

ABOUT PROBABILITIES ON LUKASIEWICZ-MOISIL ALGEBRAS (I)

Vlad BOICESCU¹

În această lucrare, prezentăm unele proprietăți ale unui gen de probabilități pe algebrelor Lukasiewicz – Moisil.

In this paper, we present some properties of a kind of states on Lukasiewicz – Moisil algebras.

Keywords: Lukasiewicz – Moisil algebra, state, conditional ρ -state.

Mathematics Subject Classification 2000:06D30

1. Introduction

In classical probability theory the set of events has a structure of Boolean algebra, because we use the Boolean logic. If we consider another logic, the set of events has an algebraic structure defined by the associated Lindenbaum – Tarski algebra. If we consider the n – valued Moisil logic, the set of events is a Lukasiewicz – Moisil algebra (n -valued). It is more difficult to define the notion of probability (= state) in this case. In [3] the authors study a state on a Lukasiewicz – Moisil algebra similar to the states on a MV_n – algebra. In a Boolean algebra, the states are defined in terms of the biresiduum.

This remark can be extended to Lukasiewicz – Moisil algebra [4] considering three biresidual ρ_C , ρ_H , and ρ_W . The corresponding ρ – states are connected to their restriction to the Boolean center. In our paper we consider another biresiduum ρ_M and we define ρ_M – states. Their study is similar to ρ_H – states. We study also conditional ρ_M – states and continuous ρ_M – states.

2. Definitions. Preliminaries.

2.1. States on Boolean algebras

Consider a Boolean algebra $(B, V, \wedge, \neg, 0, 1)$.

Definiton 2.1.1. A function $m : B \rightarrow [0,1]$ is a state on B , if the following conditions holds:

$$(I) \quad m(x \vee y) = m(x) + m(y), \text{ if } x \wedge y = 0.$$

¹ Reader, Dept. of Mathematics III, University POLITEHNICA of Bucharest, Romania

$$(II) \quad m(I) = 1.$$

Proposition 2.1.2. If $m : B \rightarrow [0,1]$, the following are equivalent:

- (I) m is a state on B .
- (II) $1 + m(x \wedge y) = m(x \vee y) + m(S_B(x, y))$, $x, y \in B$,
- (III) $m(0) = 0$, $m(I) = 1$.

In this proposition the bresiduum $S_B : B \times B \rightarrow B$,

is defined by $S_B(x, y) = (x \rightarrow y) \wedge (y \rightarrow x)$, where $x \rightarrow y$ is the Boolean implication $x \rightarrow y = \bar{x} \vee y$.

We have the following well-known lemma.

Lemma 2.1.3. If m is a state on B , the following properties hold for any $x, y, z \in B$:

- (I) $m(x \vee y) = m(x) + m(y) - m(x \wedge y)$.
- (II) $m(\bar{x}) = 1 - m(x)$.
- (III) $m(x \wedge \bar{y}) = m(x) - m(x \wedge y)$.
- (IV) $x \leq y \Rightarrow m(x) \leq m(y)$.
- (V) $m(x \rightarrow y) = 1 - m(x) + m(x \wedge y)$.
- (VI) [4] $m(z) + m(x \wedge y \wedge z) = m((x \vee y) \wedge z) + m(S_B(x, y) \wedge z)$. This is the generalization of the condition 2.1.2 (II).

2.2. Lukasiewicz – Moisil algebras

The n -valued Lukasiewicz – Moisil algebras were introduced by Moisil [5]. They are algebraic models for Moisil logics [1]. An extensive study of Lukasiewicz – Moisil algebras is the monograph [1].

Definition 2.2.1. A n -valued Lukasiewicz – Moisil algebra (LM algebra), $n \geq 2$ is an algebra $(A, V, \wedge, N, \{ \rho_i \}_{i \in \overline{1, n-1, 0, 1}})$ such that:

- (I) $(A, \vee, \wedge, N, 0, 1)$ is a De Morgan algebra.
- (II) $\rho_i : A \rightarrow A$ are lattice endomorphisms. $(i \in \overline{1, n-1})$,
- (III) $\rho_i x \vee N \rho_i x = 1$, $\rho_i x \wedge N \rho_i x = 0$, for any $i, x \in A$, (ρ_i are chrysippian endomorphisms).
- (IV) $\rho_i \circ \rho_j = \rho_j$, $\forall i, j$.
- (V) $i \leq j \Rightarrow \rho_i \leq \rho'_j$, $\forall i, j$.
- (VI) $\rho_i \circ N = N \circ \rho_{n-i}$, $\forall i$.
- (VII) $(\forall i)(\rho_i x = \rho_i y) \Rightarrow x = y$ (Moisil's determination principle).

Define the center of a LM algebra A by $C|A| = \{x \in A \mid x \text{ is a chrysippian element}\}$. $C|A|$ is a Boolean algebra and we have:

Proposition 2.2.2. [1] If A is a LM algebras the following hold:

$$(I) \quad x \in C(A) \Leftrightarrow \rho_i x = x, \quad \forall i \Leftrightarrow (\exists i)(\rho_i x = x) \Leftrightarrow$$

$$x \vee Nx = I \Leftrightarrow x \wedge Nx = 0.$$

$$(II) \quad \text{If } \vee x_i \text{ exists for a family } (x_i)_{i \in I}, \text{ then } \rho_j(\vee x_i) = \vee_{i \in I} \rho_j x_i, \text{ for any } j = \overline{I, n-1}, \text{ and if } \wedge_{i \in I} x_i, \text{ exists, then}$$

$$\rho_j(\wedge x_i) = \wedge_{i \in I} \rho_j x_i, \text{ for any } j = \overline{I, n-1}.$$

$$(III) \quad \text{If } \vee_{i \in I} x_i \text{ exists for } x \text{ family } (x_i)_{i \in I}, \text{ then } N \vee_{i \in I} x_i = \wedge_{i \in I} Nx_i \text{ and its dual.}$$

$$(IV) \quad \text{If } \vee_{i \in I} x_i \text{ exists for a family } (x_i)_{i \in I}, \text{ then } x \wedge \vee_{i \in I} x_i = \vee_{i \in I} (x \wedge x_i), \text{ for any } x \in A \text{ and its dual.}$$

$$(V) \quad \rho_i x \leq x \leq \rho_{n-1} x, \forall x \in A$$

Example 2.2.3. The n – element chain $0 < \frac{1}{n-1} < \dots < \frac{n-2}{n-1} < 1$ is a LM algebra with operations

$$N\left(\frac{j}{n-1}\right) = 1 - \frac{j}{n-1} = \frac{n-1-j}{n-1}, \quad j = \overline{0, n-1},$$

$$\rho_i\left(\frac{j}{n-1}\right) = \begin{cases} 0, i+j < n \\ 1, i+j \geq n \end{cases} \quad j = \overline{0, n-1}, i = \overline{I, n-1}$$

We note this algebra by L_n .

Example 2.2.4. Let B be a Boolean algebra. The set $B^{[n-1]} = \{(x_1 \dots x_{n-1}) \in B^{n-1} \mid x_1 \leq x_2 \leq \dots \leq x_{n-1}\}$ is a LM algebra, if we put $N(x_1, \dots, x_n) = (\overline{x_{n-1}}, \dots, \overline{x_1})$, and $\rho_i(x_1, \dots, x_{n-1}) = (x_i, \dots, x_i)$, for $i = \overline{I, n-1}$, $C(B^{[n-1]}) = \{(x, \dots, x) \mid x \in B\} \cong B$. If A is a LM algebra, the map $\rho : A \rightarrow (CA)^{[n-1]}$ defined by $\rho(x) = (\rho_1 x, \dots, \rho_{n-1} x)$, $\forall x \in A$ is a monomorphism and ρ becomes an isomorphism iff A is a Post algebra.

3 ρ_M - states on LM algebras

In this section A is a LM algebra.

Definition 3.1. [3] A function $s : A \rightarrow [0, 1]$ is a state on A , if the following conditions hold:

$$(I) \ s'(x \vee y) = s(x) + s(y) - s(x \wedge y), \quad x, y \in A$$

$$(II) \ s(0) = 0, s(1) = 1$$

$$(III) \ s(x) = \frac{s(\rho_1 x) + \dots + s(\rho_{n-1} x)}{n-1}, \quad x \in A$$

Lemma 3.2. [3] If s as a state on A , $s|C(A)$ is a state on the Boolean algebra $C(A)$ and conversely of m is state on the Boolean algebra $C(A)$, there exists a unique state s on A such that $s|C(A) = m$.

On A we have many implications (residua). For instance $x \xrightarrow{H} y = y \vee \bigwedge_{i=1}^{n-1} (N\rho_i x \vee \rho_i y)$ (Heyting implication), $x \xrightarrow{C(A)} y = \bigwedge_{i=1}^{n-1} (\rho_i x \rightarrow \rho_i y)$, (Cignoli implication) $x \xrightarrow{M} y = N\rho_i x \vee y$ (Monteiro implication). The corresponding biresidua are

$$\rho_H(x, y) = (x \xrightarrow{H} y) \wedge (y \xrightarrow{H} x)$$

$$\rho_C(x, y) = \bigwedge_{i=1}^{n-1} S_{C(A)}(\rho_i x, \rho_i y),$$

$$\rho_M(x, y) = (x \xrightarrow{M} y) \wedge (y \xrightarrow{M} x)$$

The next definition is suggested by **Proposition 2.1.2**.

Definition 3.3. If $\rho \in \{\rho_H, \rho_C, \rho_M\}$, a function $s : A \rightarrow [0, 1]$ is a ρ -state on A if it satisfies the conditions:

$$1 + s(x \wedge y) = s(x \vee y) + s(\rho(x, y)), \quad x, y \in A, s(0) = 0, s(1) = 1.$$

ρ_H - states and ρ_C - states were studied in [4].

In our paper we talk about ρ_M - states.

Proposition 3.4. The following properties hold:

$$(I) \quad x \leq y \Rightarrow x \xrightarrow{M} y = 1$$

$$(II) \quad x \leq y \Leftrightarrow \rho_i x \xrightarrow{M} \rho_i y = 1, \quad i = \overline{1, n-1}.$$

$$(III) \quad x \xrightarrow{M} \rho_i x = 1.$$

$$(IV) \quad \rho_M|C(A) = S_{C(A)}.$$

$$(V) \quad S_{C(A)}(\rho_i(x), \rho_i(y)) = \rho_i \rho_M(x, y)$$

Proof. (I), (II), (III) are known. See for instance [2]. For (V) we have

$$S_{C(A)}(\rho_i(x), \rho_i(y)) = (N\rho_i x \vee \rho_i y) \wedge (N\rho_i y \vee \rho_i x) =$$

$$= \rho_i(N\rho_i x \vee y) \wedge \rho_i(N\rho_i y \vee x) = \rho_i((N\rho_i x \vee y) \wedge (N\rho_i y \vee x)) = \rho_i \rho_M(x, y)$$

Note $S_{C(A)} = S$ and $\rho_M = \rho$.

Remark 3.5. If s is a ρ -state on A , $s|C(A)$ is a state on the Boolean algebra $C(A)$.

Proposition 3.6. If s is a ρ -state on A , then $s(x) = s(\rho_I x)$, for any $x \in A$.

Proof. Take $y = \rho_I(x)$, in the first condition of Definition 3.3:

$$\begin{aligned} 1 + s(x \wedge \rho_I x) &= s(x \vee \rho_I(x)) + s(\rho(x, \rho_I x)) \text{ so} \\ 1 + s(\rho_I x) &= s(x) + s(\rho(x, \rho_I x)) \end{aligned}$$

by Proposition 2.2.2. (V) and

$$\begin{aligned} s(\rho(x, \rho_I x)) &= s(\rho_I x \xrightarrow{M} x) \wedge (x \xrightarrow{M} \rho_I x) = \\ &= s(1 \wedge 1) = s(1) = 1 \text{ by Proposition 3.4., so} \\ s(x) &= s(\rho_I x) \end{aligned}$$

Proposition 3.7. If s is a ρ -state on A , the following properties hold for any $x, y, z \in A$:

- (I) $s(x \vee y) = s(x) + s(y) - s(x \wedge y)$
- (II) $s(N_x) = 1 - s(\rho_{n-1} x)$, $s(N\rho_I x) = 1 - s(x)$
- (III) $x \leq y \Rightarrow s(x) \leq s(y)$
- (IV) $s(x \wedge Ny) = s(x) - s(x \wedge \rho_{n-1} y)$
- (V) $s(x \xrightarrow{M} y) = 1 - s(x) + s(x \wedge y)$
- (VI) $s(z) + s(x \wedge y \wedge z) = s((x \vee y) \wedge z) + s(\rho(x \wedge y) \wedge z)$

Proof.

- (I) $s(x \vee y) = s(\rho_I(x \vee y)) = s(\rho_I x \vee \rho_I y) =$
 $= s(\rho_I x) + s(\rho_I y) - s(\rho_I x \wedge \rho_I y) =$
 $= s(x) + s(y) - s(x \wedge y)$
- (II) $s(Nx) = s(\rho_I Nx) = s(N\rho_I x) = 1 - s(\rho_{n-1} x)$ so
 $s(N\rho_I x) = 1 - s(\rho_{n-1} \rho_I x) = 1 - s(x)$
- (III) $x \leq y \Rightarrow \rho_I x \leq \rho_I y \Rightarrow s(\rho_I x) \leq s(\rho_I y) \Rightarrow s(x) \leq s(y)$

$$\begin{aligned} (IV) \quad s(x \wedge Ny) &= s(\rho_I x \vee N\rho_{n-1} y) = s(\rho_I x) - s(\rho_I x \wedge y_{n-1} y) = \\ &= s(x) - s(x \wedge \rho_{n-1} y) \end{aligned}$$

$$\begin{aligned} (V) \quad s(x \xrightarrow{M} y) &= s(N\rho_I x \vee y) = s(N\rho_I x \vee \rho_I y) = \\ &= 1 - s(\rho_I x) + s(\rho_I y) - s(N\rho_I x \wedge \rho_I y) = \end{aligned}$$

$$\begin{aligned}
& -s(\rho_I y) + s(\rho_I y \wedge \rho_I x) = 1 - s(x) + s(x \wedge y) \\
(\text{VI}) \quad & s(z) + s(x \wedge y \wedge z) = s(\rho_I z) + s(\rho_I x \wedge \rho_I y \wedge \rho_I z) = \\
& s((\rho_I x \vee \rho_I y) \wedge \rho_I z) + s(S((\rho_I x, \rho_I y) \wedge \rho_I z)) = \\
& = s(\rho_I (x \vee y) \wedge \rho_I z) + s(\rho_I \rho(x, y) \wedge \rho_I z) \quad \text{so} \\
& s(z) + s(x \wedge y \wedge z) = s((x \vee y) \wedge z) + s(\rho(x, y) \wedge z)
\end{aligned}$$

Proposition 3.7 is a L M version of Proposition 2.1.3.

Proposition 3.8. If m is a state on Boolean algebra $C(A)$, then there exists a unique ρ - state s on A such that $s|C(A) = m$.

Proof. Consider the function $s : A \rightarrow [0,1]$ defined by $s = m \circ \rho_I$. By Proposition 2.1.2 we have:

$$\begin{aligned}
1 + s(x \wedge y) &= 1 + m(\rho_I x \wedge \rho_I y) = m(\rho_I x \vee \rho_I y) + m(S(\rho_I x, \rho_I y)) = \\
&= m(\rho_I (x \vee y)) + m(\rho_I (\rho(x, y))) = s(x \vee y) + s(\rho(x, y))
\end{aligned}$$

If $x \in C(A)$, $s(x) = m(\rho_I x) = m(x)$. The unicity of s is trivial.

Corollary 3.9.

(I) s is a ρ - state on A iff $s(x) = s(\rho_I x)$ and $s|C(A)$ is a state on the Boolean algebra $C(A)$, where s is a function $s : A \rightarrow [0,1]$.

(II) There is a bijection between the set of ρ - states on A and the set of states on the Boolean algebra $C(A)$.

Example 3.10. Let $L_3 = \left\{0, \frac{1}{2}, 1\right\}$ be the three valued Lukasiewicz – Moisil algebra. (Example 2.2.3). The unique state, on L_3 is $s\left(\frac{1}{2}\right) = \frac{s\left(\rho_1 \frac{1}{2}\right) + s\left(\rho_2 \frac{1}{2}\right)}{2} = \frac{1}{2}$, the unique ρ_H – state on L_3 is $s_1\left(\frac{1}{2}\right) = s_1\left(\rho_2 \frac{1}{2}\right) = 1$, the unique ρ_M – state on L_3 is $s_2\left(\frac{1}{2}\right) = s_2\left(\rho_1 \frac{1}{2}\right) = 0$.

They are distinct. In this algebra we have not ρ_C – states.

Example 3.11. Consider the three valued Lukasiewicz – Moisil algebra $L_2 \times L_3$. In [4] is proved that the function $s(0,0) = s\left(0, \frac{1}{2}\right) = s(0,1) = 0$, $s(1,0) = s\left(1, \frac{1}{2}\right) = s(1,1) = 1$ is the unique ρ_C – state on $L_2 \times L_3$. But $s(x) = s(\rho_I x)$ and $s|C(A)$ is a state on the Boolean algebra $C(A)$. By Corollary 3.9 (I) s is a ρ_M – state. Analogously s is a ρ_H – state and a state. If

we put $m(0,1) = \frac{1}{3}$ and $m(1,0) = \frac{2}{3}$, $m(0,0) = 0$, $m(1,1) = 1$, m is a state on $C(A)$ and it defines by Proposition 3.8, Proposition 9 [4] and Proposition 3.4 [3], the ρ_M – state $s_1\left(0, \frac{1}{2}\right) = 0$, $s_1\left(1, \frac{1}{2}\right) = \frac{2}{3}$, the ρ_H – state $s_2\left(0, \frac{1}{2}\right) = \frac{1}{3}$, $s_2\left(1, \frac{1}{2}\right) = 1$, the state $s_3\left(0, \frac{1}{2}\right) = \frac{1}{6}$, $s_3\left(1, \frac{1}{2}\right) = \frac{5}{6}$.

In this case the four sets of „states” are distinct, but not disjoint.

Remark 3.12. If m is a state on the Boolean algebra $C(A)$, then the ρ_M – state $s_1 = m \circ \rho_1$, the state $s = \frac{m \circ \rho_1 + m \circ \rho_2 + \dots + m \circ \rho_{n-1}}{n-1}$, and the ρ_H – state $s_2 = m \circ \rho_{n-1}$ satisfy the inequalities: $s_1 \leq s \leq s_2$. By the previous examples they can be distinct. But we have:

Proposition 3.13. If s is a ρ_M – state on A , the following conditions are equivalent:

- (I) s a state on A
- (II) $s(\rho_{n-1}x) = s(x)$, $x \in A$
- (III) s is a ρ_H – state on A

Proof. (I) \Rightarrow (II): we have $s(x) = s(\rho_1x)$ and by Definition 3.1 (III) it follows that $(n-2)s(x) = \sum_{i=2}^{n-1} s(\rho_i x)$. But $s(x) \leq s(\rho_2 x) \leq s(\rho_3 x) \leq \dots \leq s(\rho_{n-1} x)$. This implies $s(x) = s(\rho_{n-1} x)$.

(II) \Rightarrow (III): we must verify the condition of Definition 3.3:

$$\begin{aligned} 1 + s(x \wedge y) &= 1 + s(\rho_{n-1}(x \wedge y)) = 1 + s(\rho_{n-1}x \wedge \rho_{n-1}y) = \\ &= s(\rho_{n-1}x \vee \rho_{n-1}y) + s(S(\rho_{n-1}x, \rho_{n-1}y)) = s(\rho_{n-1}(x \vee y)) + \\ &+ s(\rho_{n-1}\rho_H(x, y)) = s(x \vee y) + s(\rho_H(x, y)) \end{aligned}$$

(III) \Rightarrow (I): $s(x) = s(\rho_1x) = s(\rho_2x) = \dots = s(\rho_{n-1}x)$ and by Proposition 8 [4], $s(x \vee y) = s(x) + s(y) - s(x \wedge y)$.

Proposition 3.14.

- a) If m is a state on a Boolean algebra B , then there is a unique ρ - state s on $B^{[n-1]}$ such that $s(x, \dots, x) = m(x)$, for every $x \in B$.
- b) If A is a LM algebra and m is a ρ - states on A , there is a unique ρ -state s on $C(A)^{[n-1]}$ such that $s(\rho(x)) = m(x)$, for any $x \in A$.

Proof. a) The application $x \mapsto (x, \dots, x)$ defines an isomorphism between the Boolean algebra B and $C(B^{[n-1]})$, so $m'(x, \dots, x) = m(x)$ is a state on the Boolean algebra $C(B^{[n-1]})$ and we apply Proposition 3.8.
 b) The application $\rho : A \rightarrow C(A)^{[n-1]}$ induces an isomorphism between centers.

R E F E R E N C E S

- [1] *V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu*, Lukasiewicz – Moisil algebra, North-Holland, 1991
- [2] *R. Cignoli*, Algebras de Moisil de orden n, Ph.D. Thesis, Bahia Blanca, 1969
- [3] *G. Georgescu, I. Leustean*, Towards a probability theory based on Moisil logic, *Soft Computing* 4 (2000), 19 – 26
- [4] *G. Georgescu, A. Popescu*, A new class of Probabilities on Lukasiewicz – Moisil algebras, *J. of Multiple valued Logic and Soft Computing* 12 (2006), 337 – 354
- [5] *Gr.C. Moisil*, Notes sur les logiques non-chrysippiennes, *Ann. Sci. Univ. Jassy* 27 (1941), 86 – 98.