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THE NUMERICAL SOLVING OF A NON LINEAR INTEGRAL 
EQUATION OF HAMMERSTEIN TYPE 

Marina IUGA* 

Acest articol îşi propune să realizeze o trecere sumară în revistă a unora 
dintre cele mai des întâlnite metode numerice de rezolvare a ecuaţiilor integrale. 

Apoi de asemenea se vor aminti unele dintre elementele de bază ale teoriei 
siajului. 

Partea originală a articolului o reprezintă abordarea unei integrale de tip 
Hammerstein, ce poate fi întâlnită în cadrul teoriei siajului şi despre care se va arăta 
că se poate rezolva prin metode numerice. 

 
This article tries to achieve a summary of one of the most well known 

numerical methods for solving integral equations.  
In the same time some elements about dead water-theory will be remind. 

The original part of this article is represented by the solving of a Hammerstein 
equation, which can be found in the dead-water theory, and it will be demonstrated 
that it can be solved using numerical methods. 
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Introduction 

Among the founders of the linear integral equation’s theory, we will 
mention,beside Volterra and Fredholm, also David Hilbert (1862-1943) and 
Erhart Schmidt (1876-1958). It is also important to remember the Romanian 
mathematician Traian Lalescu , who, in his doctorate thesis, entitled „Sur 
l’équation de Volterra” and sustained in Paris in 1908, used for the first time the 
successive approximation method for the integration of a Volterra equation.  He 
also wrote the first book from the entire world about integral equations, published 
in Bucharest in Romanian language in 1911 and after that, also published in Paris, 
using French language, one year later, respectively in 1912. 
 Nonlinear integral equations are a kind of equations in which the unknown 
function y can be found under the sign of the integral in some complicated way. 
For example: 
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1. Hammerstein-type integrals 

A. Hammerstein studied nonlinear integral equations looking like: 
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 They can also be extended to on n-dimensional spaces, but this does not 
involve fundamental differences. 

We will use the following important hypothesis  
- Fredholm theorem is true for the linear integral equation having 

the kernel K                                                                  
-            the kernel K is symmetrical  : 
                                       ( ) ( )xyKyxK ., =  
-            the kernel K is positive, which means that all its eigen 
values are of the positive kind 

 If these conditions are fulfilled we can say that the integral equation really 
is of the Hammerstein type. Hammerstein used the fact that, according to relation 
(1.1): 
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if it exist also ( ) 2Lyg ∈ then ( )xψ  can be represented like an uniform convergent 
series having the form: 
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using ( ) ( )…,, 21 xx φφ  like the ortonormalised eigen values for the kernel 
( )yxK , corresponding to the eigen values  …,, 21 λλ  and …,, 21 cc  being unknown 

constants. 
 Then, because: 
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the problem of solving the given equation is equivalent with the one of solving an 
infinite system of equations having an infinite number of unknowns: 
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 It is normal now to consider the approximate solution: 
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with the constants …,,, 3,2,1, nnn ccc  having to verify the system with n equations 
and n unknowns: 
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 We will ask about the existence of the solution for this system, if it exists 
or not. Hammerstein showed very nicely that the systems of the kind (1.5) have at 
least one solution, by demonstrating that the function ( )uxf , is a continuous one 
and verifies a condition of the following type: 

( ) 21, CuCuxf +≤                                                    (1.6) 
with 1C  and 2C are two positive constants and 1C  is less the the first eigen value 

1λ of the positive kernel ( )yxK , . Evan if the relation (1.6) can be relaxed, 
Hammerstein demonstrated that the condition 11 λ<C can not be generally 
enlarged. 
 For showing this Hammerstein used the continuous function: 
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with  
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( )nxxxH ,,, 21 …  is a function having partial derivations closely related with the 
solutions for the system (1.5) because: 
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 It is easy to observe that the function H has a lower limit. 
 Using the relations (1.6) and (1.7) we will get that: 
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and if 1C is smaller than an arbitrary constant k , and also using the inequality: 
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identifying x with u , a with 2C and b with ( )12
1 Ck −  we get: 
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we get: 
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 Using that …≤≤< 21 λλk the right side sum is not negative. So H has a 
lower limit in 32C− . 
 Therefore it will exist at least one set of values ( ) ( ) ( )00

2
0

1 ,,, nxxx … for the 
initial nxxx ,,, 21 … so that the continuous function  H reach it’s absolute minimum 
value nd . We can be sure by choosing, for example  

( ) nmxc mmn ,,2,10
, …== . 

Multiplying with the positive number b4 , the relation (1.10) is equivalent 
with the statement that: 
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The system (1.5) will be verified because, for: 
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 Now it is important to justify that, with this way of choosing the 
quantities mnc , , the sum 
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has an upper limit independent by n. 
 In fact, with mx  having the values from (1.13), and using the relation 
(1.12) we get that: 
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 On the other hand, as far as 
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 This means that we are able to write: 
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 Now we have to justify that, for ∞→n , the family of functions 
( )xnψ realize an approximation for the given equation. 

 For the beginning we will demonstrate that the function  
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goes uniformly to 0 for ∞→n . 
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 In fact using Hilbert-Schmidt theorem we get: 
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 Using the relation (1.5) we have that: 

( )[ ] ( )∫ −=
1

0
,,1
mnmn

m

cdyyyyf φψ
λ

 

and 

( ) ( ) ( )[ ] ( )∑ ∫
∞

+=

−=
1

1

0

1 ,
nm

mnmmn dyyyyfxx φψφλχ . 

 
 Finally, we can say that: 
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 So, if  kC <2
1  and using (1.10) with 2
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Together with (1.16) now we have: 
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Then the inequality (1.18) becomes: 
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It is well known that the infinite series ( )∑ − xmm
22φλ  goes uniformly to 

( )xxK ,2 . Then ( )xnχ  goes uniformly to  zero for ∞→n . 
So we demonstrated that, if the sequence ( ) ( )…,, 21 xx ψψ  goes to a limit 

function ( )xψ  and if the Lebesgue fundamental theorem can be applied for the 
evaluation of the limit in the situation that ∞→n  for the integral: 
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then the limit function ( )xψ is a solution for the initial equation (1.1). We have 
now to study if the sequence ( ) ( )…,, 21 xx ψψ converge. We can easily justify that 
we can choose a subsequence ( ) ( )…,,
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function ( )xψ , and that will be even continuous . 
 For demonstration we will use: 
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 The sequence { }nω is equally bounded because, as a consequence of the 
relation(1.19), we get that: 
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 As far as ( ) 0lim =xnχ  we can pass from { }nω to{ }nψ . 
 So we justified the following: 
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Existence Theorem: If the kernel K satisfies (i), (ii) şi (iii), and the 
continuous function ( )uyf , is verifying the condition(1.6) then the nonlinear 
integral equation(1.1) has at least one solution (continuous one). 
 

2. Dead water theory 
 The end of the XIX-th century and the beginning of the XX-th century 
represented for the flows mechanics periods of extreme intense investigations. 
These generated important works in this field of activity.  
 Among them is also the cavity theory, whom origin is in H. Helmholtz 
(1868) and G. Kirchhoff (1869) works, a theory elaborated with the purpose to 
explain the  
D’ Alembert paradox. 
 D’ Alembert paradox represents the contradiction between the theoretical 
result saying that during a straight and uniform moving of a body through an ideal 
fluid will be no resistance coming from the fluid and the experimental observation 
that this resistance exist. 
 Helmholtz created a mathematic model and so he started a theory which 
became an important one, usually referred as dead water theory. 
 In this theory there are some nonlinear integral equations. One of those, of 
Hammerstein type is solved in this paper using some numerical methods. 
 

3. Numerical results 
Our purpose is to solve the following equation: 
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 The function which must be integrated has a logarithmic singularity and 
this one is a week singularity. 
 We will rewrite the integral equation as: 
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The first and the second integral can be calculated using trapezia method 
and the third one will be analytically calculated.  

We will consider in [ ]π,0  the nods { }nttt ,,, 10 … with ni
n
iti ,,0, …== π . 

 Using trapezia method 
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 So finally we have to solve the algebric system: 
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We intend to estimate the differences: 
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 Because of the definition of jiw we say that: 
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  So we can say that the system (*) has only one solution for  
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0 , and this solution can be found using the successive approximation 

method. 
 

Conclusions 
 

 Some fields of activities, for example the one regarding the flows studies 
can create, after being modeled in a mathematical way, some nonlinear integrals 
and their solving is of equal interest for mathematicians and also for the ones 
working in more practical aspects. 
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