
U.P.B. Sci. Bull., Series A, Vol.76, Iss.1, 2014 ISSN 1223-7027

THE COMPOUND TENT MAP AND THE CONNECTION
BETWEEN GRAY CODES AND THE INITIAL CONDITION

RECOVERY

by Alexandru Dinu1 and Adriana Vlad2

We reconsider some aspects regarding the usage of tent map in chaos

based cryptography. The first part of the paper discusses the precision and how

difficult or not is to recover the initial condition as a function of the way the

binary sequence used in the recovery process is obtained. The answer opens the

way for an introspection in the problem of the compound tent map. We will

use the Gray codes to find the compound tent map and we will see how these

codes are already subtle hidden in the binary sequence that we have.

Keywords: tent map, initial condition recovery, compound tent map, Gray
codes

1. Introduction

In this paper, we thoroughly analyse the recovery of the initial condition
issue for tent map, recovery based on the binary representation of sequences
of values generated by tent map. We shall show how precisely we can find
the initial condition when the discretisation threshold is equal to the tent map
control parameter, the imprecision in the contrary case (threshold different
from the control parameter) and the obstacle represented by tent map sam-
pling. The basic tool that will be used in the mathematical argumentation
of these results will be the compound tent map. There are some interesting
studies in the literature referring to finding the initial condition and to the
precision of this (see [1, 2, 3]), but our demonstration facilitates this mathe-
matical approach, leaving room for eventual new ways to use the compound
tent map.

Tent map is a 1-dimensional discrete time chaotic system defined by the
following equation:

xk+1 =

{

xk

p
if 0 ≤ xk ≤ p,

1−xk

1−p
if p < xk ≤ 1,

(1)

1 Technische Universität München, Germany, e-mail: alexandru.dinu@tum.de,

alexandrudinu89@yahoo.com
2 Faculty of Electronics, Telecommunications and Information Technology, Politehnica

University of Bucharest, Romania; The Research Institute for Artificial Intelligence, Roma-
nian Academy, Bucharest, Romania, e-mail: avlad@racai.ro, adriana vlad@yahoo.com

17



18 Alexandru Dinu and Adriana Vlad

where p ∈ (0, 1), p is the tent map parameter. Due to the ergodicity and to the
sensitivity to the initial condition and to the p control parameter (which has
to be different from 0.5, otherwise by applying (1) with p = 0.5 we obtain a
sequence that is not chaotic any more), completed by the uniform probability
law of the xk values, the tent map can be successfully used in chaos-based
cryptographic applications. In most of the studies that have tent map as a
subject, this chaotic signal is used as a generator of enciphering sequences, e.g.,
[3, 4, 5]. The enciphering sequence (“key”) is obtained through binarization
with a certain threshold c of a trajectory (the successive iterations of the tent
map) defined by (1).
If xk ≤ c, we assign a binary value bk = 0
If xk > c, we assign a binary value bk = 1
2.5mm

One way of creating the cryptogram is to sum modulo 2 (symbol by
symbol) the clear message and the “key”. So, the question that shows up
is: “Can someone, having a part (a string of bits) of the binary se-
quence, recover the initial condition x0 that generated the respective
trajectory of the tent map?”. If this is the case, one can reconstruct the
entire “key”, no matter how long it is, and in this case the initial condition
cannot be used as an element in the secret key.
2.5mm

Section 2 is an experimental study on the accuracy and the difficulty
encountered when trying to recover the initial condition. The experimental
study is theoretically supported by Section 3.
2.5mm

Section 3 deals with the compound tent map and the connection between
Gray codes and initial condition recovery. The mathematical expression for
the compound tent map is given and the proof for initial condition recovery in
Section 2 is presented.
2.5mm

The last section summarizes the main issues and conclusions of the paper
and states some new directions of research regarding the compound tent map.

2. How difficult is to find the initial condition?

We shall next clarify the initial condition recovery issue for two important
cases in applications, i.e., c = p and c = 0.5 (see [4, 5]), where c is the threshold
used to obtain the enciphering binary sequence and p was introduced in (1).

2.1. Initial condition recovery when c = p. Let us have a trajectory for
p = 0.2 and x0 = 0.35. The first 10 successive real values x0, x1, ..., x9 and the
corresponding binary symbols b0, b1, ..., b9 are shown in Table 1 and Figure 1.



The compound tent map and the connection between Gray codes and the initial condition recovery 19

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
k

x k+
1

(b)

Fig. 1. The first 10 iterations for: (a) x0 = 0.35 and p = 0.2 and (b) the
corresponding Cobweb diagram.

Let us suppose that we know b0, b1...bm (the binary values of the “key”
from 0 to m) and the value of p. To recover x0 we have the following algorithm
(let us call it “*”):
(1) Assign a real value to xm corresponding to its binary symbol:

- If bm is 0, assign to xm a real value smaller than p (let us say
0 + p

2
)

- Otherwise, assign to xm a value larger than p, but smaller than 1 (for

example,
1 + p

2
)

(2) To find the previous term, xm−1, take into account its binary value, bm−1:
- If bm−1 is 0, go back using the 1st branch from (1): xm−1 = p · xm

- If bm−1 is 1, go back using the 2nd branch from (1): xm−1 = 1− (1− p) · xm

(3) Iterate backwards in this way to x0 (an estimate, for the moment, as we
do not know the accuracy yet).

We will apply this algorithm to the previous example with x0 = 0.35 and
p = 0.2. The second row in Table 1 shows the binary sequence corresponding
to the m-term trajectory (based on equation (1)). We will try to go back to x0

from a certain real value for xm. The third row in Table 1 shows the obtained
results for the m-term trajectory of (1) when xm is chosen according to the
mentioned algorithm. In addition, we will see if the real value from which we
iterate backwards has any effect on the precision in finding x0 (Table 1, fourth
row).

Table 1

The initial condition recovery based on the first 10 successive
bits. Recovered a) trajectory starts iterating backwards from the

value in * algorithm; Recovered b) trajectory starts from an
arbitrary value (0.95, here)

Continuous 0.3500 0.81 0.23 0.95 0.05 0.26 0.91 0.10 0.53 0.58
Binary 1 1 1 1 0 1 1 0 1 1

Recovered a) 0.3498 0.81 0.23 0.95 0.05 0.26 0.91 0.10 0.52 0.60
Recovered b) 0.3469 0.8164 0.22 0.96 0.04 0.23 0.96 0.05 0.24 0.95



20 Alexandru Dinu and Adriana Vlad

Table 2

Results obtained for initial condition recovery trial in decimal
and hexadecimal for 3 different x0 values, given the first

successive 100 bits.

Trajectory number Original x0 Recovered x0

Decimal
1 0.679824758432644 0.679824758432644
2 0.345762146343287 0.345762146343287
3 0.123465637517625 0.123465637517625

Hexadecimal
1 3FE5C11FDA0F5676 3FE5C11FDA0F5677
2 3FD620D78DAF4ED1 3FD620D78DAF4ED0
3 3FBF9B71AB5167CB 3FBF9B71AB5167CC

First of all, let us notice that even with 10 iterations backwards, we can
go very close to the original x0 (this fact will be more obvious from Table 2
where, after 100 iterations back, the estimated x0 will be identical with the
original one in decimal representation). Secondly, maybe even surprisingly,
the value assigned to xm is not very important (see Table 1, fourth row); the
estimated initial condition value is not so much different compared to the true
x0 (this aspect will be treated separately in the last part of the article, as one
of the most relevant results of the paper).

We want to see the precision of the initial condition recovery when we are
given the first m = 100 terms of a trajectory of (1) and the p parameter (for
m > 100 and p = 0.2, the improvement in precision is not significant). Table
2 shows the results obtained for different tent map trajectories (corresponding
to 3 different x0 initial conditions).

The differences are not obvious in decimal representation; in hexadecimal
representation, although the first bits are identical, we have some inaccuracies
in the last group of 4 bits (the last nibble). So, with this algorithm, we can
find an estimated x0 and then, by plugging in all the 16 possibilities, we have
16 different possible tent map trajectories. Now, supposing that we have the
“key” in binary for a long number of iterations, we can compare this “key”
with each of the 16 possible trajectories corresponding to the 16 modified x0,
and see which one matches what we have.

We exemplify for p = 0.2 and x0 = 0.123465637517625 (last row from
Table 2). We find an estimated x0 and even though we do not know if this
is or not the true initial condition, we calculate and compare the 16 possible
trajectories with the initial one (the trajectory of the original x0). The com-
parison is made in real values. The discrepancies shown below reveal that,
from a certain iteration step in time, all the trajectories corresponding to the
wrong x0 will deviate so much from the true trajectory of the “key”, that in
binary values the differences will lead to the same conclusion: only one x0 is
the right one.



The compound tent map and the connection between Gray codes and the initial condition recovery 21

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ITERATION k

D
if
e

re
n

c
e

 b
e

tw
e

e
n

 t
ra

je
c
to

ri
e

s

Difference for z=2

(a)

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ITERATION k

D
if
e

re
n

c
e

 b
e

tw
e

e
n

 t
ra

je
c
to

ri
e

s

Difference for z=7

(b)

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ITERATION k

D
if
e

re
n

c
e

 b
e

tw
e

e
n

 t
ra

je
c
to

ri
e

s

Difference for z=B

(c)

Fig. 2. The difference between the original (z = 1011 = B(hexa)) and 3
recovered trajectories: (a) z = 0010 = 2(hexa); (b) z = 0111 = 7(hexa);
(c) z = 1011 = B(hexa).

Be z the last nibble (a hexadecimal symbol). The original x0 has z =
B = 1011. We present the differences between the true trajectory obtained
with this x0 and 3 possible trajectories that can be obtained by replacing the
last nibble z of the recovered x0 in hexadecimal by 3 out of the 16 possible
values from 0,...,F.

To sum up, it is clear that there is a modality to come back to the original
x0 knowing the binary sequence of the “key” and the p value. In order to do
this, we need to test only 16 possible initial conditions. Furthermore, we need
only m = 100 binary symbols to come back. This is however dependent on p.
For p closer to 0 or 1, we need m > 100. We will explain this in Section 3.

2.2. Obstacles to the initial condition recovery.

2.2.1. The binarization threshold value. A first obstacle in the way of finding
x0 is the case when the threshold used for binarization is c = 0.5. We
first discuss the problem of x0 recovery by considering all successive iterations,
although this is not the usual case of interest in the literature (see [4, 5]). If
c = 0.5 and we do not sample the tent map (1), the successive binary symbols
are statistically dependent. But if we sample the binary sequence with a certain
d (number of iterations) distance, we can reach statistical independence and
flawlessly simulate the behaviour of the fair coin (see [4, 5, 6]).

Let us summarize the steps and see where the problems appear:
(1) Create a binary sequence obtained by discretizing a trajectory of the tent
map (1) for p = 0.2. The discretization will be done with c = 0.5, and
considering all successive iterations.
(2) It is possible to reach the following situation: . . . bk = 0, bk+1 = 1 . . .
(3) Let us suppose that we apply the previous algorithm *. Note that c 6= p,
so one may think that p is unknown. It is shown in [2], [4] that we can
very precisely estimate p based on the binary sequence, therefore we apply
algorithm * for p=0.2. The result of the algorithm could be xk+1 = 0.95. In
this case, xk can have two real values, both leading to xk+1. We have the
binary value for xk, but this is useless now (considering the way we binarized



22 Alexandru Dinu and Adriana Vlad

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
k

x k+
1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
k

x k+
1

(b)

Fig. 3. The two values (a) xk = 0.19 and (b) xk = 0.24 that could generate
xk+1 = 0.95.

Table 3

Results obtained for initial condition recovery trial, in decimal
and hexadecimal, for 3 different x0 values, given the first 100

bits.

Trajectory number Original x0 Recovered x0

Decimal
1 0.123465637517625 0.172428258114886
2 0.814723686393179 0.844981651714274
3 0.485375648722841 0.172413797547786

Hexadecimal
1 3FBF9B71AB5167E1 3FC6122110C13D48
2 3FEA1237688ABA7B 3FEB0A16F5fAA6DC
3 3FDF106506628552 3FC611A7C2EC676C

xk). The graphical representation of the uncertainty case is shown in Figure 3.
Applying the algorithm * from Section 2.1, the following results were obtained:
3 trajectories for 3 different x0 are considered, but none of these x0 values is
recovered as exactly as previously (see Table 3).

The differences appear now even in decimal values. In hexadecimal rep-
resentation (which really counts), the inaccuracies are not limited to 4 bits as
before. So, in this case, we could not recover x0.

2.2.2. The sampling obstacle. Sampling the sequence of the key can be a
more complicated obstacle. In this case the “key” is created by taking
only values separated by n iterations in time. Even for c = p, the situation
can become really complicated because we do not have a formula for jumping
from time index to time index (the mathematical effect of sampling). Section
3 finds a way to mathematically describe these jumps and further elaborates
on this topic.

Remarks : In [6], by using the statistical test procedure described in [7],
the minimum sampling distance (number of iterations) that enables to generate
the i.i.d. data from tent map was determined. For example, for p = 0.2 one
needs to sample the tent map with a distance d = 35 iterations in order to
have independent data, while for p ∈ [0.4, 0.6] the sampling distance is about



The compound tent map and the connection between Gray codes and the initial condition recovery 23

15 iterations. Sampling the tent map opens the way to the introspection in
the compound tent map.

3. Gray codes, precision in initial condition recovery and the
compound tent map

3.1. The compound tent map. We want to find a way to mathematically
define the compound tent map fn(x) for any n order. We will see that for all
n, even though fn(x) looks quite complicated, its representation consists only
of lines,slopes and intervals. Our task is to find these intervals and slopes and
to define the function.

Let us proceed with the second order compound function f2(x):

f2(x) = f ◦ f(x) =

{

f(x)
p

if 0 ≤ f(x) ≤ p =⇒ △0
1−f(x)
1−p

if p < f(x) ≤ 1 =⇒ △1
(2)

Here △ stands for the binary code of the previous n-1 iterations (for n=2, △
means the code assigned to f1(x)).

We will code the 4 intervals intervals for f2(x) with two binary symbols.
One can notice that each time we use the first branch from equation (1) we
add a zero. For example, if we use the first branch twice and obtain the first
entry for f2(x), we will code this interval with 00. Similarly, we get the other
three combinations, equation (3). What is interesting is that there is a certain
pattern in these interval-codes.

f2(x) =























x
p2 if 0 ≤ x ≤ p2 =⇒ 00
p−x

p(1−p) if p2 < x ≤ p =⇒ 01
x−p

(1−p)2 if p < x ≤ 1− p(1− p) =⇒ 11
1−x

p(1−p) if 1− p(1− p) < x ≤ 1 =⇒ 10

(3)

A visual representation of the iteration process with f2(x) is shown in Figure 4.
For the moment, the importance of interval coding might not be clear. What
we can definitely notice is the way the interval limits are obtained. These
interval limits are [0,p,1] for f1(x), equation (1). When we compute f2(x) we
have five such interval limits. The values of these limits are shown in Table 4.

Table 4

The limits of the intervals for f1(x) and f2(x).

Limit v1 =⇒ Limit v2
L1 0 L1 0
L2 p L2 p2

L3 1 L3 p

L4 1− p(1− p)
L5 1



24 Alexandru Dinu and Adriana Vlad

Fig. 4. f1(x) and f2(x) and the interval-codes.

What can be noticed is that the number of these limits is 2n + 1, where
n is the order of fn(x). Secondly, p is always in the middle of these limits (its
limit-counter is in the middle of 1...2n+1). Furthermore, we can extend these
results to a more general way of creating the limits for fn(x) using the set of
limits for fn−1(x). We explain the algorithm for f1(x) and f2(x) and we will
see that the algorithm also holds for f3(x). (1) Let us denote the set of limits
corresponding to f1(x) by v1 = [0, p, 1].
(2) Compute v11 = p · v1 −→ v11 = [0, p2, p], as a first intermediary set.
(3) v12 = 1− (1− p) · v1 −→ v12 = [1, 1− p+ p2, p] is our second set, computed
on the basis of v1.
(4) Next, compute the union of the two intermediary sets: v2 = v11 ∪ v12 −→
v2 = [0, p2, p, 1 − p + p2, 1]. After this procedure we obtain a v2 set of limits
identical to the last column in Table 4.

More generally, we have vi−1 corresponding to fi−1(x) and build the in-
termediary vectors vi1 and vi2 in the same way as above. By performing the
union between these two, we get vi corresponding to fi(x). Recursively, we
can obtain the set of limits for every fn(x).

We shall next present the equations for f3(x). Our assumptions apply
here too. This can be extended to any fn(x).

f3(x) =































































x
p3 if 0 ≤ x ≤ p3 =⇒ 000
p2

−x
p2(1−p) if p3 < x ≤ p2 =⇒ 001
x−p2

p(1−p)2 if p2 < x ≤ p(1− p(1− p)) =⇒ 011
p−x

p2(1−p) if p(1− p(1− p)) < x ≤ p =⇒ 010
x−p

p(1−p)2 if p < x ≤ p+ p(1− p)2 =⇒ 110
1−p(1−p)−x

(1−p)3 if p+ p(1− p)2 < x ≤ 1− p(1− p) =⇒ 111
p−p2

−1+x
p(1−p)2 if 1− p(1− p) < x ≤ 1− p2(1− p) =⇒ 101
1−x

p2(1−p) if 1− p2(1− p) < x ≤ 1 =⇒ 100

(4)

So, for each step we get a big formula for fn(x), but very simple in a graphical
representation: only lines (between 0 and 1 on OY) and bounded by two
interval limits on OX, see Table 4 and Figures 4 and 5. We know the limits



The compound tent map and the connection between Gray codes and the initial condition recovery 25

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
k

x k+
1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
k

x k+
1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
k

x k+
1

(c)

Fig. 5. Graphical representations: (a) f1(x); (b) f2(x); (c) f3(x).

on OX. The next step is to find a way to compute the slopes of those lines.
With two points and a slope we have more than enough to graphically describe
fn(x).

This is the moment when the codes come on the scene. We can see that
the codes obtained in the fn(x) formulas of this section are nothing else than
the Gray codes associated to the numbers from 0 to 2n−1 (converted to binary
and from binary to Gray codes [8, 9, 10]). Even more important is that the
slope on each small interval between 0 and 1 is related to these codes as follows:

(1) The slopes look like:
±1

pa · (1− p)b
, where:

(i) a = the number of zeros from the code of the interval.
(ii) b = the number of ones from the code of the interval.

(2) The sign of the slopes alternates (positive/negative).
This is a fact that applies to any fn(x). Now we are in the position when

we know the following:
At each step from fn−1(x) to fn(x) we double the number of intervals.
We know these newly created intervals; 0,p and 1 will always be among the
interval limits.
We also know the slopes for each subinterval ∈ [0, 1].
We can draw our functions fn(x), for all n > 1 (Figure 5).

Here comes an important remark. Be the real values denoted by
x0, x1, ..., xm obtained by iterating (1) and the corresponding binary values
b0, b1, ..., bm for c = p as binarization threshold. Note that xm = fm(x0), and
x0 lies in the interval of fm(x) that has assigned the Gray code b0, b1, ..., bm−1.

Let us verify this by an example for x0 = 0.123465637517625 and p = 0.2.
For f1(x) we have x0 ∈ [0, p], so having a 0 assigned in binary representation.
For f2(x) x0 ∈ (p2, p], so the interval corresponding to f2(x) is 01.

If we continue in this way, for a certain fm(x) we can find the interval
where x0 lies. The code of this interval is the m-binary sequence ob-
tained by successively iterating tent map (1) from x0 and discretizing
with c = p. This is the reason why we get x0 so precisely (as shown
in Section 2). In the binary sequence we have all the information
we need: the Gray codes.



26 Alexandru Dinu and Adriana Vlad

3.2. The mathematical explanation of finding the initial condition
from 16 attempts. We have seen that fn(x) is nothing else but a combination
of 2n lines between 0 and 1; these lines are bounded on OX between two
successive limits of the intervals corresponding to fn(x) (vn(j) and vn(j + 1))
and have a certain known slope (slopen(j), where j ∈ {0, . . . , 2n − 1}).

We can write this as:

fn(x) =

{

slopen(j) · (x− vn(j)) if vn(j) < x ≤ vn(j + 1) and j is even

slopen(j) · (x− vn(j + 1)) if vn(j) < x ≤ vn(j + 1) and j is odd
(5)

In Section 2.1 that dealt with x0 recovery, we took the binary sequence of
the iterations from 0 to m (binarized with c = p; the p control parameter
was considered known) and we showed that we can find x0 very close to the
original one from 16 attempts. The xm value can be obtained by applying
the compound tent map to x0, i.e., xm = fm(x0). When we come back from
iteration m to 0 we invert fm(x) and get x0 from xm (“inversion” is not exactly
correct; one branch from fm(x) is inverted).

In this way we can express x0 recovered as: x0 =
xm

slopem(j)
+ vm(j). Let

us have a look at the terms involved in this formula:
(1) vm(j) is one of the interval limits. So, x0 is in a vicinity of vm(j) specified
by the Gray code of the interval, i.e., the binary representation of the first m
successive values of (1).
(2) xm is the value that we do not know and we assign in algorithm * when
we begin iterating backwards.

(3)
1

slopem(j)
= pa · (1− p)b, where a and b are the number of zeros and ones

respectively from the m-binary sequence. The binary sequence is identical to

the code associated with the interval from fm(x) where x0 lies.
(4) For p = 0.2 and m = 100, a value is around 0.2 · m and b value is
around 0.8 · m. This is not entirely true (we may have 0.75 or 0.84, instead
of 0.8, but not great variations around the mean value). With these values,
pa · (1− p)b = 1.85 · 10−22. The 10−22 value is around 2−70, which is no longer
noticeable by the computer. Thus, we will find x0 with a small deviation
around one of the interval limits. These limits are very close one to each other
for m = 100. This is the reason why we can recover so accurately the initial
condition when c = p.

However, we should take into account that for a very small or very large
p value (close to 0 or 1), the intervals will not be so well weighted and we may
need more than 100 steps to go back to x0.

These short notes also support the idea that the sampling of the tent
map might be a serious obbstacle when one tries to recover x0. When we first
apply sampling and then binarization, the information expressed by the Gray
codes (localizing the initial condition) is no longer available.



The compound tent map and the connection between Gray codes and the initial condition recovery 27

4. Conclusions

We have shown that in certain cases the initial condition should not be
included in the secret key in cryptography, because it can be found very easily.
One solution to make it more difficult is discretizing with c = 0.5 and sampling
the chaotic map to get i.i.d. data. An additional security in this respect could
be obtained by applying a “running key approach” for tent map as it was
advanced for logistic map in [11]. This approach was not addressed in this
paper.

The last part of the paper concentrates on the compound tent map issue.
We found an easy general formula to describe fn(x). In addition, we showed
why one can find x0 from 16 attempts, a result stated in the literature, but
not so convincingly proved. This result is valid for c = p, when considering
the successive iterations, without sampling the tent map. Furthermore, in this
case, we have noticed a subtle connection with the Gray codes. The compound
tent map description brings additional support to the idea that sampling the
tent map could be a serious obstacle in recovering the initial condition.

There are some difficulties that may appear when someone wants to make
use of our formula for the compound map. These are mainly connected to the
order of writing the operations that define the compound tent map. How-
ever, this new computational signal - the compound tent map - has the same
properties as (1) (the same uniform probability law; the minimum statistical
independence sampling distance diminishes by the m order of the compound
tent map, e.g., for p=0.4 and f15(x) the successive values are practically i.i.d.)
and can be a source of new research in this field.

REFERENCES

[1] D. Arroyo, G. Alvarez, J.M. Amigo and S. Li, Cryptanalysis of a family of self-

synchronizing chaotic stream ciphers, Communications in Nonlinear Science and Nu-

merical Simulations, 16(2011), pp.805-813.

[2] G. Alvarez, D. Arroyo and J. Nunez, Application of Gray code to the cryptanalysis

of chaotic cryptosystems, 3rd International IEEE Scientific Conference on Physics and

Control, 2007

[3] D. Arroyo, Framework for the analysis and design of encryption strategies based on

discrete-time chaotic dynamical systems, PhD thesis, 2009.

[4] A. Ilyas, A. Luca and A. Vlad, A study on binary sequences generated by tent map

having cryptographic view, In Proc.9thInternational conference on Communications

(COMM), Bucharest, June 21-23, 2012, pp. 23-26.

[5] A. Luca, A. Ilyas and A. Vlad, Generating random binary sequences using tent map,

In Proc.10th.International Symposium on signals, Circuits and Systems (ISSCS), Iasi,

Romania, June 30-July1, 2011, pp. 81-84

[6] A. Luca, A. Vlad , B. Badea and M. Frunzete, A study on statistical independence in

the tent map, Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS),

Iasi, Romania, July 9-10, 2009, pp. 481-484



28 Alexandru Dinu and Adriana Vlad

[7] B. Badea and A. Vlad, Revealing statistical independence of two experimental data

sets: An improvement on Spearmans algorithm, LNCS 3980, 1166-1176.

[8] , Q21: What are Gray codes, and why are they used?, ”www.cs.cmu.edu/Groups/AI/

html/faqs/ai/genetic/part6/faq-doc-1.html”, Accessed online 15.04.2013

[9] G. Alvarez, M. Romera, G. Pastor and F. Montoya, Gray codes and 1D quadratic maps

, Electronics Letters, 34(1998), pp. 1304-1306

[10] X. Wu, H. Hu and B. Zhang, Parameter estimation only from the symbolic sequences

generated by chaos system, Chaos, Solitons and Fractals, 22(2004), pp. 359-366.

[11] A. Vlad, A. Ilyas and A. Luca, Unifying running-key approach and logistic map to

generate enciphering sequences, Annals of Telecommunications, 68(2013), pp. 179-186.


