3D printing processes have expanded throughout the last several 

decades. According to ASTM (Additive Manufacturing Technology standards) 

International, there are seven distinct technological steps involved in 3D printing, 

and several commercial technologies stand in for each of them.  
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One method of producing components is Additive Manufacturing (AM), 

sometimes known as 3D printing. This procedure involves creating an item by 

adding material in cross-sectional layers [2]. AM can build complicated forms and 

structures while controlling resources, reducing waste and other drawbacks of 

traditional production, making it more attractive [3]. 

Fused Desing Modeling (FDM) is an AM technique used by the 3D printer 

to fabricate components used to train the implemented Windows software 

applications described in this paper. The typical feedstock material used in FDM is 

a polymer filament spool, often possessing a common 1.5mm diameter, ranging 

from 1.5 to 3 mm [4], [5]. The pliable polymer is applied onto a heated surface 

using a computer numerical control system, which follows a 3D model program 

and moves it along a 3D axis. Upon exiting the extrusion nozzle, the polymer 

undergoes a cooling process and then hardens. The process involves the sequential 

deposition of polymer filament layers until the desired result is completed. The 

FDM method works well with Acrylonitrile Butadiene Styrene (ABS) and 

Polylactic Acid (PLA) [6], both polymers being the most used for rapid prototyping. 

Any changes from the environment, machine parameters or machine 

components (if one or more components get destroyed) will affect the printed 

object, on its surface appearing imperfections. These issues are hard to resolve after 

the object is 3D printed, most of the time, objects are broken on corrections. The 

use of Artificial intelligence (AI) in the custom detection algorithm for picture 

analysis will facilitate improvements in the 3D printing process, with all the errors 

being collected before printing 3D all the objects. 

The goal of this research is to create a Windows software application to 

recognise defects on 3D printed objects, which are called imperfections related to a 

PLA object with no defects on its surface. 

 

2. Literature review 

 

Much research has been conducted to asses the impact of 3D printing 

machine parameters on the qualities of products, the surface quality being a notable 

constraint associated with the FDM technique [7]. 

Galantucci et al. [8] explain the influence of the surface quality or 

dimensional accuracy of FDM products, is made by two sets of parameters: 

procedure and 3D printing circumstances: 

• procedure parameters include several factors, including raster angle, layer 

air gap, thickness and ideal build direction; 

o additional techniques to enhance the quality of the product include 

pre-processing, including the slicing procedure, and postprocessing, 

which involves treatments on the surface of the object. 
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• 3D printing parameters raster width, feed rate, flow rate and extrusion 

temperature. 

Not only do printing conditions influence FDM products, but also the 

structure of the material used represents a factor as specified by Kaveh et al. [9]. 

One artefact that might appear on the surface of 3D FDM printed items is 

the deposition striae tool mark as Pavlovich has specified [10]. These extra features 

are added to the impressed and striated ones that are often said to be transmitted to 

an item during machining using contact and force from the tool's working surface. 

Using methods like the Fast Fourier Transform (FFT), Shim et al. [11] found 

that it was feasible to conduct image analyses of 3D printed items with digital 

imaging and microscopy to identify surface irregularities and other characteristics 

that could emerge during the 3D printing process. 

AI has become a very useful tool in everyday life for many of the activities 

we have to perform. Scientific papers from special literature used AI to simulate, 

investigate or resolve a concrete problem. The specific using of AI to determine 

imperfections on 3D printed objects represents a new way of using computer vision 

to reduce industry fabrication fails. Chen and Gu [12] implemented a framework 

for the next generation of materials with extraordinary characteristics, a framework 

which is expected to transform methods for designing and optimizing composites. 

 

3. Materials and methods 

 

This section presents the design, 3D printing and analysis of a set of PLA 

objects. The implementation of a custom YOLO-v8 computer vision algorithm is 

also presented to recognise imperfections on the printed objects’ surface. 
 

3.1 Designing and 3D printing of a set of PLA objects 

PLA objects have been designed in IDEA Maker software. The resulting 

STL files have been imported into the 3D printer Creality Ender-3 S1 Pro to print 

objects using PLA material. The changing of the printing parameters is done in 

IDEA Maker software. 

Temperature is an important factor in 3D printing to avoid nozzle blockage 

and serious defects [13]. 

Fig.1 shows PLA printed objects with no defects on the surface, which 

parameters from Table 1 have been used. 
 

 
Fig.1. PLA object 3D printed, with no imperfections on its surface 
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Table 1 

The 3D printer parameters used for the PLA objects with no imperfections on the surface 

Infill Infill type 
3D printing head 

temperature 
Print speed Layer thickness 

100% straight 205°C 50mm/s 0.4mm 

 

3D printer parameters have been changed to obtain PLA objects with 

imperfections on the surface. The objects with imperfections have had the same 

shape, infill and infill type as the objects with no imperfections, only peak 

temperature and print speed being different, as can be seen in Table 2. 
 

Table 2 

The 3D printer parameters used for the PLA objects with defects on the surface 

PLA object 

with defects Infill Infill type 
3D printing peak 

temperature 
Print speed 

Layer 

thickness 

1 100% straight 220°C 70mm/s 0.4mm 

2 100% straight 220°C 40mm/s 0.4mm 

3 100% straight 190°C 50mm/s 0.4mm 

4 100% straight variable variable 0.4mm 

 

Fig.2 shows the fault induced by high temperature and speed. The peak 

printing temperature and speed are 15°C and 20mm/s higher than for the PLA object 

with no defects. The layers overlapped, as seen in Fig.A2's highlight box 1. Due to 

extreme heating and rapid speed, the filament fails to solidify until the next layer is 

placed. 
 

 
Fig.2. First PLA object with defects on the surface 

 

Fig.3 shows the fault generated by a high temperature and delayed layer 

deposition. Like before, the printhead temperature is 15°C higher, however, the 

print speed is 10mm/s lower than required. Due to the slow print speed, the print 

head continually stayed in one location, scorching the preceding layer. The package 

marked 2 has this fault. 
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Fig.3. Second PLA object with defects on the surface 

 

In Fig.4, imperfections from a low temperature are seen. The print head 

temperature is 15°C lower. This caused layer peeling or gaps. The filament's low 

temperature causes layers to separate or leave gaps. In the index 3 border, the layers 

have not attached, resulting in uneven filament strands. These threads were attached 

to the print head and collected as shown. The filament has not achieved the melting 

temperature needed to make a homogeneous layer, causing gaps in the index 4 

border. 
 

 
Fig.4. Third PLA object with defects on the surface 

 

The fault in all sections is shown in Fig.5, which correspond to the forth 

record in Table 2 (with variable 3D printing peak temperature and print speed). 

Detail-oriented component design is impossible due to the layer's coarse thickness. 

The layer thickness must be as thin as possible to get the details on the pieces, but 

this approach might increase printing time. This error on the object surface can be 

seen for all four defects mentioned before. 
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Fig.5. Fourth PLA object with defects on the surface 

 

3.2 YOLO evolution 

 

Object Detection (OD) is a computer vision problem that involves the 

identification and localisation of items belonging to certain pre-defined classes in 

input pictures [14].  

Computer vision comprises subfields that include:  

• image classification - the process by which a machine learning algorithm is 

trained to identify and classify objects or entities in digital images [15]; 

• object detection - the process by which a system can identify and locate 

objects in an image or video section [16]; 

• object segmentation - an advanced process that involves dividing an image 

into multiple segments or regions to identify and isolate different objects in 

an image [17].  

 

Convolutional Neural Networks (CNNs) consist of using a combination of 

these three domains [18]. CNNs are widely recognised as the standard approach for 

handling image data, and, in contrast to traditional image processing and artificial 

detection approaches, use numerous convolutional layers together with pooling 

structures to uncover profound semantic elements that are concealed within the 

image pixels [19]. 

Without numerous phases or area recommendations, Single-Shot object 

Detection (SSD) may identify objects in an image or video in one pass. The class 

labels and bounding boxes of objects in an image or video are directly predicted by 

a single CNN in one-shot object detectors like YOLO (You Only Look Once) and 

SSD. These models are trained end-to-end utilising a huge dataset of annotated 

pictures and object-bounding boxes. Various techniques and models, including R-
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CNN, Faster R-CNN, YOLO, and SSD, have been created specifically for object 

identification. These algorithms and models are used in many applications, 

including object monitoring, security systems and autonomous vehicles [20]. 

At the beginning of 2023, Ultralytics confirmed the latest member of the 

YOLO family, YOLO-v8 [21]. Despite an upcoming print release and ongoing 

development to add more capabilities to the YOLO-v8 repository, first comparisons 

show that the new YOLO is superior to its predecessors and represents cutting-edge 

technology in YOLO algorithm development ( see Fig.6). 

 

 
Fig 6. Comparison of YOLO-v8 with its predecessors 

 

Fig.6 demonstrates that all versions of YOLO-v8 have a greater throughput 

compared to YOLO-v5 and YOLO-v6, even though they have the same number of 

parameters and are trained on 640 image resolution. This indicates that YOLO-v8 

has made hardware-efficient architecture modifications. Ultralytics introduced two 

versions of their object detection model, YOLO-v8 and YOLO-v5. YOLO-v5 

demonstrated remarkable real-time capabilities. According to initial testing 

findings, YOLO-v8 is anticipated to prioritize deployment on limited edge devices 

with a high-speed inference capability. 

YOLO works in this way [22]: 

• Grid division 

o Partition the supplied picture into a grid with size SxS; 

o Each grid cell is tasked with recognising items that have their centres 

located inside that specific cell. 

• Generation of multiple predictions 

o Each grid cell generates B bounding box predictions and 

corresponding confidence ratings. A bounding box is determined by 

the coordinates of its centre (x, y) to the grid cell; 

o The dimensions of the box, namely its width and height; 

o The confidence score is the probability that the box includes an item, 

and it is an indicator of accuracy. 

• Classification of objects 
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o The model generates class scores for all feature classes for each 

bounding box; 

o The class score is added to the confidence score to get the total 

detected object score. 

• Using of the technique Non-Maximum Suppression (NMS) 

o Once all bounding boxes are anticipated, the NMS method is used 

to eliminate overlaps and retains just the most probable detections; 

o In this phase, the boxes are sorted based on their trust scores; 

o Removal of boxes that exhibit significant overlap - measured by 

Intersection over Union (IoU), with boxes that possess higher scores. 
 

CNNs used by YOLO, are responsible for extracting distinctive 

characteristics from the picture. The original YOLO architecture consists of 24 

convolutional layers that are used for extracting features. The final predictions are 

generated by using two completely linked layers. 

Overall, YOLO-v8 consistently enhances the effectiveness and productivity 

of object identification via the integration of new developments in neural networks 

and detection algorithms. 

 

3.2 Using the Roboflow platform 

 

For this study, the dataset preparation was conducted using the Roboflow 

platform, which allows image annotation through a browser using simple shapes 

and polygons (see Fig.7).  
 

 
Fig.7. PLA object picture annotated in the Roboflow platform 

 

Initially, more than 900 images were selected and manually annotated. These 

images were then subjected to two preprocessing variations, specifically the 
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application of blur and skew effects. Total number of images have been increased 

to 1900 by using augmentation methods available on the platform Roboflow like: 

flip, random rotation, random shear, random noise. These images were 

specifically divided for different stages of the machine learning process: 15% of 

the images were allocated for testing, 10% for validation, and 75% for training. 

3.3 Train YOLO-V8 AI model 
 

The training was conducted on a Windows operating system using Python 

with the PyTorch and Ultralytics libraries on a computer equipped with an NVIDIA 

RTX 4070 graphics card, which supports hardware acceleration for AI tasks. The 

choice of Windows was driven by its widespread compatibility and user-friendly 

interface, which facilitate the management of various software dependencies and 

tools. The NVIDIA RTX 4070 graphics card was selected due to its high 

performance and capability to handle intensive AI computations, providing a 

significant speedup in training deep learning models through GPU acceleration. 

Python and Jupyter Notebooks were used for their versatility and interactive 

environment. Python is a popular programming language used substantially in the 

fields of machine learning and data science, offering a rich ecosystem of libraries 

and tools. Jupyter Notebooks, on the other hand, allow for step-by-step code 

execution and visualisation of results, aiding in better understanding and debugging 

during the development process. This setup was crucial for ensuring an efficient 

and manageable training workflow. 

The installation of the PyTorch and Ultralytics libraries was a critical step. 

PyTorch is a powerful deep-learning framework that offers flexibility and 

efficiency in building and training neural networks. The Ultralytics library, 

specifically designed for YOLO models, simplifies the implementation and training 

of object detection models. These libraries provided the necessary tools and 

functions to carry out our training process effectively. 

Data preparation involved importing the dataset, including images and 

corresponding annotation files, into the environment. This step ensured that the data 

was accessible and correctly formatted for the training process. Proper data 

preparation is essential for the model to learn effectively from the input images, as 

it directly impacts the quality and performance of the trained model. 

The YOLOv8-seg model was selected, and pre-trained for image 

segmentation detection, due to its suitability for tasks involving the identification 

of fine details and boundaries within images. This made it ideal for detecting 

imperfections in printing processes. Using a pre-trained model allowed us to 

leverage previously learned features, thereby reducing the amount of training time 

and data required. The training was set up to run for 10 epochs, where each epoch 

corresponds to a full iteration over the whole training dataset. The iterative method 

allowed the model to continually modify its weights, hence improving its 
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performance on the given task. The number of epochs was chosen to balance 

between adequate training time and computational resources, ensuring the model 

learned effectively without overfitting. 

Executing the training process, which lasted 4 hours, involved the model 

analysing and learning from the training images. During this period, the model's 

parameters were continuously updated based on the input data, optimising its ability 

to detect imperfections. The use of the RTX 4070 GPU significantly reduced the 

training time by parallelising computations, which is particularly beneficial when 

dealing with large datasets and complex models. 

  

4. Results 

 

In Fig.8, a sequence of graphs pertaining to the trained model, namely a 

segmentation model, can be shown. These graphs may be categorized as: 

• Loss graphs consist of: 

o Train/Box loss, Train/Seg Loss, Train/Cls Loss, and Train/Dfl loss. 

These graphs provide insights into the training phase, where 

decreasing values indicate improved learning over epochs.  

o Validation loss graphs, namely val/box loss, val/seg loss, Val/Cls 

Loss, and Val/Dfl loss. These graphs represent losses during 

validation and help understand the model's performance on new data. 

The model enhances the positive aspect of the declining trend. 

• Performance metrics consist of: 

o The metrics Precision(B) and Recall(B) display the precision and 

recall values for the detection across the training epochs. Precision 

evaluates the accuracy of positive predictions, while recall reflects 

the model's ability to recognize relevant instances. 

o The metrics mAP50(B) and mAP50-95(B) represent the average 

precisions at the 50% IoU threshold and from 50% to 95%, 

respectively. These metrics provide an indication of the model's 

accuracy in detecting flaws of different degrees. 

o The metrics accuracy (M) and Recall (M) guarantee the accuracy and 

recall of the mask, using the same interpretation as bounding box 

precision and recall. 

o Metrics/mAP50(M) and Metrics/mAP50-95(M) are comparable to 

bounding box mAP. At a certain threshold, they provide the mean 

average accuracy for mask detection. 
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Fig.8. Graphs tracking various training and validation metrics over 10 epochs 

 

Fig.9 presents a confusion matrix, which is a valuable tool for evaluating the 

classification performance of the model. This matrix compares the actual labels with 

the predicted ones across different categories: „imperfectiune” (imperfection), 

„piesa” (piece), „piesa curbata” (curved piece), and background. The diagonal of the 

matrix has high values, indicating a substantial number of accurate predictions for 

each class, namely 77 for imperfection and 111 for piece. These results show that 

the model performs well in these categories. 
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The off-diagonal values reveal misclassifications, like 78 instances of 

imperfection being classified as background, highlighting areas where the model 

needs improvement. The confusion matrix helps identify specific classes where the 

model excels and others where it struggles. While the model shows strong 

performance in detecting imperfections and pieces, it indicates potential areas for 

refinement in distinguishing between curved pieces and background. 
 

 
Fig.9. Confusion Matrix 

 

 Fig.10 displays an input picture with a highlighted defect, along with a JSON 

response that provides the imperfection's location and the confidence level of the 

detection. 
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Fig. 10. Result of PLA object image analize by YOLO-v8 AI segmentation model 

5. Conclusion 

 

This paper presents a method to detect imperfections on the surface of 3D 

printed PLA objects. Defects on objects' surfaces appear by changing the 

parameters of the 3D printer to depart away from the recommended settings of the 

3D printer for PLA material. To detect imperfections on the surface of the resulting 

objects, the YOLO-v8 segmentation AI model has been trained and successfully 

used to recognise objects' defects. More than 900 images, with annotations (of the 

piece, imperfections, curved piece and background for each image) have been used 

in AI model training. The calculated success rate from the resulting graphs is 

92.912%. 

Because temperature represents an important factor in 3D printing, defects 

on the surface of the printed objects can appear even if parameters on the 3D printer 

are not changed manually. If the environment where the 3D printer is located, has 

a changing temperature, defects can appear on the surface of the objects. The 

presented implemented application from this paper can recognise all the defects by 

using a YOLO-v8 AI segmentation model. The AI model must be trained as much 

as possible to have a success rate of error detection.  

R E F E R E N C E S 

[1] C. Balletti, M. Ballarin, and F. Guerra, “3D printing: State of the art and future perspectives,” 

J. Cult. Herit., vol. 26, pp. 172–182, 2017. 

[2] W. Gao et al., “The status, challenges, and future of additive manufacturing in engineering,” 

Comput. Des., vol. 69, pp. 65–89, 2015. 

[3] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing 

(3D printing): A review of materials, methods, applications and challenges,” Compos. Part 



266             A.-M. Tălîngă, A. Hadăr, M.-V. Drăgoi, I. Nisipeanu, H.A. Ali, C.P. Suciu 

B Eng., vol. 143, pp. 172–196, 2018. 

[4] I. Simion and A. F. Arion, “Dimensioning rules for 3D printed parts using additive 

technologies (FDM),” UPB Sci. Bull. Ser. D Mech. Eng., vol. 78, no. 2, pp. 79–92, 2016. 

[5] A. Chouksey, “Study of parametric optimization of fused deposition modelling process using 

response surface methodology.” 2012. 

[6] B. N. Turner, R. Strong, and S. A. Gold, “A review of melt extrusion additive manufacturing 

processes: I. Process design and modeling,” Rapid Prototyp. J., vol. 20, no. 3, pp. 192–204, 

2014. 

[7] D. A. Porter, T. V. T. Hoang, and T. A. Berfield, “Effects of in-situ poling and process 

parameters on fused filament fabrication printed PVDF sheet mechanical and electrical 

properties,” Addit. Manuf., vol. 13, pp. 81–92, 2017. 

[8] L. M. Galantucci, F. Lavecchia, and G. Percoco, “Experimental study aiming to enhance the 

surface finish of fused deposition modeled parts,” CIRP Ann., vol. 58, no. 1, pp. 189–192, 

2009. 

[9] M. Kaveh, M. Badrossamay, E. Foroozmehr, and A. H. Etefagh, “Optimization of the 

printing parameters affecting dimensional accuracy and internal cavity for HIPS material 

used in fused deposition modeling processes,” J. Mater. Process. Technol., vol. 226, pp. 280–

286, 2015. 

[10] S. Pavlovich, “Prototypal forensic intelligence methodologies for the examination of illicit 

firearms.” Murdoch University, 2021. 

[11] G. Shim et al., “Elastic Resistance and Shoulder Movement Patterns: An Analysis of 

Reaching Tasks Based on Proprioception,” Bioengineering, vol. 11, no. 1, p. 1, 2023. 

[12] C.-T. Chen and G. X. Gu, “Machine learning for composite materials,” MRs Commun., vol. 

9, no. 2, pp. 556–566, 2019. 

[13] N. Lokesh, B. A. Praveena, J. S. Reddy, V. K. Vasu, and S. Vijaykumar, “Evaluation on 

effect of printing process parameter through Taguchi approach on mechanical properties of 

3D printed PLA specimens using FDM at constant printing temperature,” Mater. today Proc., 

vol. 52, pp. 1288–1293, 2022. 

[14] R. A. Jarvis, “A perspective on range finding techniques for computer vision,” IEEE Trans. 

Pattern Anal. Mach. Intell., no. 2, pp. 122–139, 1983. 

[15] M. Hussain, J. J. Bird, and D. R. Faria, “A study on CNN transfer learning for image 

classification,” in Advances in Computational Intelligence Systems: Contributions Presented 

at the 18th UK Workshop on Computational Intelligence, September 5-7, 2018, Nottingham, 

UK, 2019, pp. 191–202. 

[16] R. Yang and Y. Yu, “Artificial convolutional neural network in object detection and semantic 

segmentation for medical imaging analysis,” Front. Oncol., vol. 11, p. 638182, 2021. 

[17] J. Haupt and R. Nowak, “Compressive sampling vs. conventional imaging,” in 2006 

International Conference on Image Processing, 2006, pp. 1269–1272. 

[18] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern Recognit., vol. 77, 

pp. 354–377, 2018. 

[19] H. Perez, J. H. M. Tah, and A. Mosavi, “Deep learning for detecting building defects using 

convolutional neural networks,” Sensors, vol. 19, no. 16, p. 3556, 2019. 

[20] P. Kumar and U. Misra, “Deep Learning for Weed Detection: Exploring YOLO V8 

Algorithm’s Performance in Agricultural Environments,” in 2024 2nd International 

Conference on Disruptive Technologies (ICDT), 2024, pp. 255–258. 

[21] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics,” 2023. 

https://github.com/ultralytics/ultralytics (accessed May 16, 2024). 

[22] M. Hussain, “YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature 

toward digital manufacturing and industrial defect detection,” Machines, vol. 11, no. 7, p. 

677, 2023.  


