U.P.B. Sci. Bull., Series C, Vol. 70, No. 3, 2008 ISSN 1454-234x

PERFORMANCE EVALUATION FOR DISCRETE EVENT
SIMULATORS: OSSIM VS. OMNET++

Elena ULEIA!

Obiectul lucrarii de fatd este prezentarea performantelor de rulare ale
simulatorului OSSim (Open Source Simulator), comparativ cu simulatorul
OMNeT++ (Object-Oriented Modular Discrete Event Network Simulator), cat si
evaluarea acestora. Pentru a adresa aceastd problemd, s-au efectuat o serie de
simuldri de viteza mare, aplicate asupra unui sistem simplu de cozi. Prezenta
evaluare include colectarea datelor de performantd pentru ambele pachete de
program, verificarea corectitudinii acestora, cdt si raportarea rezultatelor.

The objective of this paper is to present the runtime performance of the
OSSim (Open Source Simulator) tool evaluation against a similar class simulation
tool, the OMNeT++ tool (Object-Oriented Modular Discrete Event Network
Simulator). In order to address this question, a number of performance evaluations
for the high speed simulation runs have been conducted, by simulating a simple
queueing system. The evaluation includes collecting performance data for both
tools, checking the correctness of the analyzed performance data, and reporting the

results.

Keywords: simulation, queuing systems, performance analysis, hierarchical
models, performance analysis, distributed computing

1. Introduction

The present paper introduces the performance evaluation results for
OSSim and OMNeT++ simulation tools. The OSSim simulator tool has been
entirely designed and developed by the author during her PhD research.

The evaluation is performed using the same execution environment for
both tools, which consists of an Ubuntu 6.10 desktop 1386 operating system (a
Linux-like OS) running in a virtual machine environment over Windows XP
2002, SP2. The virtual machine runs with VMware Server 1.0.2, configured as
local host. The underlying host machine is a Dell Laptop 6400, Core Duo T7200,
2.0GHz, 2Gb RAM memory, and Level 2 cache with 4Mb.

' PhD student, Computer Science Faculty, University POLITEHNICA of Bucharest, Romania

76 Elena Uleia

2. Tools Description

Methodologies for establishing model credibility, statistical analysis and
experimental designs are currently largely unsupported by simulation software.
More guidance could be given, particularly in interactive environments. A small
body of well-established techniques is available, although mostly scattered
through journals and conference proceedings. It is to be hoped that some of the
more robust of these will be integrated with new simulation systems [1][2].

2.1 OSSim Tool

The OSSim (Open Source Simulator) software package is designed to
provide a comprehensive work environment for the network modeller. It can be
used in diverse applications areas of communications networks such as:

- to measure the performances of existing or future conditions
networks under a wide range of conditions;

- to analyse and simulate queuing systems to design;

- to debug and fine-tune discrete-event system models.

OSSim is a discrete event simulator package that allows for development
of network simulation and analysis which makes use of technologies from the area
of distributed computing, client-server architectures and object oriented
programming. One of the key issues of the design is high performance of the
overall system, making possible the modelling and the simulation of complex
networks.

OSsim is also suitable for simulation of any system with a hierarchical
structure which admits a discrete time modelling.

2.2 OMNeT++ Tool

Objective Modular Network Test-bed (OMNeT++) is a public-source,
component-based, modular simulation framework. It is practically an object-
oriented modular discrete event simulator. The simulator can be used for
modelling: communication protocols, computer networks (traffic modelling etc.),
multi-processors and distributed systems. Or any other system where the discrete
event approach is suitable [3].

OMNeT++ provides the simulation library with statistical classes. It has
execution environments that support interactive simulation including visualization
of collected data. There's a gnuplot-based GUI tool for analysing and plotting
simulation results. OMNeT++ also helps specifying parameter values, managing
multiple runs, selecting seed values, and supports parallel execution [4].

Performance evaluation for discrete event simulators: OSSim vs. OMNeT++ 77

3. Simulation Model

The model chosen for comparison is a simple FIFO queue. The M/M/1
FIFO queue is a basic model in the queuing system. It is a very popular queue
model, used in modelling client-server system. M represents the notation for a
Markov process, whereby the transition probabilities depend only on current state,
that is, memoryless process. Poisson/Exponential is special case of Markov.

FIFO Queue

Server
Arrivals ———
n A/B/ C
Notation A
e Arrival process T
e Service Distribution
e Number of Servers

Fig. 1. M/M/1 FIFO queue model

There are two sets of experiments performed. One consists of 6 simulation
runs are run for each tool, for a simulation time of 10°. The other experiment is
similar with the first one, but with increased simulation time to 10°. The pseudo-
random numbers generation algorithm is Mersenne Twister RNG [5]. The seed is
constant for all of the experiments with value set to 87.

The parameters of the queueing system are: inter-arrival time is an
exponential distribution with the mean value of 0.1, message length of 100 bits,
and bit rate equal to 1000 bis/sec.

The performance data recorded for each simulation run are: simulation run
time (RT), events rate (EvS), average time a packet spends in the queue before
service is complete, and maximum time in the queue. The last two parameters are
the model output parameters. As the simulation times and the seed values are
unchanged, these two parameters are expected to be unchanged for each
experiment.

The performance data that form the basis of evaluation are: the average
run time for each simulation run (4vg_RT)), and the average events processed in a
unit time during the same simulation run (4vg_EvS)).

n
Avg RT; = ZRTU (1)
i=1

78 Elena Uleia

n
Avg_EvS; =| Y EVS;)
i=1

where, n represents the total number of simulation runs within an experiment j;
i represents the index of the simulation runs (replications), with range
between (0,n) ;
j represents the experiment number.

4. Simulation Runs with OMNeT++ Tool

In order to build an executable simulation program, one first needs to
translate the NED files and the message files into C++, using the NED compiler
(nedtool) and the message compiler (opp msgc). After this step, the process is the
same as building any C/C++ program from source: all C++ sources need to be
compiled into object files (.o files on Unix/Linux, and .obj on Windows), and all
object files need to be linked with the necessary libraries to get an executable.

network impl. of simulation user
des*crlptlon simple modules kernel library interface
-ned *.cc * 1ib/*.a libraries *lib/*.a|
e |, e.g:
5 NEDC compiling . e.g: a (e:nmvc;re.r?v .
....... * annanns sim_std.a .
impl. of
structure * n.cc
S SRS .
. C++ compiling 5
4NN NN NN NN NN NN NN EEEEEEEEEEE I.
1 | y
e R T e e .
. linking :

e S .

simulation program

output files *.vec,*.sra,
etc.

configuration file
omnetpp.ini

Fig.2. Building and Running an OMNeT++ simulation

Performance evaluation for discrete event simulators: OSSim vs. OMNeT++ 79

A graphics window (Fig. 3) shows the OMNeT++ queueing network
model that contains: a generator (gen) module, a FIFO queue (fifo) module, and a
sink (sink) module.

The source (gen) module generates messages that represent jobs. These
job-messages are sent to the fifo module. This in turn delays the messages
according to the present queue, then services them, and finally sends the messages
to the sink module. The sink module processes these messages to extract some
final statistics. The sink is where the messages leave the queueing network. The
sink module releases as well the memory allocated to the job messages [6].

The .ned file specifies the modules gates. Furthermore the modules
parameters such as arrival rate, queue size, etc. need be declared in the .ned files
too. The definition of the parameters, i.e., giving them a value, takes place when
the simulation starts, through the omnetpp.ini file.

| — [hoTIer) i horetr: o | = =20
S| = L] S| e et L || o 2| 1|
- (Fitoret) fitonet ([id=1) (ptrO=<Sackhbeid)
=
fitfonet
i
| = 1=

Fig.3. M/M/1 FIFO queue model for OMNeT++ simulation

Thus, the model parameters are specified in the configuration file,
omnelpp.ini:
[General]
network = fifonet
seed-0-mt=87
sim-time-limit = 100000s
[Run 1]
**_gen.sendlaTime = exponential(0.1)
**_gen.msgLength = 100
** _fifo.bitsPerSec = 1000

As we are only interested in numerical output, we run the simulation
straight from the prompt with the cmdenv mode. No windows will appear, only
the output files will be produced. Due to this reason, the simulation will become
quicker as well. This will give maximum speed of the simulation run.

80 Elena Uleia

Table 1 below shows the results for the first experiment run, with
sim_time = 10°, for the OMNeT++ tool.

Table 1
OMNeT++ simulation results for sim_time = 10°
Simulation Run Time Events/sec Average queue time Maximum
run no. (RT) in sec. (EvS) [sec] queue time
[sec]

#1 12.979 327427 63.3756 141.828
#2 10.073 413470 63.3756 141.828
#3 10.373 406225 63.3756 141.828
#4 10.325 409883 63.3756 141.828
#5 10.236 406267 63.3756 141.828
#6 10.203 412953 63.3756 141.828

Applying the formulae in equations (1) and (2), the average values for
experiment #1, withn=6,j=1,1 € (1, 6) become:

6
Avg_RTy =| D RT,; | =10.71 sec.
i=1

6
Avg _EvS) =| D EvS,| | = 396038 events / sec.
i=1

Table 2 below shows the results for the second experiment run, with
sim_time = 10°, for the OMNeT-++ tool.

Table 2
OMNEeT++ simulation results for sim_time = 10°
Simulation Run Time Events/sec Average queue time | Maximum
run no. (RT) in sec. (ES) [sec] queue time
[sec]

#1 127.336 332949 69.1399 241.747
#2 100.364 409227 69.1399 241.747
#3 99.849 412540 69.1399 241.747
#4 98.785 414328 69.1399 241.747
#5 100.522 409809 69.1399 241.747
#6 99.113 414274 69.1399 241.747

By applying again the formulae in equations (1) and (2), the average
values for experiment #2, withn=16,j=2,1 € (1, 6) become:

Performance evaluation for discrete event simulators: OSSim vs. OMNeT++ 81

6
Avg _RT, =| Y RT., | =104.33 sec.
i=1

6
Avg _EvS; =| Y EvS,, | = 398855 events / sec.

i=l1

Note that the average run time is increased roughly 10 times, same as the
simulation time ratio, and the performance ratio of events processed within a
second is approximately the same. Both these results are consistent.

The text below is the log excerpt from the second experiment with
OMNet++ tool. This adds results on the standard deviation for the fifo queue time,

too.
Calling finish() at end of Run #1...
Total jobs processed: 9992576
Avg queueing time: 69.1399
Max queueing time: 241.747
Standard deviation: 59.2123
End run of OMNeT++

5. Simulation Runs with OSSim Tool

In order to build an executable simulation program, one first needs to
translate the GUI user interface modules files into C++, using the internal parser.
After this step, the process is the same as building any C/C++ program from
source: all C++ sources need to be compiled into object files (.o files on
Unix/Linux), and all object files need to be linked with the necessary libraries to
get an executable.

The attributes file is loaded dynamically at execution time.

82 Elena Uleia

simulation kernel library UML user interface libraries
* lib/*.a and BML (Base *]ib/*.a

Model library)

impl. of simple
modules *.cc

c.g. e.g.:

libNS ERF .a libmy us queue 10.DEBUG.a
libNSDEBUG.a libmy us queue 10.PERF.a
libgen.PERF .a. o N
libgen.DEBUG .a, U

libsink.PERF.a

libsink. DEBUG.a

attributes file
al

RSLILEITEERIER D RLLEEELLERY .
. execution -
*sssssnsannnns I
output files
* log

Fig. 4. Building and Running an OSSim simulation

The graphics window (Fig. 5) shows the OSSim queueing network model
that contains: a generator (gen/) module, a FIFO queue (myq) module, and a sink
(sink) module.

The source (genl) module generates packets that are sent to the myq
module, with rate following the exponential distribution, and length following a
constant distribution as with the OMNeT++ case. The myqg in turn delays the
messages according to the present queue. It then sends the packets to the sink
module. The sink module consumes these packets, by de-allocating the memory.

The sink is where the packets leave the queueing network. The sink
module releases as well the memory allocated to the job messages.

Performance evaluation for discrete event simulators: OSSim vs. OMNeT++ 83

[(=)

Control Edit

genl:
GEN =

Mmya;
MY US QUEUE

sink:
SINK

[o}
10

=

£
] =

Left :

MNothing

Center: | N

othing Right : ‘ Nothing |

Fig.5. M/M/1 FIFO queue model for OSSim simulation

The modules parameters such as arrival rate, queue size, etc. are declared
in the .cc files. The definition of the parameters, i.e., giving them a value, takes
place when the simulation starts, through the a/ attribute file. An excerpt for al is

given below:

attributes file
.genl pklen_dist
-genl time_dist
.myq queue_size
.myq bitrate

constant(100)
exponential (0.1)
10000

1000

Table 3 below shows the results for the first experiment run, with
sim_time = 10, for the OSSim tool.

Table 3
OSSim simulation results for sim_time = 10°
Simulation Run Time Events/sec Average queue Maximum
run no. (RT) in sec. (EvS) time queue time
[sec] [sec]

#1 0.65120 6,144,712 63.3053 141.828
#2 0.77169 5,185,223 63.3053 141.828
#3 0.72216 5,541,359 63.3053 141.828
#4 0.72535 5,516,973 63.3053 141.828
#5 0.68175 5,869,822 63.3053 141.828
#6 0.75402 5,307,182 63.3053 141.828

Applying the formulae in equations (1) and (2), the average values for
experiment #1, withn=6,j=1,1€ (1, 6) become:

84 Elena Uleia

6
Avg _RT, =| D_RT, | =0.717698 sec.
i=1

6
Avg _EvS) =| D EvS; | =5,594,211 events / sec.
i=1

Table 4 below shows the results for the second experiment run, with
sim_time = 10°, for the OSSim tool.

Table 4
OSSim simulation results for sim_time = 10°
Simulation Run Time Events/sec Average queue Maximum
run no. (RT) in sec. (EvS) time queue time
[sec] [sec]

#1 6.16664 6,184,462 69.1338 241.747
#2 6.39358 6,252,112 69.1338 241.747
#3 6.14285 6,509,386 69.1338 241.747
#4 6.38476 6,262,749 69.1338 241.747
#5 6.39232 6,255,341 69.1338 241.747
#6 6.17144 6,479,228 69.1338 241.747

By applying again the formulae in equations (1) and (2), the average
values for experiment #2, withn= =6, j=2,1€ (1, 6) become:

6
Avg _RTy =| D_RT, | =6.275 scc.
i=l1

6
Avg EVS, = ZEVSI.2 = 6,323,879 events / sec.
i=l1

Note that the average run time is increased roughly 10 times, same as the
simulation time ratio. These results are consistent.

The performance ratio of events processed per second, though higher in
the second replications set, is on average about 6*10°, which is the tool
benchmark.

The window below (Fig. 6) is the capture from the second experiment,
first simulation replication with OSSim tool.

Performance evaluation for discrete event simulators: OSSim vs. OMNeT++ 85

- AEEPERT ==
* under certain conditions. Type 'license' for details, =

I 36 3336 I 3 I3 M I I I IEIE I F I I I K I I I IEIE I NI E I N I X IE I I NI XN KE

*%xx Simulation started Sat Sep 22 10:11:29 2007
*%¥% running on host ubuntu
ulation time; 100000 s

inulation results:

ine_in_q_avp=3KE %]

_time_in_¢g=141,828

=+ Finulalion ended Sal Sep 22 10:11:3¢ 2007

inulation statistics:

lapaad sin time; 100000 5 alapsaed real tims: ©0.72005C s
o, of events processed: 3993234 (5080696 events/sec)
ress RETURN to exit ...[JJ

Fig.6. OSSim simulation results window for 1* replication of the 1** experiment

6. Performance discussion and Conclusions

The performance evaluation conducted in this section demonstrates the
reliability of the OSSim tool as well as high speed running of a simulation.

The statistical results for the average queue time, and for the maximum
queue time are equal in both OSSim and OMNeT++ simulations. This happened
actually after choosing the same random number generation algorithm in both
tools, which led to implementing the Mersenne Twister (MT) in the OSSim
simulation kernel. Before doing this, the results for OSSim were 20%-30% higher
than with the OMNeT++.

The generated random number sequence was obviously different between
the MT (OMNeT++), and erand48 (OSSim), which caused big differences in the
output parameter values.

Nevertheless, by using the same RNG algorithms, the maximum queue
time are identical for both experiments. On the other hand, the average queue time
in the first experiment with OSSim tool is shorter by 0.07sec, which is 1.1%. For
the second experiment, the difference is a lot smaller, only by 0.006 sec, which is
0.01%. The OSSim results being shorted this time, too.

Some further investigation is required for determining the difference of
1.1% in the average values for the first experiment.

The OSSim tool proves to be very fast while running a simulation with
any simulation time value. The ratio in the simulation time is preserved almost the
same in the run time length. A simulation executable for the comparison model,
with a simulation time of 10°, takes 11min 23sec (683sec). This proves a linear
behaviour of the tool.

86 Elena Uleia

OSSim tool behaves 15 times faster than the OMNeT++ tool, with both
tools running in command line mode. This ensured both tools are run in their
fastest mode with minimal interaction with the environment.

The high performance network simulation environment is capable of
simulating, on usual hardware, 1.2E10 events within one hour, based on several
implementation optimisations [7],[8].

The current OSSim development release is 1.0alpha6. The current body of
code is relatively small — about 5,000 lines of C++ code for the Simulation
Kernel, and about 8,000 lines of Tcl code for the GUI part. However, the size of a
program is by no means the right measure for its performance.

Other experiments are planned to be performed on an increased
complexity system, for insight performance evaluation. Additionally, very long
time simulation experiments are planned for checking further the convergence and
linearity of the tool behaviour.

REFERENCES

[1] W.Kreutzer, System Simulation: Programming Styles and Languages, Addison-Wesley, 1986

[2] J. Banks, J.S.Carson II, B.L. Nelson, Discrete-Event System Simulation, Prentice Hall, 1999
[3]. OMNeT++ object-oriented discrete event simulation system, URL reference:
http://www.omnetpp.org, accessed August 2007.

[4] Varga, Andre, ‘OMNeT++ Object-oriented Discrete Event Simulation System User Manual’,
vedr.3.2, URL reference: http://www.omnetpp.org/doc/manual/usman.html, accessed Aug
2", 2007

[5] M. Matsumoto and T. Nishimura, ‘Mersenne Twister Home Page, A very fast random number
generator of period 2'%*’-1°, http://www.math.sci.hiroshima-u.ac jp/~m-mat/MT/emt.html,
accessed May 2™, 2007

[6] N. van Foreest, Simulation Queueing Networks with OMNet++ URL reference
http://www.omnetpp.org/doc/queueing-tutorial.pdf, accessed Aug 25™ 2007.

[7] A. Maranda, Elena Uleia, PADS: Software protocols hand coding made easy, Institute of
Microtechnology, Bucharest, ESPRIT 20287 project, Internal report, June 10, 1997.

[8] Elena Uleia, Simona Halunga, Implementation techniques for communications protocols,
International Symposium on Signals, Circuits and Systems, 2005, ISSCS 2005, Volume 2,
14-15 July 2005 Page(s):529 - 532 Vol. 2

