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ON SEMI-INFINITE PROGRAMMING PROBLEMS AND STRONG KKT

TYPE SUFFICIENT OPTIMALITY CONDITIONS
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In present manuscript, we consider a multiobjective non-smooth semi-infinite

programming problem with vanishing constraints MOSIPVC. Under generalized invexity

assumptions, we establish the strong Karush-Kuhn-Tucker (KKT) type sufficient opti-
mality condition for MOSIPVC. Example is also given in order to support the theorem.
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1. Introduction

In Multi-objective programming [2, 19, 20], a semi-infinite problem arises when mul-
tiple objective functions need to be optimized over a domain of validity (feasible region)
described by an infinite number of constraints. If a MOSIP has a single objective function,
it is called a semi-infinite programming problem (SIP). The problem of SIP has played a
vital role in many fields of modern research, such as control of air pollution [24], robot
trajectory planning [23], engineering design [21], and transportation theory [16]. For more
information on SIP and its applications see books [7,22] and for more details on MOSIP one
can see the recent articles [3, 14,15].

Achtziger and Kanzow [1] presented a mathematical program using vanishing con-
straints MPVC and investigated that many structural topology optimization problems can
be reformulated using MPVC. Hoheisel and Kanzow [9] introduced the stationary concepts
for MPVC and obtained first-order sufficient optimality conditions and second-order nec-
essary and sufficient optimality conditions for MPVC. Hoheisel and Kanzow [10] set the
optimality condition for weak constraint qualifications. Mishra et al. [17] invesigate various
constraint qualifications and specified a KKT-type necessary optimality condition for multi-
objective MPVC.

The idea of strong KKT conditions was introduced in order to avoid the case where
some of the Lagrange multipliers associated with the components of multiobjective functions
vanish. Golestani and Nobakhtian [8] investigated the strong KKT optimality conditions for
multi-objective optimization that is not smooth. Later, Kanzi [15] presented strong KKT
optimality condition for MOSIP. Pandey and Mishra [18] gave strong KKT type sufficient
optimality conditions for non-smooth MOSIP with equilibrium constraints. For more infor-
mation on MPVC, see [5, 11,12].

1Department of Mathematics, Graphic Era Deemed to be University, Dehradun-248002, India, e-mail:

bhuwanjoshi007@gmail.com
2Department of Management Studies, Graphic Era Deemed to be University, Dehradun, 248002, India.,

e-mail: minocha.tania1@gmail.com

87



88 Bhuwan Chandra Joshi, Amrisha Minocha

Motivated by the work of Guu et. al. [6], we present strong KKT optimality conditions
for the MOSIP with vanishing constraints MOSIPVC that do not include any constraint
qualifications. This article is structured as follows. In Section 2, we give some well-known
definitions and results which will be used further. In Section 3, we give stationary points
and establish strong KKT type optimality conditions for MOSIPVC. Section 4, summarizes
the findings of this article.

2. Definitions and preliminaries

We consider the following MOSIPVC:

MOSIPV C min f(v) := (f1(v), f2(v), , , , fm(v))

subject to Ar(v) ≤ 0, r ∈ Ω

Cδ(v) ≥ 0, δ ∈ L; where L := {1, ..., l},
Bδ(v)Cδ(v) ≤ 0, δ ∈ L; where L := {1, ..., l},

where fδ : Rn → R, Ar : Rn → R ∪ {+∞}, Bδ : Rn → R, Cδ : Rn → R are locally Lipschitz
functions and Ω is an index set, which is arbitrary (possibly infinite). Let M := {v ∈
Rn, Ar(v) ≤ 0, r ∈ Ω, Cδ(v) ≥ 0, Bδ(v)Cδ(v) ≤ 0, δ = 1, ..., l} indicates the feasible region of
MOSIPVC. A point v̄ ∈M is known as weakly efficient solution for the MOSIPVC if there
does not exists any v ∈M such that

fδ(v) < fδ(v̄), ∀δ ∈ N ; where N := {1, 2, ...,m}.

Let v̄ ∈M. Then the index sets given below will be used further

Ω(v̄) := {r ∈ Ω; Ar(v̄) = 0},
α+(v̄) := {δ ∈ L; Cδ(v̄) > 0},
α0(v̄) := {δ ∈ L; Cδ(v̄) = 0}.

Moreover, index set α+(v̄) can also be divided as follows:

α+0(v̄) := {δ ∈ L; Cδ(v̄) > 0, Bδ(v̄) = 0},
α+−(v̄) := {δ ∈ L; Cδ(v̄) > 0, Bδ(v̄) < 0}.

Similarly, α0(v̄) can also be written as:

α0+(v̄) := {δ ∈ L; Cδ(v̄) = 0, Bδ(v̄) > 0},
α00(v̄) := {δ ∈ L; Cδ(v̄) = 0, Bδ(v̄) = 0},
α0−(v̄) := {δ ∈ L; Cδ(v̄) = 0, Bδ(v̄) < 0}.

Definition 2.1. Let f : Rn → R is locally Lipschitz around v̄ in the direction u ∈ Rn then
Clarke directional derivative and Clarke subdifferentials of f at v̄ is given by

f0(v̄, u) := lim
v→v̄

sup
t↓0

f(v + tu)− f(v)

t
,

∂cf(v̄) := {ξ ∈ Rn : f0(v̄, u) ≥ 〈ξ, u〉, ∀u ∈ Rn}.

Theorem 2.1. [4] Let Φ and Ψ be locally Lipschitz from Rn to R around v̄. Then the
following properties hold:

(1) Φ0(v̄, u) = max{〈ζ, u〉 : ζ ∈ ∂cΦ(v̄), ∀u ∈ Rn},
(2) ∂c(γΦ)(v̄) = γ∂cΦ(v̄),∀γ ∈ R,
(3) ∂c(Φ + Ψ)(v̄) ⊆ ∂cΦ(v̄) + ∂cΨ(v̄).
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Based on the definitions of p-invex function and generalized p-invex functions intro-
duced by Joshi [13] in the framework of convexificators, we are introducing the definition of
p-invex function and generalized p-invex function in terms of Clarke subdifferentials.

Definition 2.2. Let f : Rn → R be locally Lipschitz function around v̄. Then
1. f is called p-invex at v̄ if, ∀ v ∈ Rn, p ∈ R/{0} and any ξ ∈ ∂cf(v̄), there exist ψ :
Rn × Rn → R, such that

f(v)− f(v̄) ≥ 1

p
〈ξ, epψ(v,v̄) − 1〉.

2. f is called strictly p-invex at v̄ if, ∀ v ∈ Rn, p ∈ R/{0} and any ξ ∈ ∂cf(v̄), there exist
ψ : Rn × Rn → R, such that

f(v)− f(v̄) >
1

p
〈ξ, epψ(v,v̄) − 1〉.

3. f is called quasi-p-invex at v̄ if, ∀ v ∈ Rn, p ∈ R/{0} and any ξ ∈ ∂cf(v̄), there exist
ψ : Rn × Rn → R, such that

f(v) ≤ f(v̄) =⇒ 1

p
〈ξ, epψ(v,v̄) − 1〉 ≤ 0.

4. f is called pseudo-p-invex at v̄ if, ∀ v ∈ Rn, p ∈ R/{0} and any ξ ∈ ∂cf(v̄), there exist
ψ : Rn × Rn → R, such that

f(v) ≤ f(v̄) =⇒ 1

p
〈ξ, epψ(v,v̄) − 1〉 < 0.

3. Sufficient optimality conditions (Strong KKT type)

Definition 3.1. [6] A feasible point v̄ of the MOSIPVC is known as a MOSIPVC strong
(S-)stationary point if ∃ Lagrange multiplier λδ > 0, δ ∈ N and µr ≥ 0, r ∈ Ω(v̄) with µr 6= 0
for at most finitely many indices and ηCδ , η

C
δ ∈ R, δ ∈ L such that following holds:

0 ∈
m∑
δ=1

λδ∂cfδ(v̄) +
∑

r∈Ω(v̄)

µr∂cAr(v̄)−
l∑

δ=1

ηCδ ∂cCδ(v̄) +

l∑
δ=1

ηBδ ∂cBδ(v̄),

ηCδ = 0, δ ∈ α+(v̄), ηCδ ≥ 0, δ ∈ α0−(v̄) ∪ α00(v̄), ηCδ ∈ R δ ∈ α0+(v̄),

ηBδ = 0, δ ∈ α+−(v̄) ∪ α0(v̄) ∪ α0+(v̄), ηBδ ≥ 0, δ ∈ α+0(v̄).

Definition 3.2. [6] A feasible point v̄ of the MOSIPVC is known as a MOSIPVC Mor-
dukhovich (M-) point if ∃ Lagrange multiplier λδ > 0, δ ∈ N, and µr ≥ 0, r ∈ Ω(v̄) with
µr 6= 0 for at most finitely many indices and ηCδ , η

C
δ ∈ R, δ ∈ L such that following holds:

0 ∈
m∑
δ=1

λδ∂cfδ(v̄) +
∑

r∈Ω(v̄)

µr∂cAr(v̄)−
l∑

δ=1

ηCδ ∂cCδ(v̄) +

l∑
δ=1

ηBδ ∂cBδ(v̄),

ηCδ = 0, δ ∈ α+(v̄), ηCδ ≥ 0, δ ∈ α0−(v̄), ηCδ ∈ R δ ∈ α0+(v̄),

ηBδ = 0, δ ∈ α+−(v̄) ∪ α0−(v̄) ∪ α0+(v̄), ηBδ ≥ 0, δ ∈ α+0(v̄) ∪ α00(v̄),

ηCδ , η
B
δ = 0, δ ∈ α00(v̄).

Following theorem gives strong KKT type sufficient optimality condition for the
MOSIPVC using generalized invexity assumptions.

Theorem 3.1. Let v̄ be a MOSIPVC M-stationary point. Assume that fδ, δ ∈ N,Ar, r ∈
Ω(v̄),−Cδ, Bδ, δ ∈ L are p-invex at v̄ on M and at least one of them is strictly p-invex at v̄
on M. Then v̄ is a weakly efficient solution of the MOSIPVC.
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Proof. Given that, v̄ is a MOSIPVC M-stationary point, i.e., ∃ ξ̄fδ ∈ ∂cfδ(v̄), δ ∈ N, ξ̄Aδ ∈
∂cAr(v̄), r ∈ Ω(v̄) and ξ̄Cδ ∈ ∂cCδ(v̄), ξ̄Bδ ∈ ∂cBδ(v̄), δ ∈ L such that

m∑
δ=1

λδ ξ̄
f
δ +

∑
r∈Ω(v̄)

µr ξ̄
A
δ −

l∑
δ=1

ηCδ ξ̄
C
δ +

l∑
δ=1

ηBδ ξ̄
B
δ = 0. (1)

Suppose v̄ is not a weakly efficient solution for the MOSIPVC, i.e., ∃ ṽ ∈M, such that

fδ(ṽ) < fδ(v̄)∀ δ ∈ N.

Using MOSIPVC M-stationary point condition, one has λδ > 0 for δ ∈ N. Thus, we obtain

m∑
δ=1

λδfδ(ṽ) <

m∑
δ=1

λδfδ(v̄). (2)

Since v̄ is a MOSIPVC M-stationary point and ṽ is a feasible point of the MOSIPVC, we
obtain

Ar(ṽ) < 0, µr ≥ 0, r ∈ Ω(v̄),

− Cδ(ṽ) < 0, ηCδ ≥ 0, δ ∈ α0−(v̄) ∪ α+(v̄),

Cδ(ṽ) = 0, ηC ∈ R, δ ∈ α0+(v̄),

Bδ(ṽ) > 0, ηB = 0, δ ∈ α+−(v̄) ∪ α0−(v̄) ∪ α0+(v̄),

Bδ(ṽ) ≤ 0, ηB > 0, δ ∈ α00(v̄) ∪ α+0(v̄).

which implies that

∑
r∈Ω(v̄)

µrAr(ṽ)−
l∑

δ=1

ηCδ Cδ(ṽ) +

l∑
δ=1

ηBδ Bδ(ṽ)

≤
∑

r∈Ω(v̄)

µrAr(v̄)−
l∑

δ=1

ηCδ Cδ(v̄) +

l∑
δ=1

ηBδ Bδ(v̄). (3)

From (2) and (3), we have

m∑
δ=1

λδfδ(ṽ) +
∑

r∈Ω(v̄)

µrAr(ṽ)−
l∑

δ=1

ηCδ Cδ(ṽ) +

l∑
δ=1

ηBδ Bδ(ṽ)

<

m∑
δ=1

λδfδ(v̄) +
∑

r∈Ω(v̄)

µrAr(v̄)−
l∑

δ=1

ηCδ Cδ(v̄) +

l∑
δ=1

ηBδ Bδ(v̄). (4)

Using equation 3.1, we obtain

0 =

m∑
δ=1

λδ ξ̄
f
δ +

∑
r∈Ω(v̄)

µr ξ̄
A
δ −

l∑
δ=1

ηCδ ξ̄
C
δ +

l∑
δ=1

ηBδ ξ̄
B
δ

∈ ∂c

 m∑
δ=1

λδfδ(v̄) +
∑

r∈Ω(v̄)

µrAr(v̄)−
l∑

δ=1

ηCδ Cδ(v̄) +

l∑
δ=1

ηBδ Bδ(v̄)

 . (5)
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From (1), (4) and (5), we get

0 >
〈 m∑
δ=1

λδ ξ̄
f
δ +

∑
r∈Ω(v̄)

µr ξ̄
A
δ −

l∑
δ=1

ηCδ ξ̄
C
δ +

l∑
δ=1

ηBδ ξ̄
B
δ , e

pψ(v,v̄) − 1

〉

=
1

p
〈0, epψ(v,v̄) − 1〉.

This is a contradiction, hence proved. �

One can easily find, following corollary directly using Theorem 3.1.

Corollary 3.1. Assume that v̄ is a MOSIPVC S-stationary point and let fδ, δ ∈ N,Ar, r ∈
Ω(v̄),−Cδ, Bδ, δ ∈ L are quasi p-invex at v̄ on M and at least one of them is strictly quasi
p-invex at v̄ on M. Then v̄ is a weakly efficient solution for the MOSIPVC.

The example given below satisfies assumptions of the Theorem 3.1.

Example 3.1. Assuming p = 1 and ψ(v, v̄) = 0, consider MOSIPVC problem in R2as follows;

min f(v) = (v2
1 , |v1|+ v2)

s.t. Ar(v) = −rv1 ≤ 0,

r ∈ N,Here N denotes the set of natural numbers

C(v) = v1 ≥ 0,

C(v)B(v) = v1(|v1|+ |v2|) ≤ 0.

Note that we have, f1(v) = v2
1 , f2(v) = |v1|+ v2 and the feasible set of the MOSIPVC is as

follows
M = {(v1, v2) ∈ R2 : −rv1 ≤ 0, r ∈ N, v1 ≥ 0, v1(|v1|+ |v2|) ≤ 0},

one can see that v̄ = (0, 0) is a feasible point of the MOSIPVC, Ω(v̄) = N and I00(v̄) =
{1}. The feasible point v̄ is a MOSIPVC M-stationary point with λ1 > 0, λ2 = 1, µ1 = 1, µ2 =
1
2 , µ3 = µ4 =, ... = 0, ηC = −1, ηB = 0, ξf1 = (0, 0) ∈ ∂cf1(v̄) = {(0, 0)}, ξf2 = (0, 1) ∈
∂cf2(v̄) = [−1, 1]×{1}, ξAr

1 = (−r, 0) ∈ ∂cAr(v̄) = {(−r, 0)}, ξC = (1, 0) ∈ ∂cC(v̄) = {(1, 0)}
and ξB = (0, 1) ∈ ∂cB(v̄) = [−1, 1]× [−1, 1].

By relaxing the generalized p-invexity requirement in Theorem 3.1, a strong KKT-
type sufficient optimality condition can also be obtained for MOSIPVC.

Theorem 3.2. Let v̄ be a MOSIPVC M-stationary point. Suppose that fδ, δ ∈ N,Ar, r ∈
Ω(v̄),−Cδ, Bδ, δ ∈ L are quasi-p-invex at v̄ on M and at least one of them is strictly quasi-
p-invex at v̄ on M. Then MOSIPVC attains v̄ as a weakly efficient solution.

Theorem 3.3. Let v̄ be a MOSIPVC M-stationary point. Assume that each fδ, δ ∈ N, is

p-invex at v̄ on M and
∑

r∈Ω(v̄)

µrAr(v) −
l∑

δ=1

ηCδ Cδ(v) +
l∑

δ=1

ηBδ Bδ(v) is p-invex at v̄ on M.

Then v̄ is a weakly efficient solution for the MOSIPVC.

Proof. Assuming that MOSIPVC does not have v̄ as a weakly efficient solution, that is,
there is a feasible point ṽ such that

fδ(ṽ) < fδ(v̄), ∀δ ∈ N.
By strict p-invexity of fδ, we have

1

p
〈ξfδ , e

pψ(ṽ,v̄) − 1〉 < 0, ξfδ ∈ ∂cfδ(v̄), δ ∈ N. (6)
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Using M-stationary condition, we obtain λδ > 0, δ ∈ N . Thus, we have

1

p

〈
m∑
δ=1

λδξ
f
δ , e

pψ(ṽ,v̄) − 1

〉
< 0. (7)

Since, MOSIPVC has v̄ as a M-stationary point, from (1) and (7), we obtain

1

p

〈 ∑
r∈Ω(v̄)

µr ξ̄
A
r −

l∑
δ=1

ηCδ ξ̄
C
δ +

l∑
δ=1

ηBδ ξ̄
B
δ , e

pψ(ṽ,v̄) − 1

〉
> 0. (8)

From (3), we have

∑
r∈Ω(v̄)

µrAr(ṽ)−
l∑

δ=1

ηCδ Cδ(ṽ) +

l∑
δ=1

ηBδ Bδ(ṽ)

≤
∑

r∈Ω(v̄)

µrAr(v̄)−
l∑

δ=1

ηCδ Cδ(v̄) +

l∑
δ=1

ηBδ Bδ(v̄). (9)

Considering the p-invexity of

∑
r∈Ω(v̄)

µrAr(v)−
l∑

δ=1

ηCδ Cδ(v) +

l∑
δ=1

ηBδ Bδ(v),

at v̄ on M, we obtain

1

p

〈 ∑
r∈Ω(v̄)

µr ξ̄
A
r −

l∑
δ=1

ηCδ ξ̄
C
δ +

l∑
δ=1

ηBδ ξ̄
B
δ , e

pψ(ṽ,v̄) − 1

〉
≤ 0. (10)

which is a contradiction to (8). Hence, MOSIPVC attains v̄ as a weakly efficient solution.
Hence the result is proved �

Corollary 3.2. Let v̄ be a MOSIPVC S-stationary point. Assume that each fδ, δ ∈ N, is

p-invex at v̄ on M and
∑

r∈Ω(v̄)

µrAr(v) −
l∑

δ=1

ηCδ Cδ(v) +
l∑

δ=1

ηBδ Bδ(v) is p-invex at v̄ on M.

Then v̄ is a weakly efficient solution for the MOSIPVC.

Now, we provide an example to satisfy Theorem 3.3.

Example 3.2. Assuming p = 1 and ψ(v, v̄) = 0. considering that MOSIPVC problem is in
R2 as follows;

min f(v) = (|v1|, |v2|)
s.t. Ar(v) = −rv2

1 ≤ 0,

r ∈ N,Here N denotes the set of natural numbers

C(v) = v2
1 + v2 ≥ 0,

C(v)B(v) = |v1|(v2
1 + v2) ≤ 0.

Note that we have, f1(v) = |v1|, f2(v) = |v2| and the feasible set of the MOSIPVC is as
follows

M = {(v1, v2) ∈ R2 : −rv2
1 ≤ 0, r ∈ N, v2

1 + v2 ≥ 0, |v1|(v2
1 + v2) ≤ 0},
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one can see that v̄ = (0, 0) is a feasible point of the MOSIPVC, Ω(v̄) = N and I00(v̄) = 
{1}. The feasible point v̄ is a MOSIPVC M-stationary point with λ1 > 0, λ2 = 1, µ1 = 1, µ2 = 
µ3 = µ4 =, ... = 0, η1

C = −1, η1
B = 0, ξf1 = (0, 0) ∈ ∂cf1(v̄) = [−1, 1] × {0}, ξf2 = (0, −1) ∈

∂cf2(v̄) = {0} × [−1, 1], ξ1
Ar = (0, 0) ∈ ∂cAr(v̄) = {(0, 0)}, ξC = (0, 1) ∈ ∂cC(v̄) = {(0, 1)} 

and ξB = (1, 0) ∈ ∂cB(v̄) = [−1, 1] × [−1, 1]. Now, one can easily see that Theorem 3.3 is 
verified.

4. Results and discussion

This article considers MOSIPVC. Under the assumption of generalized convexity, we 
introduce a stationary condition for MOSIPVC and establish a sufficient optimum for the 
strong KKT type of MOSIPVC. We extend KKT’s notion of strong optimality to constraint-
free MOSIPVC. Moreover, the findings of this article can be extended to strong KKT type 
necessary optimality conditions for the MOSIPVC in which constraint qualification will be 
involved.
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