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A MATHEMATICAL MODEL FOR HAV

Mohammad Reza Molaei1, Tayebeh Waezizadeh2, Maryam Rezaeezadeh3

In this paper we present an SEITR epidemic model for HAV.
We consider asymptotical stability in disease free equilibrium point. We
prove that the other equilibrium point is not sign stable. We also prove that
SEITR model has not any periodic orbit.
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1. Introduction

In this paper we are going to present a model to describe the method of
infection for the virus of hepatit of type A.
In this model we have five boxes, which are called susceptible, latent or ex-
posed, infectious, treatment or vaccination and recover.
We know that in many infectious diseases there is an exposed period after
transmission of infection from susceptible to potentially infective members.
Moreover potential infected persons can transmit infection. If the exposed pe-
riod is short, then we ignore potential infection in the model. In the infections
with long exposed period this parameter can not be ignored.
In the case of vaccination before the beginning of an epidemic, we must con-
sider both exposed period and the period of treatment. In HAV we accept
with such situation. We know that forty percent of hepatitis viruses are of
type A. Infectious hepatitis, which produce by one spices of entrovirus, with
RNA jenom, from picornaviridae family. That’s exposed period is approxi-
mately one month, and then jaundice significant will be appearance.
Ninety percent of children and fifteen to twenty five percent adults are infected
without clinical significant. We often used murdered HAV vaccination for chil-
dren and adults in the exposed period.
Also in dangerous thunder like hepatitits that may occur 1-3 per 1000 in in-
fected persons by HAV, and it’s mortality rate is about eighty percent.
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In this paper we consider an epidemiological model. We divide the popula-
tion into five classes: susceptible, latent or exposed, infectious, treatment or
vaccination and recovered. We denote their sizes by S, E, I, T and R respec-
tively. We used of the abridgment SEITR. This model is an extension of the
models presented in [2,3,4,5,6]. In SEITR model a susceptible individual first
goes through exposed period after infection before becoming infectious. We
also assume that a fraction δ of individuals in the infection period will use of
treatment or vaccination.
In section 2, the SEITR model and R0 are formulated.
In section 3, we present a condition for asymptotical stability of the disease-
free equilibrium Q0 and a bifurcation point of the system.
The sign unstability of the endemic equilibrium Q∗ is considered in section 4.
In section 5, we prove that there are only two equilibrium points for HAV.
The periodic orbit is considered in section 6.

2. Model Formulation

With the notation of the previous section the size N(t) of the total pop-
ulation in time t for HAV consideration is: S(t) + E(t) + I(t) + T (t) + R(t).
We denote the transmission rate (per capita) by β. µ and λ are the natural
mortality rate and the birth rate respectively. We denote the recovery rate in
class I by α. Also we denote the rate of leaving exposed class by k.
In SEITR the fraction γ denotes per unit time of infected persons who are
selected for treatment. Moreover we assume that the treatment reduces infec-
tions with the fraction δ. The treatment reduces the incidence of Hepatitis A
by 90 percent We denote the rate of removal from the treated class by η.
f denotes the fraction of αI members who leaving the infected class at time
t to the recovery class and the remaining fraction (1 − f) die because of dis-
ease. Moreover we suppose that the fraction fT of ηT members leaving the
treatment class at time t. One must pay attention to this point that all the
parameters are between zero and one. How could we write the differential
system? We supposed that an average member of the population who makes
contact to transmit infection at time t to the others is βN(t) per unit time,
where N(t) represents the total population size. Since the probability of a ran-

dom contact by an infective with a susceptible is S(t)
N(t)

, then the number of new

infections in unit time is βN(t) S(t)
N(t)

, giving a rate of new infections who they

are in the exposed class, i.e. βN(t) S(t)
N(t)

(I(t)+δT (t)) = βS(t)(I(t)+δT (t)). So

βS(t)(I(t)+ δT (t)) is a rate of the people who leaving the class S(t) at time t.
Also we assume that all newborns are susceptible so a rate of new susceptible
is λN(t) at time t. And µS(t) is a rate of the individuals who leaving the
population by death. So
Ṡ = −βS(I + δT ) + λN − µS.
The rate kE(t) of exposed individuals who infected will be entranced to the
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class I(t) at time t. So
Ė = βS(I + δT )− µE − kE.
αI(t) denotes the rate of recovered infective people who entrance to the class
R(t) at time t and the rate µI(t) of the population are going out of the popu-
lation because of death. Also a rate γI(t) of infective people are going to the
treatment class at time t. So
İ = kE − (α + µ+ γ)I.
ηT (t) is the rate of the people, who they are received the treatment, and they
will be recovered at time t. So
Ṫ = γI − (η + µ)T.
A rate αfI(t) of infective people and a rate ηfTT (t) of treatment individuals
are recovered at time t. So
Ṙ = αIf + ηTfT − µR.
The rates (1− f)αI(t) and (1− fT )ηT (t) of the population left the population
by death. Hence Ṅ = −(1− f)αI − (1− fT )ηT + λN − µN.
So we have the following mathematical model.

Ṡ = −βS(I + δT ) + λN − µS

Ė = βS(I + δT )− µE − kE

İ = kE − (α + µ+ γ)I

Ṫ = γI − (η + µ)T

Ṅ = −(1− f)αI − (1− fT )ηT + λN − µN

Ṙ = αIf + ηTfT − µR

(1.1)

The flow chart of SEITR model is:

S → E → I → R
↓
T → R

.

In order to calculate the basic reproduction number R0, we assume that
S(0) = K = N(0). We know that an infected person in a totally suscepti-
ble population causes βK new infected people in unite time, and the mean
time spent in the exposed compartment is 1

k
. Also the mean time spent in the

infections compartment is 1
α+γ

.

In addition, a fraction γ
α+γ

of infected persons are treated. While in the treat-

ment stage the number of new infected person caused in unit time is δβK, and
the mean time in the treatment class is 1

η
. So

R0 =
Kβ

k
+

Kβ

α + γ
+

γ

α + γ

δβK

η
.
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3. Asymptotical Stability Analysis

From the biological consideration, the phase space of the model is:

T0 = {(S,E, I, T,N) : 0 ≤ S + E + I + T ≤ N}.

Before an epidemic outbreak the point Q0 = (K, 0, 0, 0, K) is the disease free
equilibrium point of the model, and it exists for all non negative values of the
parameters.
Theorem 3.1. In the model (1.1) if R0 < 1 then:
(a) If λ < µ and then disease free equilibrium Q0 is locally asymptotically
stable.
(b) If λ = µ then the disease free equilibrium Q0 is unstable.
(c) If λ > µ then the disease free equilibrium Q0 is locally stable but Q0 is not
locally asymptotically stable.
Proof.
(a) The linearization matrix of the system (1.1) at the equilibrium Q0 is

−µ 0 −βK −δβK λ
0 −(µ+ k) βK δβK 0
0 k −(α + µ+ γ) 0 0
0 0 γ −(µ+ η) 0
0 0 −(1− f)α −(1− fT )η λ− µ


So its characteristic equation is:

(−µ− λ
′
)(λ− µ− λ

′
)(λ′3 + a1λ

′2 + a2λ
′ + a3) = 0,

where

a1 = 3µ+ k + α + γ + η.

a2 = (µ+ α+ γ)(2µ+ η + k) + (µ+ k)(µ+ η)− kβK.

and

a3 = (µ+ k)(µ+ α + γ)(µ+ η)− kβK(µ+ η + δγ).

then by (i)
a3 > (µ+ k)(µ+α+ γ)(µ+ η) + βKη(α+ γ)− k((α+ γ)η+ µ) ≥ (µ+ k)(µ+
α+ γ)(µ+ η) + βKη(α+ γ)− k((α+ γ) + µ) = (µ+ α+ γ)((µ+ k)(µ+ η)−
k) + βKη(α + γ).
So we only need to prove (µ+ k)(µ+ η)− k ≥ 0 (∗).
If we consider the equation

µ2 + µ(η + k)− k = 0.
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then ∆ = (k+ η)2 − 4k. If ∆ ≤ 0 then we have the relation (*). If ∆ > 0 then
the two roots

µ1 =
−(η + k) +

√
(η + k)2 − 4k

2
, µ2 =

−(η + k)−
√
(η + k)2 − 4k

2

are negative. So we have the relation (*).
R0 < 1 implies

(i)(η + δγ + µ) <
(α+ γ)η + µ

Kβ
− η(α + γ)

k
.

and

(ii)βK < k.

(i) and (ii) implies a1a2 > a3 > 0. by Hurwitz criterion, the disease free equi-
librium Q0 is locally asymptotically stable [4,5,6].
(b) Since in the matrix there is a zero eigenvalue. Then Q0 is unstable.
(c) In the matrix all eigenvalues are nonzero. So Q0 is locally stable. Since
λ − µ > 0, then the matrix has a positive eigenvalue. So Q0 is not locally
asymptotically stable. �
The other equilibrium point is Q∗ = (S∗, E∗, I∗, T∗, N∗) where

S∗ =
λN∗

β(I∗ + δT∗) + µ
.

E∗ =
α+ µ+ γ

k
(
µ+ η

γ
)T∗.

I∗ =
µ+ η

γ
T∗.

N∗ =
(1− f)α(α + µ+ γ)(µ+ η) + (1− fT )ηγk

kγ(λ− µ)
T∗.

T∗ = (µ(µ+ k)(α + µ+ γ)(µ+ η)(λ− µ)/(k β(η+µ+δγ)
γ

[λ((1− f)α(µ+η
γ
) + (1−

fT )η)− (µ+k)(α+γ+µ)(µ+η)(λ−µ)
kγ

]).

This point is in the interior of the positive space if

λ > µ

and

λ((1− f)α(
µ+ η

γ
) + (1− fT )η >

(µ+ k)(α+ µ+ γ)(η + µ)(λ− µ)

kγ
.
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4. Sign Stability

When biological phenomena are modelled by differential equations the
values of the parameters involved can often be determined only crudely with
significant errors. If we have a square matrix at hand then it is important to
know how much its stability depends on the actual values of the entries and
how sensitive is it for variation of the entries.
Definition 4.1. An n by n square matrix A = [aij] is said to be sign sta-
ble if every n by n square matrix B = [bij] of the same sign pattern (i.e.
signbij =signaij for all i, j = 1, 2, ..., n), is a stable matrix.

for an n by n matrix A = [aij] we can obtain an undirected graph GA whose
vertex set is V = {1, 2, ..., n} and edges are{(i, j) : i ̸= j, aij ̸= 0 ̸= aji, i, j =
1, 2, ..., n}.
Also a directed graph DA can also attache to A with the same vertex set and
edges {(i, j) : i ̸= j, aij ̸= 0, i, j = 1, 2, ..., n}.
A k-cycle of DA is a set of distinct edges of DA of the form :

{(i1, i2), (i2, i3), ..., (ik−1, ik), (ik, i1)}.

Let RA = {i : aii ̸= 0} ⊆ V , which are the numbers for them the corresponding
element in the main diagonal of the matrix is not zero. An RA-coloring of GA

is a partition of its vertices into two sets, black and white (one of which may
be empty). Such that each vertex in RA is black, no black vertex has precisely
one white neighbor, and each white vertex has at least one white neighbor. A
V − RA complete matching is a set M of pairwise disjoint edges of GA such
that the set of vertices of the edges in M contains every vertex in V −RA.
By applying this concepts we are now able to state the following theorem.
Theorem 4.1.[2] An n by n real matrix A = [aij] is sign stable if it satisfies
the following conditions:
(i) aij ≤ 0 for all i, j,
(ii) aijaji ≤ 0 for all i ̸= j,
(iii) The directed graph DA has no k-cycle for k ≥ 3,
(iv) In every RA-coloring of the undirected graph GA all vertices are black,
and
(v) The undirected graph GA admits a V −RA complete matching.
The matrix of the linearize system (1.1) at the equilibrium Q∗ is given by

A =


−β(I∗ + δT∗)− µ 0 −βS∗ −βδS∗ λ

β(I∗ + δT∗) −µ− k βS∗ βδS∗ 0
0 k −(α + µ+ γ) 0 0
0 0 γ −(µ+ η) 0
0 0 −(1− f)α −(1− fT )η λ− µ

.
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The next theorem implies that in HAV model the equilibrium point in the
time of epidemic is not sign stable. This is a good news because in the case of
sign stability we can not pass from epidemic in a long period of time.
Theorem 4.2. If λ > µ then above matrix is not sign stable.
Proof. We only need to consider the following matrix.


−1 0 −1 −1 1
1 −1 1 1 0
0 1 −1 0 0
0 0 1 −1 0
0 0 −1 −1 1


Since a55 > 0 then theorem 4.1 implies that the matrix A is not sign stable.�

Corollary 4.1. The previous theorem also implies if the natural mortality
rate is grater than the birth rate then this model is not stable.

5. Only Two Equilibrium Points for HAV

In this section we show that although there is another equilibrium point
for (1.1), but this new equilibrium point can not happen for HAV. For this
purpose we consider the following cases.
Case 1. If there are no disease deaths i.e. f = fT = 1, then λ = µ. So the
birth rate and natural mortality rate are equal. Thus we fined the equilibrium
point Q∗ = (S∗, E∗, I∗, T∗, N∗) where

T∗ =
−µγ

β(µ+ η + δγ)
.

So T∗ < 0. Since T∗ is a natural number then we find a contradiction. So Q∗
can not happen for HAV.
Case 2. If λ = µ (the birth rate and natural mortality rate are equal) then we
can not find the other equilibrium point because if we setting the right side of
equations equal zero then we obtain

I∗ =
−(1− fT )ηT∗

(1− f)α
.

So I∗ < 0. We know that I∗ must be nonnegative everywhere. Thus Q∗ can
not happen for HAV.
Case 3. If all of patients die because of the disease, then f = fT = 0 so we
find the equilibrium point
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Q∗ = (S∗, E∗, I∗, T∗, N∗) where

I∗ =
µ+ η

γ
T∗

E∗ =
(α + µ+ γ)(µ+ η)

kγ
T∗

S∗ =
λN∗

β(I∗ + δT∗) + µ

N∗ =
αI∗ + ηT∗

λ− µ

T∗ =
µ(µ+ k)(α + µ+ γ)(µ+ η)

kγ[λ(µ+η
γ

+ η)− (µ+k)(α+µ+γ)(µ+η)
kγ

]β(η+µ+δγ)
γ

Since N∗ > 0, then λ > µ, moreover T∗ > 0, implies

f(µ) = kλα(µ+η)+kγλη−(µ+k)(α+µ+γ)(µ+η) = −µ3−µ2(α+η+k+γ)

−µ(kαλ+ αη + kα + kη + kγ + γη)− kηα− kηγ + kηαλ+ kγηλ.

Since

f
′
(µ) = −3µ2 − 2µ(α + η + k + γ)− kα(1 + λ)− ηα− kη − kγ − γη < 0.

then f is a decreasing function so f(µ) < f(0) < 0, for all µ ≥ 0. Thus Q∗ can
not happen for HAV.

6. The Contagious Illness Is not Periodic

In this section we are going to prove a good news on HAV. In fact we
proved that HAV is not a periodic epidemic. Let us recall the Stokes’s theorem.
Theorem 6.1.(Stokes’s theorem)[1] LetM be a compact, oriented k-dimensional
manifold with boundary and let ω be a smooth (k − 1)-form on M . Then∫

∂M

ω =

∫
M

dω

(here ∂M is endowed with the boundary orientation, as described above.)
We can use of this theorem to prove that the system (1.1)has no closed orbit.
Theorem 6.2. SEITR has no any closed orbit.
Proof. If there is a periodic orbit such as C with the period T then we take
M as region of R6with the boundary C. Let ω be the 5-form on M defined by
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ω = (−βS(I + δT ) + λN − µS)dE ∧ dI ∧ dT ∧ dN ∧ dR − (βS(I + δT ) −
(µ+ k)E)dS ∧ dI ∧ dT ∧ dN ∧ dR+ (kE − (α+ µ+ γ)I)dS ∧ dE ∧ dT ∧ dN ∧
dR− (γI − (µ+ η)T )dS ∧ dE ∧ dI ∧ dN ∧ dR+ (−(1− f)αI − (1− fT )ηT +
λN−µN)dS∧dE∧dI ∧dT ∧dR− (αIf +ηTfT −µR)dS∧dE∧dI ∧dT ∧dN.

Then

dω = (−β(I + δT )− 6µ− α− k − γ − η + λ)dS ∧ dE ∧ dI ∧ dT ∧ dN ∧ dR.

So ∫
M

dω < 0

and ∫
∂M=C

ω = 0

But Stokes’s theorem[1] implies∫
M

dω =

∫
∂M

ω.

So 0 < 0 which is a contradiction. Thus SEITR has no any periodic orbit..

7. Conclusion

In this paper, we discuss the SEITR model for HAV. We derive a basic
reproduction number R0 and it determines the asymptotical stability of a
stationary point (1.1); if R0 < 1 then we show that a unique disease free
equilibrium point Q0 is asymptotically stable in the interior of the feasible
region T0, which we considered in section 3. We also find another stationary
point Q∗ which is not sign stable. The consideration of the stability of this
point can be a topic for further research. Observational experience implies
that this point should not be stable.
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