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In this paper, we focus on achieving new results about the existence of fixed

points for a new type of multivalued contractions. We furnish an example which demon-

strate the supremacy of our results to the existing ones in the literature. We derive new

fixed point results on a metric space endowed with a partial ordering/graph by using the

results obtained herein. We also discuss sufficient conditions to ensure the existence of

solutions of integral equations as an application of our results.
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1. Introduction

In 1937, Von Neumann [19] gave a start the fixed point theory for multivalued map-
pings in the study of game theory. In particular, the fixed point theorems for multivalued
mappings are rather advantageous in optimal control theory and have been frequently used
to solve many problems of economics and game theory. Consecutively, Nadler [9] initiated
the development of the geometric fixed point theory for multivalued mappings by using the
notion of the Hausdorff metric and extended Banach contraction principle to multivalued
mappings, which is known as Nadler’s multivalued contraction principle. Recently, new types
of single valued week contractive mappings with control functions, called as θ-contraction
and α-ψ-contraction respectively, are introduced in [7] and [11] along many others in the
literature: for instance, please see [12, 13]. This approach allowed to establish existence and
uniqueness results for fixed points, which improve Banach contraction principle [5, 6], and
the development of numerical algorithms for suitable classes of problems with real world
applications [14, 15, 16, 17]. Later on, by using these concepts, several researchers extended
the results in [7] and [11] to multivalued mappings, see, for example, Ali et al. [1], Ali and
Kiran [2], Asl et al. [3], Mohammadi et al. [8] and Vetro [18].

In this study, we introduce a new type of multivalued contractions to establish exis-
tence results for fixed points of this new type of contractions on complete metric spaces. Our
results improve and extend the results in Asl et al. [3], Mohammadi et al. [8], Vetro [18] and
many others in the literature. An example is constructed in order to illustrate the generality
of our results. As applications of the obtained results, some new fixed point theorems are
presented on a metric space endowed with a partial ordering/graph and sufficient conditions
are discussed to ensure the existence of solutions of integral equations.
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2. Preliminaries and Background

Here, we recollect some basic definitions, lemmas, notations and some known theorems
which are helpful for understanding of this paper. Let (X, d) be a metric space and denote
the family of nonempty, closed and bounded subsets of X by CB(X). For A,B ∈ CB(X),
define H : CB(X)× CB(X)→ [0,+∞) by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
where d(a,B) = inf {d(a, x) : x ∈ B}. Such a function H is called the Pompeiu-Hausdorff
metric induced by the metric d, for more details, see [4]. Also, denote the family of nonempty
and closed subsets of X by CL(X) and the family of nonempty and compact subsets of X
by K(X). Note that H : CL(X) × CL(X) → [0,+∞] is a generalized Pompeiu-Hausdorff
metric, that is, H(A,B) = +∞ if max {supa∈A d(a,B), supb∈B d(b, A)} does not exist.

Lemma 2.1 ([18]). Let (X, d) be a metric space and A,B ∈ CL(X) with H(A,B) > 0. Then,
for each h > 1 and for each a ∈ A, there exists b = b(a) ∈ B such that d(a, b) < hH(A,B).

By the properties of closed sets, one deduces the following lemma.

Lemma 2.2. Let (X, d) be a metric space. For A ∈ CL(X) and x ∈ X, d(x,A) = 0 if and
only if x ∈ A.

Firstly, Asl et al. [3] adapted the notion of α-admissible to multivalued mappings as
α∗-admissible. Afterwards, Mohammadi et al. [8] introduced the concept of α-admissible
for multivalued mappings.

Let (X, d) be a metric space and α : X × X → [0,+∞) be a given mapping. A
mapping T : X → CL(X) is an

(1) α∗-admissible, if α(x, y) ≥ 1 implies α∗(Tx, Ty) ≥ 1, where α∗(Tx, Ty) =
inf {α(a, b) : a ∈ Tx, b ∈ Ty};

(2) α-admissible, if for each x ∈ X and y ∈ Tx with α(x, y) ≥ 1, we have α(y, z) ≥ 1
for all z ∈ Ty.

One can easily see that each α∗-admissible mapping is also α-admissible, but the
converse is not true in general.

Let Ψ be the family of nondecreasing functions ψ : [0,+∞) → [0,+∞) such that∑+∞
n=1 ψ

n(t) < +∞ for all t > 0. If ψ ∈ Ψ, then it is easy to see that ψ(t) < t for all t > 0.
Let (X, d) be a metric space. A map T : X → CL(X) is a

(1) multivalued α∗-ψ-contraction, if

α∗(Tx, Ty)H(Tx, Ty) ≤ ψ(d(x, y));

(2) multivalued α-ψ-contraction, if

α(x, y)H(Tx, Ty) ≤ ψ(d(x, y)),

for all x, y ∈ X where ψ ∈ Ψ and α : X ×X → [0,+∞).

Theorem 2.1 ([3, 8]). Let (X, d) be a complete metric space, ψ ∈ Ψ be a strictly increasing
function and T : X → CL(X) be a given mapping. Assume that the following conditions are
satisfied:

(i) T is α-admissible and multivalued α-ψ-contraction (or α∗-admissible and multivalued
α∗-ψ-contraction);

(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1;
(iii) T is continuous or
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(iv) X is α-regular, that is, for every sequence {xn} in X such that xn → x ∈ X and
α (xn, xn+1) ≥ 1 for all n ∈ N, then α (xn, x) ≥ 1 for all n ∈ N.

Then T has a fixed point, that is, there exists u ∈ X such that u ∈ Tu.

In 2014, Jleli and Samet [7] introduced a new type of contractive mappings, known
as θ-contraction. Following the results in [7], Vetro [18] presented fixed point results for
multivalued mappings.

Definition 2.1 ([7, 18]). Let (X, d) be a metric space. A map T : X → CL(X) is called a
weak θ-contraction, if there exist k ∈ (0, 1) and θ ∈ Θ such that

θ(H(Tx, Ty)) ≤ [θ(d(x, y))]k, (1)

for all x, y ∈ X with H(Tx, Ty) > 0, where Θ is the set of functions θ : (0,+∞)→ (1,+∞)
satisfying the following conditions:

(θ1) θ is non-decreasing;
(θ2) for each sequence {tn} ⊂ (0,+∞), limn→+∞ θ(tn) = 1 if and only if limn→+∞ tn = 0;

(θ3) there exist r ∈ (0, 1) and λ ∈ (0,+∞] such that limt→0+

θ(t)− 1

tr
= λ.

The following functions θi : (0,+∞)→ (1,+∞) for i ∈ {1, 2} , are the elements of Θ.
Furthermore, substituting in (1) these functions, we obtain some contractions known in the
literature: for all x, y ∈ X with H(Tx, Ty) > 0,

θ1(t) = e
√
t, H(Tx, Ty) ≤ k2d(x, y),

θ2(t) = e
√
tet ,

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤ k2.

Theorem 2.2 ([18]). Let (X, d) be a complete metric space and T : X → K(X) be a weak
θ-contraction. Then T has a fixed point.

Note that Theorem 2.2 is invalid, if we take CB(X) instead of K(X). In the reference
[18], Vetro showed that Theorem 2.2 is still true for T : X → CB(X), whenever θ ∈ Θ is
right continuous.

3. The Results

We begin this section with the following definition.

Definition 3.1. Let (X, d) be a metric space and α : X×X → [0,+∞) be a given function.
A mapping T : X → CL(X) is called a multivalued (α-θ-ψ)-contraction, if there exist θ ∈ Θ,
ψ ∈ Ψ and k ∈ (0, 1) such that

θ(H(Tx, Ty)) ≤ [θ(ψ(d(x, y)))]k, (2)

for all x, y ∈ X with α(x, y) ≥ 1 and H(Tx, Ty) > 0.

Remark 3.1. Let (X, d) be a metric space. If T : X → CL(X) is a multivalued (α-θ-ψ)-
contraction, then by (θ1) and (2), we deduce that

H(Tx, Ty) < ψ(d(x, y)),

for all x, y ∈ X with α(x, y) ≥ 1 and H(Tx, Ty) > 0. Hence, we have

H(Tx, Ty) ≤ ψ(d(x, y)),

for all x, y ∈ X with α(x, y) ≥ 1.

Now, we can state the first result of this paper.
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Theorem 3.1. Let (X, d) be a complete metric space and T : X → K(X) be a multivalued
(α-θ-ψ)-contraction. Assume that the following conditions are satisfied:

(i) T is α-admissible;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1;

(iii) T is continuous or X is α-regular.

Then T has a fixed point.

Proof. By the assumption (ii), there exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1. If
x0 = x1 or x1 ∈ Tx1, then x1 is a fixed point of T and so the proof is completed. Because
of this, assume that x0 6= x1 and x1 /∈ Tx1, then d(x1, Tx1) > 0 and hence H(Tx0, Tx1) >
0. Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x1, x2) = d(x1, Tx1). Now,
considering (2) and (θ1), we infer

1 < θ(d(x1, x2)) = θ(d(x1, Tx1)) ≤ θ(H(Tx0, Tx1))

≤ [θ(ψ(d(x0, x1)))]k

< [θ(d(x0, x1))]k.

Following the previous procedures, we can assume that x1 6= x2 and x2 /∈ Tx2. Then
d(x2, Tx2) > 0, and so H(Tx1, Tx2) > 0. Since, α(x0, x1) ≥ 1 and T is an α-admissible
multivalued mapping, we derive that α(x1, x2) ≥ 1 for x2 ∈ Tx1. Also, since Tx2 is compact,
there exists x3 ∈ Tx2 such that d(x2, x3) = d(x2, Tx2). Regarding (θ1) and (2), we deduce

1 < θ(d(x2, x3)) = θ(d(x2, Tx2)) ≤ θ(H(Tx1, Tx2))

≤ [θ(ψ(d(x1, x2)))]k

< [θ(d(x1, x2))]k.

Repeating this process, we can constitute a sequence {xn} ⊂ X such that xn 6= xn+1 ∈ Txn,
α(xn, xn+1) ≥ 1 and

1 < θ(d(xn, xn+1)) < [θ(d(xn−1, xn))]k, (3)

for all n ∈ N. Letting ρn := d(xn, xn+1) for all n ∈ N ∪ {0}, from (3), we get

1 < θ(ρn) < [θ(ρ0)]k
n

, for all n ∈ N. (4)

This implies that

lim
n→+∞

θ(ρn) = 1,

and by (θ2), we have

lim
n→+∞

ρn = 0. (5)

To prove that {xn} is a Cauchy sequence, let us consider condition (θ3). Then there exist
r ∈ (0, 1) and λ ∈ (0,+∞] such that

lim
n→+∞

θ(ρn)− 1

(ρn)r
= λ. (6)

Take δ ∈ (0, λ). By the definition of limit, there exists n0 ∈ N such that

[ρn]r ≤ δ−1[θ(ρn)− 1], for all n > n0.

Using (4) and the above inequality, we deduce

n[ρn]r ≤ δ−1n([θ(ρ0)]k
n

− 1), for all n > n0.

This implies that

lim
n→+∞

n[ρn]r = lim
n→+∞

n[d(xn, xn+1)]r = 0.
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Thence, there exists n1 ∈ N such that

d(xn, xn+1) ≤ 1

n1/r
, for all n > n1. (7)

Let m > n > n1. Then, using the triangular inequality and (7), we have

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

1

k1/r
≤
∞∑
k=n

1

k1/r

and hence {xn} is a Cauchy sequence in X. From the completeness of (X, d), there exists
u ∈ X such that xn → u as n→ +∞.

If T is continuous, then

lim
n→+∞

H(Txn, Tu) = 0,

which gives that

d(u, Tu) = lim
n→+∞

d(xn+1, Tu) ≤ lim
n→+∞

H(Txn, Tu) = 0,

and so d(u, Tu) = 0. Since Tu is closed, we obtain that u ∈ Tu, that is, u is a fixed point of
T.

If X is α-regular, then α(xn, u) ≥ 1 for all n ∈ N. If there exists k ∈ N such that
d(xk+1, Tu) = 0, then from the uniqueness of limit, d(u, Tu) = 0. So the proof is finished.
Hence, there exists n2 ∈ N such that d(xn+1, Tu) > 0 and so H(Txn, Tu) > 0 for all n > n2.
Considering Remark 3.1, we have

d(xn+1, Tu) ≤ H(Txn, Tu) < ψ(d(xn, u)) < d(xn, u),

and so

0 < d(xn+1, Tu) < d(xn, u), for all n > n2.

Passing to limit as n → +∞ in the above inequality, we obtain d(u, Tu) = 0 and so u ∈
Tu. �

In the next theorem, we replace K(X) with CB(X) by considering an additional
condition for the function θ.

Theorem 3.2. Let (X, d) be a complete metric space and T : X → CB(X) be a multival-
ued (α-θ-ψ)-contraction with right continuous function θ ∈ Θ. Assume that the following
conditions are satisfied:

(i) T is α-admissible;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1;

(iii) T is continuous or X is α-regular.

Then T has a fixed point.

Proof. Starting with (ii), there exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1. Arguing
similar lines in Theorem 3.1, we can assume that x0 6= x1 and x1 /∈ Tx1. By (θ1) and (2),
we get

θ(H(Tx0, Tx1)) ≤ [θ(ψ(d(x0, x1)))]k < [θ(d(x0, x1))]k.

By the property of right continuity of θ ∈ Θ, there exists a real number h1 > 1 such that

θ(h1H(Tx0, Tx1)) ≤ [θ(d(x0, x1))]k. (8)

From d(x1, Tx1) < h1H(Tx0, Tx1), by Lemma 2.1, there exists x2 ∈ Tx1 such that d(x1, x2) ≤
h1H(Tx0, Tx1). Then, using (θ1), (8) and last inequality, we infer that

θ(d(x1, x2)) ≤ θ(h1H(Tx0, Tx1)) ≤ [θ(d(x0, x1))]k.
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In view of the fact that T is α-admissible and α(x0, x1) ≥ 1, we have α(x1, x2) ≥ 1 for
x2 ∈ Tx1. Assume that x2 /∈ Tx2. Since θ is right continuous, there exists h2 > 1 such that

θ(h2H(Tx1, Tx2)) ≤ [θ(d(x1, x2))]k. (9)

From d(x2, Tx2) < h2H(Tx1, Tx2), by Lemma 2.1, there exists x3 ∈ Tx2 such that d(x2, x3) ≤
h2H(Tx1, Tx2). Then, using (θ1), (9) and last inequality, we deduce that

θ(d(x2, x3)) ≤ θ(h2H(Tx1, Tx2)) ≤ [θ(d(x1, x2))]k ≤ [θ(d(x0, x1))]k
2

.

Continuing in this manner, we build two sequences {xn} ⊂ X and {hn} ⊂ (1,+∞)
such that xn 6= xn+1 ∈ Txn, α(xn, xn+1) ≥ 1 and

1 < θ(d(xn, xn+1)) ≤ θ(hnH(Txn−1, Txn)) ≤ [θ(d(xn−1, xn))]k, for all n ∈ N.

Hence,

1 < θ(d(xn, xn+1)) ≤ [θ(d(x0, x1))]k
n

, for all n ∈ N.
which gives that

lim
n→+∞

θ(d(xn, xn+1)) = 1.

From (θ2), we obtain

lim
n→+∞

d(xn, xn+1) = 0.

The rest of the proof is like in the proof of Theorem 3.1. �

The following example illustrates Theorem 3.2 (resp. Theorem 3.1) where Theorems
2.1 and 2.2 are not applicable.

Example 3.1. Let X = [0,+∞) with the usual metric d (x, y) = |x− y| for all x, y ∈ X.
Define T : X → CB(X) and α : X ×X → [0,+∞) by

Tx =


[
0,
x

8

]
, if x ∈ [0, 3] ,

[0, x] , if x > 3,

and α (x, y) =


9

2
, if x, y ∈ [0, 3] ,

0, otherwise.

Obviously, α(x, y) ≥ 1 and H(Tx, Ty) > 0 for each x, y ∈ [0, 3] with x 6= y.
Firstly, we claim that T is a multivalued (α-θ-ψ)-contraction with k = 1

2 , ψ(t) = t
2

and θ(t) = e
√
tet . For all x, y ∈ [0, 3] with x 6= y,

θ (H (Tx, Ty)) = θ

(
|x− y|

8

)
= e

√
|x−y|

8 e
|x−y|

8

≤ e
1
2

√
|x−y|

2 e
|x−y|

2

= e
1
2

√
ψ(d(x,y))eψ(d(x,y))

= [θ(ψ(d(x, y)))]k,

that is, the condition (2) is satisfied. Moreover, it is easy to see that T is an α-admissible
multivalued mapping and there exist x0 = 3 and x1 = 3/8 ∈ Tx0 such that α (x0, x1) ≥ 1.

For each sequence {xn} in X with xn → x ∈ X as n→ +∞ and α (xn, xn+1) ≥ 1 for
all n, we have x, xn ∈ [0, 3] for all n. Hence, α (xn, x) ≥ 1 for all n, that is, X is α-regular.
Consequently, all conditions of Theorem 3.2 (resp. Theorem 3.1) are satisfied. Then T has
a fixed point in X. Note that the set of fixed points of T is not finite.
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On the other side, for x = 0 and y = 4, we have

θ (H (Tx, Ty)) = θ (H (T0, T4)) = θ (4) > [θ (4)]k = [θ (d(x, y))]k,

for all θ ∈ Θ and k ∈ (0, 1). Therefore, T is not weak θ-contraction and hence Theorem 2.2
can not applied to this example.

Also, for x = 0 and y = 3, we get

α(x, y)H (Tx, Ty) = α(0, 3)H (T0, T3) =
9

2
· 3

8
=

27

16
>

3

2
= ψ(d(x, y)),

for ψ(t) = t
2 . Thus, T is not multivalued α-ψ-contraction and so Theorem 2.1 can not applied

to this example.

Since each α∗-admissible mapping is also α-admissible, we obtain following result.

Corollary 3.1. Let (X, d) be a complete metric space, α : X ×X → [0,+∞) be a function
and T : X → CB(X) (resp. K(X)) be a multivalued mapping. Assume that the following
assertions hold:

(i) T is an α∗-admissible;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1;

(iii) T is continuous or X is α-regular;
(iv) There exist k ∈ (0, 1), ψ ∈ Ψ and θ ∈ Θ such that

θ(H(Tx, Ty)) ≤ [θ(ψ(d(x, y)))]k,

for all x, y ∈ X with α∗(Tx, Ty) ≥ 1 and H(Tx, Ty) > 0.

Then T has a fixed point.

Corollary 3.2. Let (X, d) be a complete metric space, α : X × X → [0,+∞) be a func-
tion and T : X → CB(X) (resp. K(X)) be an α-admissible multivalued mapping and the
following assertions hold:

(i) There exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1;
(ii) T is continuous or X is α-regular;

(iii) there exist k ∈ (0, 1), ψ ∈ Ψ and θ ∈ Θ such that

x, y ∈ X, H(Tx, Ty) > 0⇒ θ(α(x, y)H(Tx, Ty)) ≤ [θ(ψ(d(x, y)))]k. (10)

Then T has a fixed point.

Proof. Let x, y ∈ X such that α (x, y) ≥ 1 and H(Tx, Ty) > 0. Using (θ1) and (10), we have

θ(H(Tx, Ty)) ≤ θ(α(x, y)d(Tx, Ty)) ≤ [θ(ψ(d(x, y)))]k,

and hence

θ(H(Tx, Ty)) ≤ [θ(ψ(d(x, y)))]k,

for all x, y ∈ X with α (x, y) ≥ 1 and H(Tx, Ty) > 0. This implies that the inequality (2)
holds. Thus, the rest of proof follows from Theorem 3.2 (resp. Theorem 3.1). �

4. Some Consequences

In this section we give new fixed point results on a metric space endowed with a
partial ordering/graph, by using the results provided in previous section. Define

α : X ×X → [0,+∞), α (x, y) =

{
1, if x � y,
0, otherwise.

Then the following result is a direct consequence of our results.
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Theorem 4.1. Let (X,�, d) be a complete ordered metric space and T : X → CB(X) (resp.
K(X)) be a multivalued mapping. Assume that the following assertions hold:

(i) For each x ∈ X and y ∈ Tx with x � y, we have y � z for all z ∈ Ty;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that x0 � x1;

(iii) T is continuous or, for every sequence {xn} in X such that xn → x ∈ X and xn �
xn+1 for all n ∈ N, we have xn � x for all n ∈ N;

(iv) There exist k ∈ (0, 1), ψ ∈ Ψ and θ ∈ Θ such that

θ(H(Tx, Ty)) ≤ [θ(ψ(d(x, y)))]k,

for all x, y ∈ X with x � y and H(Tx, Ty) > 0.

Then T has a fixed point.

Now, we present the existence of fixed point for multivalued mappings from a metric
space X, endowed with a graph, into the space of nonempty closed and bounded subsets
of the metric space. Consider a graph G such that the set V (G) of its vertices coincides
with X and the set E (G) of its edges contains all loops; that is, E (G) ⊇ ∆, where ∆ =
{(x, x) : x ∈ X}. We assume G has no parallel edges, so we can identify G with the pair
(V (G) , E (G)).

If we define the function

α : X ×X → [0,+∞), α (x, y) =

{
1, if (x, y) ∈ E (G) ,

0, otherwise,

then the following result is a direct consequence of our results.

Theorem 4.2. Let (X, d) be a complete metric space endowed with a graph G and T : X →
CB(X) (resp. K(X)) be a multivalued mapping. Assume that the following conditions are
satisfied:

(i) For each x ∈ X and y ∈ Tx with (x, y) ∈ E(G), we have (y, z) ∈ E(G) for all z ∈ Ty;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E(G);

(iii) T is continuous or, for every sequence {xn} in X such that xn → x ∈ X and
(xn, xn+1) ∈ E(G) for all n ∈ N, we have (xn, x) ∈ E(G) for all n ∈ N;

(iv) There exist k ∈ (0, 1), ψ ∈ Ψ and θ ∈ Θ such that

θ(H(Tx, Ty)) ≤ [θ(ψ(d(x, y)))]k,

for all x, y ∈ X with (x, y) ∈ E(G) and H(Tx, Ty) > 0.

Then T has a fixed point.

5. An Application

Consider the following integral equation:

p (r) = q(r) + λ

∫ b

a

H (r, z) f(z, p(z))dz, r ∈ I = [a, b], (11)

where q : I → R, H : I × I → R, f : I × R→ R are given continuous functions.
In this section, we establish the existence of solutions for the integral equation (11)

that belongs to the space X := C(I,R) of the continuous functions defined on I and with
real values. Let X be endowed with the metric d defined by

d(x, y) = ‖x− y‖∞ for all x, y ∈ X.

Then (X, d) is a complete metric space.
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We define an operator

T : X → X, Tp(r) := q(r) + λ

∫ b

a

H (r, z) f(z, p(z))dz, r ∈ I,

then the existence of solutions of (11) is equivalent to the existence of fixed points of T .
We will analyze (11) under the following assumptions:

(A) |λ| ≤ 1;
(B) For each z ∈ I and for all x, y ∈ X with (x, y) ∈ E(G) and x 6= y, there exists

β ∈ (0,+∞) such that

|f(z, x(z))− f(z, y(z))| ≤ ξ(x, y)(|x(z)− y(z)|)

and ∥∥∥∥∥
∫ b

a

H (r, z) ξ(x, y)dz

∥∥∥∥∥
∞

≤ e−β

2
;

(C) x, y ∈ X, (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G);
(D) There exists x0 ∈ X such that ξ (x0, Tx0) ∈ E(G);
(E) if {xn} is a sequence in X such that xn → x ∈ X and (xn, xn+1) ∈ E(G) for all n ∈ N,

then (xn, x) ∈ E(G) for all n ∈ N.

Theorem 5.1. Under the assumptions (A)-(E), the integral equation (11) has at least one
solution in X.

Proof. Let (x, y) ∈ E(G) and Tx 6= Ty. On account of (A), for all r ∈ I

|Tx(r)− Ty(r)| =
∣∣∣∣λ
(∫ b

a

H (r, z) f(z, x(z))dz −
∫ b

a

H (r, z) f(z, y(z))dz

)∣∣∣∣
= |λ|

∣∣∣∣∣
∫ b

a

H (r, z) [f(z, x(z))− f(z, y(z))] dz

∣∣∣∣∣
≤ |λ|

∫ b

a

H (r, z) |f(z, x(z))− f(z, y(z))| dz

≤ |λ|
∫ b

a

H (r, z) ξ(x, y)|x(z)− y(z)|dz

≤ |λ| ‖x− y‖∞
∫ b

a

H (r, z) ξ(x, y)dz

≤ ‖x− y‖∞
∫ b

a

H (r, z) ξ(x, y)dz.

Thus, we have

‖Tx− Ty‖∞ ≤ ‖x− y‖∞

∥∥∥∥∥
∫ b

a

H (r, z) ξ(x, y)dz

∥∥∥∥∥
∞

,

and hence

d(Tx, Ty) ≤ e−β

2
d(x, y).

Since θ(t) = e
√
t ∈ Θ for all t > 0, by the last inequality, we infer

e
√
d(T (x,y)) ≤ e

√
e−β

d(x,y)
2 ≤

[
e

√
d(x,y)

2

]k
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which implies that, for all x, y ∈ X with (x, y) ∈ E(G) and Tx 6= Ty

θ(d(T (x, y)) ≤ [θ(ψ(d(x, y))]
k
,

where k =
√
e−β and ψ(t) = t/2 for all t ≥ 0. Consequently, all conditions of Theorem 4.2

are fulfilled and so T has a fixed point, that is, the integral equation (11) has at least one
solution in X. �
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