

MODULE MEAN FOR BANACH ALGEBRAS

by A. Bodaghi¹, H. Ebrahimi², M. Lashkarizadeh Bami³ and M. Nemat⁴

In this paper, the module (ϕ, φ) -amenable Banach algebras are characterized. Also, the relations of module (ϕ, φ) -amenability of a Banach algebra and their ideals are studied. Some mild conditions are found for a Banach algebra to possess a module (ϕ, φ) -mean of norm 1.

Keywords: Banach modules; Module character amenability; Module mean.

MSC2010: Primary 46H25; Secondary 43A07

1. Introduction

For a non-zero character φ on a Banach algebra \mathcal{A} , Kaniuth, Lau and Pym [11] introduced and studied the interesting notion of φ -amenability; see also [9, 13]. Precisely, a Banach algebra \mathcal{A} is φ -amenable if there exists a bounded linear functional m on the dual space \mathcal{A}^* such that $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for all $a \in \mathcal{A}$ and $f \in \mathcal{A}^*$. Bodaghi and Amini [5] introduced the notion of module (ϕ, φ) -amenability for a class of Banach algebras that are modules over another Banach algebra as follows:

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with compatible actions, that is

$$\alpha \cdot (ab) = (\alpha \cdot a)b, \quad (ab) \cdot \alpha = a(b \cdot \alpha) \quad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

Let $\Phi_{\mathfrak{A}}$ be the character space of \mathfrak{A} and $\varphi \in \Phi_{\mathfrak{A}} \cup \{0\}$. Consider the linear map $\phi : \mathcal{A} \longrightarrow \mathfrak{A}$ such that

$$\phi(ab) = \phi(a)\phi(b), \quad \phi(a \cdot \alpha) = \phi(\alpha \cdot a) = \varphi(\alpha)\phi(a) \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

We denote the set of all such maps by $\Omega_{\mathcal{A}}$. A bounded linear functional $m : \mathcal{A}^* \longrightarrow \mathbb{C}$ is called a *module (ϕ, φ) -mean* on \mathcal{A}^* if $m(f \cdot a) = \varphi \circ \phi(a)m(f)$, $m(f \cdot \alpha) = \varphi(\alpha)m(f)$ and $m(\varphi \circ \phi) = 1$ for each $f \in \mathcal{A}^*$, $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. We say \mathcal{A} is *module (ϕ, φ) -amenable* if there exists a module (ϕ, φ) -mean on \mathcal{A}^* [5]. We note that if $\mathfrak{A} = \mathbb{C}$ and φ is the identity map then the module (ϕ, φ) -amenability coincides with ϕ -amenability [11]. In [5], it is characterized the module (ϕ, φ) -amenability of a Banach algebra \mathcal{A} through vanishing of the first Hochschild module cohomology group $\mathcal{H}_{\mathfrak{A}}^1(\mathcal{A}, X^*)$ for certain Banach \mathcal{A} -bimodules X (for modification of the first Hochschild module

¹Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran, e-mail: abasalt.bodaghi@gmail.com

²Department of Mathematics, University of Isfahan, P.O.BOX 81764-73441, Isfahan, Iran, e-mail: ebrahimi89phd@sci.ui.ac.ir

³Department of Mathematics, University of Isfahan, P.O.BOX 81764-73441, Isfahan, Iran (Corresponding Author), e-mail: lashkari@sci.ui.ac.ir

⁴Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran, e-mail: m.nemati@cc.iut.ac.ir

cohomology group $\mathcal{H}_{\mathfrak{A}}^1(\mathcal{A}, X^*)$, by using module homomorphisms between Banach algebras, refer to [4]).

In this paper, we characterize the module (ϕ, φ) -amenability of Banach algebras through the existence of a bounded net $(a_\gamma)_\gamma$ in \mathcal{A} such that $\|aa_\gamma - \varphi \circ \phi(a)a_\gamma\| \rightarrow 0$ and $\|\alpha \cdot a_\gamma - \varphi(\alpha)a_\gamma\| \rightarrow 0$ for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. Then, we focus on (ϕ, φ) -means and establish various criteria for their existence.

2. Main Results

Let X be a Banach \mathcal{A} -bimodule and a Banach \mathfrak{A} -bimodule with compatible actions, that is

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \quad a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x, \quad (\alpha \cdot x) \cdot a = \alpha \cdot (x \cdot a)$$

for all $a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X$ and similarly for the right and two-sided actions. Then we say that X is a Banach \mathcal{A} - \mathfrak{A} -module. If moreover $\alpha \cdot x = x \cdot \alpha$ for all $\alpha \in \mathfrak{A}$ and $x \in X$, then X is called a *commutative \mathcal{A} - \mathfrak{A} -module*. Note that when \mathcal{A} acts on itself by algebra multiplication, it is not in general a Banach \mathcal{A} - \mathfrak{A} -module. Indeed, if \mathcal{A} is a commutative \mathfrak{A} -module and acts on itself by multiplication from both sides, then it is also a Banach \mathcal{A} - \mathfrak{A} -module.

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with compatible actions. An \mathfrak{A} -module map $D : \mathcal{A} \rightarrow X$ is called a module derivation if

$$D(ab) = a \cdot D(b) + D(a) \cdot b \quad (a, b \in \mathcal{A}).$$

A module derivation D is called bounded if there exists $M > 0$ such that $\|D(a)\| \leq M\|a\|$, for every $a \in \mathcal{A}$. Note that boundedness of D implies its norm continuity while D can be non-linear. If X is a commutative \mathcal{A} - \mathfrak{A} -module, then each $x \in X$ defines an inner module derivation as $D_x(a) = a \cdot x - x \cdot a$ for all $a \in \mathcal{A}$. The Banach algebra \mathcal{A} is called *module amenable* (as an \mathfrak{A} -module) if for any commutative Banach \mathcal{A} - \mathfrak{A} -module X , each \mathfrak{A} -module derivation $D : \mathcal{A} \rightarrow X^*$ is inner [1]; for other notions of module amenability for Banach algebras refer to [2], [6] and [14]. Note that if $\mathfrak{A} = \mathbb{C}$, then the module amenability will absolutely overlap with Johnson's amenability [10] for a Banach algebra.

Theorem 2.1. *Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and $\phi \in \Omega_{\mathcal{A}}$ and $\varphi \in \Phi_{\mathfrak{A}}$ such that $\varphi \circ \phi \neq 0$. Then the following assertions are equivalent:*

- (i) \mathcal{A} is module (ϕ, φ) -amenable;
- (ii) \mathcal{A} is $\varphi \circ \phi$ -amenable.

Proof. That (i) implies (ii) is trivial. So, it suffice to show that (ii) implies (i). To see this, suppose that $m \in \mathcal{A}^{**}$ is a $\varphi \circ \phi$ -mean and $a_0 \in \mathcal{A}$ such that $\varphi \circ \phi(a_0) = 1$. Then, we set $n := a_0 \cdot m \in \mathcal{A}^{**}$. It is easy to see that $n(\varphi \circ \phi) = 1$. Moreover,

$$\langle n, f \cdot a \rangle = \langle m, f \cdot (aa_0) \rangle = m(f)\varphi \circ \phi(aa_0) = m(f)\varphi \circ \phi(a) = n(f)\varphi \circ \phi(a)$$

for all $a \in \mathcal{A}$, and

$$\langle n, f \cdot \alpha \rangle = \langle m, f \cdot (\alpha \cdot a_0) \rangle = m(f)\varphi \circ \phi(\alpha \cdot a_0) = m(f)\varphi(\alpha)\varphi \circ \phi(a_0) = n(f)\varphi(\alpha)$$

for all $a \in \mathcal{A}$. It follows that n is a module (ϕ, φ) -mean. \square

Note that Theorem 2.1 does not tell us module (ϕ, φ) -amenability is equivalent to ϕ -amenability [11] because every character on \mathcal{A} is not of the form $\varphi \circ \phi$ where $\phi \in \Omega_{\mathcal{A}}$ and $\varphi \in \Phi_{\mathfrak{A}}$.

We have the following analogue of a result in Gourdeau [8] on amenable Banach algebras. We bring the proof for the sake of completeness.

Theorem 2.2. *Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and $\phi \in \Omega_{\mathcal{A}}$, $\varphi \in \Phi_{\mathfrak{A}}$. Then the following statements are equivalent:*

- (i) \mathcal{A} is module (ϕ, φ) -amenable;
- (ii) If X is a Banach \mathcal{A} - \mathfrak{A} -module such that $a \cdot x = \phi(a) \cdot x$ and $\alpha \cdot x = x \cdot \alpha = \varphi(\alpha)x$ for all $x \in X$, $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, then any \mathfrak{A} -module derivation $D : \mathcal{A} \rightarrow X^{**}$ is inner;
- (iii) If X is a Banach \mathcal{A} - \mathfrak{A} -module such that $a \cdot x = \phi(a) \cdot x$ and $\alpha \cdot x = x \cdot \alpha = \varphi(\alpha)x$ for all $x \in X$, $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, then any \mathfrak{A} -module derivation $D : \mathcal{A} \rightarrow X$ is approximately inner; that is, there exists a bounded net (x_γ) in X such that $D(a) = \lim_\gamma (a \cdot x_\gamma - x_\gamma \cdot a)$ for all $a \in \mathcal{A}$.

Proof. (i) \Rightarrow (ii) It follows from the implication (i) \Rightarrow (ii) of [5, Theorem 2.1].

(ii) \Rightarrow (iii) If $\iota : X \rightarrow X^{**}$ is the canonical embedding, then $\iota \circ D$ is a module derivation from \mathcal{A} into X^{**} . By assumption, there exists $\Lambda \in X^{**}$ with $(\iota \circ D)(a) = a \cdot \Lambda - \Lambda \cdot a$ for all $a \in \mathcal{A}$. Set $\sigma = \sigma(X^{**}, X^*)$, the weak* topology on X^{**} , $m = \|\Lambda\|$, and $U = \{x \in X : \lambda(x) \leq m\}$, where $\lambda \in X^*$. By [7, A.3.29 (i)], $\Lambda \in \overline{\iota(U)}^\sigma$. Now, fix $a_1, \dots, a_n \in \mathcal{A}$. Then, the set $V = \prod_{j=1}^n (a_j \cdot U - U \cdot a_j)$ is a convex subset of X^n , and $(D(a_1), \dots, D(a_n))$ belong to the weak closure of V . It follows from Mazur's theorem that $(D(a_1), \dots, D(a_n))$ belongs to the norm closure of V . Thus, for each finite subset F of \mathcal{A} and $\epsilon > 0$, there exists $x_{F,\epsilon} \in U$ such that

$$\|D(a) - (a \cdot x_{F,\epsilon} - x_{F,\epsilon} \cdot a)\| < \epsilon \quad (a \in F).$$

The family of such pairs (F, ϵ) is a directed for the partial order \preceq given by $(F_1, \epsilon_1) \preceq (F_2, \epsilon_2)$ if $F_1 \subset F_2$ and $\epsilon_1 \geq \epsilon_2$. Obviously, $(x_{F,\epsilon})$ is the required net.

(iii) \Rightarrow (i) Let $D : \mathcal{A} \rightarrow X^*$ be a module derivation, and let (λ_α) be a bounded net in X^* such that $D(a) = \lim_\alpha (a \cdot \lambda_\alpha - \lambda_\alpha \cdot a)$ for all $a \in \mathcal{A}$. By passing to a subnet, we suppose that $\lambda_\alpha \rightarrow \lambda$ in $(X^*, \sigma(X^*, X))$, and hence $D = D_\lambda$ is inner. Therefore, \mathcal{A} is module (ϕ, φ) -amenable by [5, Theorem 2.1]. \square

Let \mathfrak{A} be a commutative Banach algebra. It is easy to see that each $\varphi \in \Phi_{\mathfrak{A}}$ induces a \mathfrak{A} -module structure on \mathfrak{A} with actions $\alpha \cdot \beta = \beta \cdot \alpha = \varphi(\alpha)\beta$ for all $\alpha, \beta \in \mathfrak{A}$. Let $\phi \in \Omega_{\mathcal{A}}$. Then, we define an \mathcal{A} -module structure on \mathfrak{A} by $a \cdot \alpha = \phi(a)\alpha$ and $\alpha \cdot a = \alpha\phi(a)$ for all $a \in \mathcal{A}$, and $\alpha \in \mathfrak{A}$. Then \mathfrak{A} becomes a commutative Banach \mathcal{A} - \mathfrak{A} -module which is denoted by $\mathfrak{A}_{\phi,\varphi}$ and a bounded module derivation from \mathcal{A} into $\mathfrak{A}_{\phi,\varphi}$ is called a *point module derivation* on \mathcal{A} at (ϕ, φ) . So, the following results follows immediately from Theorem 2.2 (see also [2] and [3]).

Corollary 2.1. *If \mathfrak{A} is commutative and \mathcal{A} is module (ϕ, φ) -amenable, then there is no non-zero bounded module point derivation on \mathcal{A} at (ϕ, φ) .*

Proposition 2.1. *Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and $\phi \in \Omega_{\mathcal{A}}$, $\varphi \in \Phi_{\mathfrak{A}}$. Then, \mathcal{A} is module (ϕ, φ) -amenable if and only if there exists a bounded*

net (a_γ) in \mathcal{A} such that $\varphi \circ \phi(a_\gamma) = 1$ for all γ and

$$\|aa_\gamma - \varphi \circ \phi(a)a_\gamma\| \rightarrow 0 \quad \text{and} \quad \|\alpha \cdot a_\gamma - \varphi(\alpha)a_\gamma\| \rightarrow 0$$

for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$.

Proof. If m is a w^* -cluster point of (a_γ) , then clearly m satisfies $m(\varphi \circ \phi) = 1$, $m(f \cdot a) = \varphi \circ \phi(a)m(f)$ and $m(f \cdot \alpha) = \varphi(\alpha)m(f)$ for all $f \in \mathcal{A}^*$, $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$.

Conversely, let m be a module (ϕ, φ) -mean. Then, m is the w^* -limit of some net (b_γ) in \mathcal{A} with $\|b_\gamma\| \rightarrow \|m\|$. So, $\varphi \circ \phi(b_\gamma) \rightarrow m(\varphi \circ \phi) = 1$, and w^* -continuity gives

$$ab_\gamma - \varphi \circ \phi(a)b_\gamma \rightarrow 0 \quad \text{and} \quad \alpha \cdot b_\gamma - \varphi(\alpha)b_\gamma \rightarrow 0$$

in the w^* -topology for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. So, the nets $(ab_\gamma - \varphi \circ \phi(a)b_\gamma)$ and $(\alpha \cdot b_\gamma - \varphi(\alpha)b_\gamma)$ in \mathcal{A} , both converge to 0 weakly for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. Now, take any finite subsets $F = \{a_1, \dots, a_k\}$ and $H = \{\alpha_1, \dots, \alpha_\ell\}$ of \mathcal{A} and \mathfrak{A} , respectively. Let

$$C = \{((a_i b - \varphi \circ \phi(a_i)b)_{i=1}^k, (\alpha_j \cdot b - \varphi(\alpha_j)b)_{j=1}^\ell, \varphi \circ \phi(b) - 1) : b \in \mathcal{A}\}.$$

Then, in the Banach space $\mathcal{A}^{k+\ell} \times C$, 0 is in the weak closure of C and hence in the norm closure because C is convex. Thus, given $\varepsilon > 0$, we can find $b_{F,H,\varepsilon} \in \mathcal{A}$ such that $\|b_{F,H,\varepsilon}\| \leq 2\|m\|$, say, $|\varphi \circ \phi(b_{F,H,\varepsilon}) - 1| < \varepsilon$. Moreover, for each $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$ we have

$$\|ab_{F,H,\varepsilon} - \varphi \circ \phi(a)b_{F,H,\varepsilon}\| < \varepsilon \quad \text{and} \quad \|\alpha \cdot b_{F,H,\varepsilon} - \varphi(\alpha)b_{F,H,\varepsilon}\| < \varepsilon.$$

Finally, replace $b_{F,H,\varepsilon}$ by a scalar multiple $a_{F,H,\varepsilon} = \lambda_{F,H,\varepsilon}b_{F,H,\varepsilon}$ for which $\varphi \circ \phi(a_{F,H,\varepsilon}) = 1$. Hence, $|\lambda_{F,H,\varepsilon}| < \frac{1}{1-\varepsilon}$ and

$$\|aa_{F,H,\varepsilon} - \varphi \circ \phi(a)a_{F,H,\varepsilon}\| < \frac{\varepsilon}{1-\varepsilon} \quad \text{and} \quad \|\alpha \cdot a_{F,H,\varepsilon} - \varphi(\alpha)a_{F,H,\varepsilon}\| < \frac{\varepsilon}{1-\varepsilon}.$$

Therefore, the net $(a_{F,H,\varepsilon})$ is a bounded approximate module (ϕ, φ) -mean and m is the w^* -limit of $(a_{F,H,\varepsilon})$. \square

Lemma 2.1. *Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions, let I be a closed left ideal and \mathfrak{A} -submodule of \mathcal{A} and let $\phi \in \Omega_{\mathcal{A}}$, $\varphi \in \Phi_{\mathfrak{A}}$ such that $I \not\subseteq \ker(\varphi \circ \phi)$. Then, the module $(\phi|_I, \varphi)$ -amenability of I implies the module (ϕ, φ) -amenability of \mathcal{A} .*

Proof. Since I is module $(\phi|_I, \varphi)$ -amenable, there is a net $(a_\gamma) \subseteq I$ with $\phi|_I(a_\gamma) = 1$, $\|ba_\gamma - \phi|_I(b)a_\gamma\| \rightarrow 0$ and $\|\alpha \cdot a_\gamma - \varphi|_I(\alpha)a_\gamma\| \rightarrow 0$ for all $b \in I$ and $\alpha \in \mathfrak{A}$. Fix $\iota_0 \in I$ such that $\varphi \circ \phi|_I(\iota_0) = 1$ and set $\iota_\gamma := \iota_0 a_\gamma$ for all γ . So, $\varphi \circ \phi(\iota_\gamma) = \phi|_I(a_\gamma) = 1$ and for each $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$ we have

$$\begin{aligned} \|a\iota_\gamma - \varphi \circ \phi(a)\iota_\gamma\| &= \|a\iota_0 a_\gamma - \varphi \circ \phi(a)\iota_0 a_\gamma\| \\ &\leq \|a\iota_0 a_\gamma - \varphi \circ \phi(a)\varphi \circ \phi|_I(\iota_0)a_\gamma\| \\ &\quad + \|\varphi \circ \phi(a)\phi|_I(\iota_0)a_\gamma - \varphi \circ \phi(a)\iota_0 a_\gamma\| \\ &= \|a\iota_0 a_\gamma - \varphi \circ \phi|_I(a\iota_0)a_\gamma\| \\ &\quad + |\varphi \circ \phi(a)|\|\varphi \circ \phi|_I(\iota_0)a_\gamma - \iota_0 a_\gamma\| \rightarrow 0, \end{aligned}$$

and

$$\begin{aligned}
\|\alpha \cdot \iota_\gamma - \varphi(\alpha)\iota_\gamma\| &= \|\alpha \cdot (\iota_0 a_\gamma) - \varphi(\alpha)\iota_0 a_\gamma\| \\
&\leq \|(\alpha \cdot \iota_0)a_\gamma - \varphi(\alpha)\varphi \circ \phi|_I(\iota_0)a_\gamma\| \\
&\quad + \|\varphi(\alpha)\varphi \circ \phi|_I(\iota_0)a_\gamma - \varphi(\alpha)\iota_0 a_\gamma\| \\
&= \|(\alpha \cdot \iota_0)a_\gamma - \varphi \circ \phi|_I(\alpha \cdot \iota_0)a_\gamma\| \\
&\quad + |\varphi(\alpha)|\|\varphi \circ \phi|_I(\iota_0)a_\gamma - \iota_0 a_\gamma\| \rightarrow 0.
\end{aligned}$$

Thus, \mathcal{A} is module (ϕ, φ) -amenable. \square

The next result which follows from Lemma 2.1 and [5, Lemma 2.6], describes the interaction between character module-amenability of a Banach algebra and its closed ideals.

Proposition 2.2. *Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and let I be a closed left ideal which is a \mathfrak{A} -submodule of \mathcal{A} . If $\phi \in \Omega_{\mathcal{A}}$, $\varphi \in \Phi_{\mathfrak{A}}$ such that $I \not\subseteq \ker(\varphi \circ \phi)$, then the following statements are equivalent:*

- (i) I is module $(\phi|_I, \varphi)$ -amenable;
- (ii) \mathcal{A} is module (ϕ, φ) -amenable.

Proposition 2.3. *Let \mathcal{A} be a Banach \mathfrak{A} -bimodule with compatible actions and $\varphi \in \Phi_{\mathfrak{A}}$, $\phi \in \Omega_{\mathcal{A}}$. Suppose that for each $f \in \mathcal{A}^{**}$ there exists $m_f \in \mathcal{A}^{**}$ such that $\|m_f\| = \langle m_f, \varphi \circ \phi \rangle = 1$ and*

$$\langle m_f, f \cdot a \rangle = \varphi \circ \phi(a) \langle m_f, f \rangle, \quad \langle m_f, f \cdot \alpha \rangle = \varphi(\alpha) \langle m_f, f \rangle$$

for all $a \in \mathcal{A}$, $\alpha \in \mathfrak{A}$. Then, \mathcal{A} has a module (ϕ, φ) -mean of norm 1.

Proof. Define

$$S = \{m \in \mathcal{A}^{**} : \|m\| = \langle m, \varphi \circ \phi \rangle = 1\} = \{m \in \mathcal{A}^{**} : \|m\| \leq 1; \langle m, \varphi \circ \phi \rangle = 1\}.$$

It is easy to check that S is a semigroup with the first Arens product and w^* -compact subset of \mathcal{A}^{**} . Let \mathfrak{F} denote the collection of all finite subset F of \mathcal{A}^* . For every $F \in \mathfrak{F}$, we put

$$\begin{aligned}
S_F &= \{m \in S : \langle m, f \cdot a \rangle = \varphi \circ \phi(a) \langle m, f \rangle, \\
&\quad \langle m, f \cdot \alpha \rangle = \varphi(\alpha) \langle m, f \rangle, a \in \mathcal{A}, \alpha \in \mathfrak{A}, f \in F\}.
\end{aligned}$$

Then, S_F is closed in S and $S_{F_1} \supseteq S_{F_2}$ whenever $F_1 \subseteq F_2$. It is obvious that each $m \in \bigcap \{S_F : f \in \mathfrak{F}\}$ is a module (ϕ, φ) -mean with $\|m\| = 1$. Now, if we show that $S_F \neq \emptyset$ for all $F \in \mathfrak{F}$, then $m \in \bigcap_{F \in \mathfrak{F}} S_F$ is the required module mean by finite intersection property. We argue this by induction on number of elements in F . Suppose that some $m_1 \in S_F$ exists and consider $g \in \mathcal{A}^* \setminus F$. Set $h = m_1 \cdot g \in \mathcal{A}^*$. By assumption, there exists $m_2 \in S_{\{h\}}$ such that $m = m_2 m_1 \in S$ (since S is a semigroup). For each $f \in F$ and $a, b \in \mathcal{A}$, we have

$$\langle m_1 \cdot (f \cdot a), b \rangle = \langle m_1, f \cdot (ab) \rangle = \varphi \circ \phi(a) \langle m_1, f \rangle \varphi \circ \phi(b).$$

This shows that $m_1 \cdot (f \cdot a) = (\varphi \circ \phi)(a) \langle m_1, f \rangle \varphi \circ \phi$. Similarly, $m_1 \cdot f = \langle m_1, f \rangle \varphi \circ \phi$. So

$$\begin{aligned}
\langle m, f \cdot a \rangle &= \langle m_2 m_1, f \cdot a \rangle = \langle m_2, m_1 \cdot (f \cdot a) \rangle = \varphi \circ \phi(a) \langle m_1, f \rangle \langle m_2, \varphi \circ \phi \rangle \\
&= \varphi \circ \phi(a) \langle m_2, \langle m_1, f \rangle \varphi \circ \phi \rangle = \varphi \circ \phi(a) \langle m_2, m_1 \cdot f \rangle \\
&= (\varphi \circ \phi)(a) \langle m_2 m_1, f \rangle = \varphi \circ \phi(a) \langle m, f \rangle,
\end{aligned}$$

for all $f \in F$ and all $a \in \mathcal{A}$. Moreover,

$$\begin{aligned}\langle m, g \cdot a \rangle &= \langle m_2, (m_1 \cdot g) \cdot a \rangle = \langle m_2, h \cdot a \rangle = \varphi \circ \phi(a) \langle m_2, h \rangle \\ &= \varphi \circ \phi(a) \langle m_2, m_1 \cdot g \rangle = \varphi \circ \phi(a) \langle m, g \rangle\end{aligned}$$

and similarly $\langle m, g \cdot a \rangle = \varphi(a) \langle m, g \rangle$ for all $a \in \mathcal{A}, \alpha \in \mathfrak{A}$. Also $\|m\| = \|m_2 m_1\| = \|m_2\| \|m_1\| = 1$. Therefore, $m \in S_{F \cup \{g\}}$. This completes the proof. \square

The upcoming theorem is the main result of the paper which shows that the existence of module (ϕ, φ) -mean with norm 1 is a pointwise property. In other words, it follows from the existence of an element of \mathcal{A}^{**} associated with each of the elements of the ideal $\ker(\varphi \circ \phi)$.

Recall that a left Banach \mathcal{A} -module X is called *left essential* if the linear span of $\mathcal{A} \cdot X = \{a \cdot x : a \in \mathcal{A}, x \in X\}$ is dense in X .

Theorem 2.3. *Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and $\varphi \in \Phi_{\mathfrak{A}}, \phi \in \Omega_{\mathcal{A}}$. Consider the following conditions.*

- (i) *There exists a module (ϕ, φ) -mean m such that $\|m\| = 1$;*
- (ii) *There exists a net $(u_j)_j$ in \mathcal{A} such that $\varphi \circ \phi(u_j) = 1$, for all j , $\|u_j\| \rightarrow 1$ and $\|au_j\| \rightarrow |(\varphi \circ \phi)(a)|$, $\|\alpha \cdot u_j\| \rightarrow |\varphi(\alpha)|$ for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$;*
- (iii) *For each $a \in \ker(\varphi \circ \phi)$ and $b \in \ker(\phi)$, there exists $m_{a,b} \in \mathcal{A}^{**}$ with $\|m_{a,b}\| \leq 1$, $\langle m_{a,b}, \varphi \circ \phi \rangle = 1$ and $am_{a,b} = bm_{a,b} = 0$, $\alpha \cdot m_{a,b} = \varphi(\alpha)m_{a,b}$ for all $\alpha \in \mathfrak{A}$;*
- (iv) *For each $a \in \ker(\varphi \circ \phi)$, $b \in \ker(\phi)$ and $\epsilon > 0$, there exists $u \in \mathcal{A}$ such that $\|u\| \leq 1 + \epsilon$, $\|au\| \leq \epsilon$, $\|bu\| \leq \epsilon$, $\|\alpha \cdot u - \varphi(\alpha)u\| \leq \epsilon$ and $\varphi \circ \phi(u) = 1$ for all $a \in \mathcal{A}, \alpha \in \mathfrak{A}$.*

Then (iv) \Leftarrow (iii) \Leftarrow (i) \Rightarrow (ii) \Rightarrow (iv). If, in addition, \mathcal{A} is a left or right essential \mathfrak{A} -module, then all assertions are equivalent.

Proof. (i) \Rightarrow (ii) Let there exists a module (ϕ, φ) -mean m such that $\|m\| = 1$. Then, by Proposition 2.1 there exists a net $(u_j)_j$ in \mathcal{A} with the following properties:

$$\|u_j\| \rightarrow \|m\| = 1, \|au_j - (\varphi \circ \phi)(a)u_j\| \rightarrow 0, \|\alpha \cdot u_j - \varphi(\alpha)u_j\| \rightarrow 0$$

for all $a \in \mathcal{A}, \alpha \in \mathfrak{A}$. Thus

$$\begin{aligned}\|au_j - |(\varphi \circ \phi)(a)|\| &\leq \||au_j\| - |(\varphi \circ \phi)(a)u_j\|| \\ &\quad + \||(\varphi \circ \phi)(a)u_j\| - |(\varphi \circ \phi)(a)|\| \\ &\leq \|au_j - (\varphi \circ \phi)(a)u_j\| + |(\varphi \circ \phi)(a)|\|u_j\| - 1 \\ &\rightarrow 0\end{aligned}$$

and

$$\begin{aligned}\|\alpha u_j - |\varphi(\alpha)|\| &\leq \||\alpha u_j\| - |\varphi(\alpha)u_j|\| + \||\varphi(\alpha)u_j\| - |\varphi(\alpha)|\| \\ &\leq \|\alpha u_j - \varphi(\alpha)u_j\| + |\varphi(\alpha)|(\|u_j\| - 1) \\ &\rightarrow 0\end{aligned}$$

Therefore, $\|au_j\| \rightarrow |(\varphi \circ \phi)(a)|$ and $\|\alpha u_j\| \rightarrow |\varphi(\alpha)|$ so (ii) holds.

(i) \Rightarrow (iii) If m is module (ϕ, φ) -mean, we can choose $m_{a,b} = m$, for all $a \in \ker(\varphi \circ \phi), b \in \ker(\phi)$, and thus $\|m_{a,b}\| \leq 1$, $\langle m_{a,b}, \varphi \circ \phi \rangle = \langle m, \varphi \circ \phi \rangle = 1$. On the other hand, for all $f \in \mathcal{A}^*$, we get

$$\langle am_{a,b}, f \rangle = \langle m_{a,b}, f \cdot a \rangle = \langle m, f \cdot a \rangle = (\varphi \circ \phi)(a) \langle m, f \rangle = 0$$

and

$$\langle bm_{a,b}, f \rangle = \langle m, f \cdot b \rangle = \varphi \circ \phi(b) \langle m_{a,b}, f \rangle = \varphi(0) \langle m, f \rangle = 0.$$

Also, $\langle \alpha \cdot m_{a,b}, f \rangle = \langle m, f \cdot \alpha \rangle = \varphi(\alpha) \langle m_{a,b}, f \rangle$ for all $\alpha \in \mathfrak{A}$. The above relations imply that $am_{a,b} = bm_{a,b} = 0$ and $\alpha \cdot m_{a,b} = \varphi(\alpha)m_{a,b}$ for all $a \in \ker(\varphi \circ \phi)$, $b \in \ker(\phi)$.

(ii) \Rightarrow (iv) It is obvious.

(iii) \Rightarrow (iv) Fix $a \in \ker(\varphi \circ \phi)$, $b \in \ker(\phi)$ and take any net $(u_j)_j$ in \mathcal{A} such that $\|u_j\| \leq 1$ in which $u_j \rightarrow m_{a,b}$ in w^* -topology. Then $(\varphi \circ \phi)(u_j) \rightarrow 1$. Replacing each u_j with the scalar multiple of itself and taking a coefficient subnet, we may arrange that $\|u_j\| \leq 1 + \epsilon$ and $(\varphi \circ \phi)(u_j) = 1$ for all j . We have

$$w^* - \lim_j au_j = am_{a,b} = 0, \quad w^* - \lim_j bu_j = m_{a,b} = 0,$$

and $w^* - \lim_j (\alpha \cdot u_j - \varphi(\alpha)u_j) = 0$ for $\alpha \in \mathfrak{A}$. Thus, 0 is in the weak closure of sets $(au_j)_j$, $(bu_j)_j$ and $(\alpha \cdot u_j - \varphi(\alpha)u_j)_j$. Hence, 0 is the norm closure of convex hull of the mentioned sets. Thus, the set $(u_j)_j$ beings contained in the closed hyperplane $\{x \in \mathcal{A}; (\varphi \circ \phi)(x) = 1\}$, we easily arrive our conclusion.

(iv) \Rightarrow (i) We claim that for finite subset F, H of $\mathcal{A}, \mathfrak{A}$ and $\epsilon > 0$, there exists $u_{F,H,\epsilon}$ such that $(\varphi \circ \phi)(u_{F,H,\epsilon}) = 1$, $\|u_{F,H,\epsilon}\| \leq 1 + \epsilon$ and for all $a \in F, \alpha \in H$

$$\|a \cdot u_{F,H,\epsilon} - (\varphi \circ \phi)(a)u_{F,H,\epsilon}\| \leq \epsilon, \quad \|\alpha \cdot u_{F,H,\epsilon} - \varphi(\alpha)u_{F,H,\epsilon}\| \leq \epsilon$$

Let $F = \{a_1, \dots, a_k\}$, $H = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$, and choose $\delta > 0$ such that $(1 + \delta)^{k+1} \leq 1 + \epsilon$, by hypothesis, there exists $u_0 \in \mathcal{A}$ such that $(\varphi \circ \phi)(u_0) = 1$ and $\|u_0\| \leq 1 + \delta$. Since \mathcal{A} is a left or right essential \mathfrak{A} -module, it follows from the proof of [6, Theorem 3.14] that the map ϕ is \mathbb{C} -linear. Thus, $\alpha_1 u_0 - \varphi(\alpha_1)u_0 \in \ker(\phi)$. On the other hand, $a_1 u_0 - (\varphi \circ \phi)(a_1)u_0 \in \ker(\varphi \circ \phi)$. Again by (iv) there exists $u_1 \in \mathcal{A}$ such that $(\varphi \circ \phi)(u_1) = 1$, $\|u_1\| \leq 1 + \delta$ and

$$\|(a_1 u_0 - (\varphi \circ \phi)(a_1)u_0)u_1\| \leq \delta, \quad \|(\alpha_1 u_0 - \varphi(\alpha_1)u_0)u_1\| \leq \delta.$$

Similarly, $a_2 u_0 u_1 - (\varphi \circ \phi)(a_2)u_0 u_1 \in \ker(\varphi \circ \phi)$, $\alpha_2 u_0 u_1 - \varphi(\alpha_2)u_0 u_1 \in \ker(\phi)$ and hence there exists $u_2 \in \mathcal{A}$ such that $(\varphi \circ \phi)(u_2) = 1$, $\|u_2\| \leq 1 + \delta$ and

$$\|(a_2 u_0 u_1 - (\varphi \circ \phi)(a_2)u_0 u_1)u_2\| \leq \delta, \quad \|(\alpha_2 u_0 u_1 - \varphi(\alpha_2)u_0 u_1)u_2\| \leq \delta.$$

Thus for $j = 1, 2$ we have $\|u_j\| \leq 1 + \delta$, $(\varphi \circ \phi)(u_j) = 1$ and

$$\|a_j u_0 u_1 u_2 - (\varphi \circ \phi)(a_j)u_0 u_1 u_2\| \leq \delta(1 + \delta), \quad \|\alpha_j u_0 u_1 u_2 - \varphi(\alpha_j)u_0 u_1 u_2\| \leq \delta(1 + \delta).$$

Proceeding inductively, we see there exists u_j ($1 \leq j \leq k$) such that $(\varphi \circ \phi)(u_j) = 1$, $\|u_j\| \leq 1 + \delta$ and for $i = 1, \dots, j$

$$\|a_i u_0 u_1 \dots u_j - (\varphi \circ \phi)(a_i)u_0 u_1 \dots u_j\| \leq \delta(1 + \delta)^{j-1} \leq \epsilon,$$

$$\|\alpha_i \cdot u_0 u_1 \dots u_j - \varphi(\alpha_i)u_0 u_1 \dots u_j\| \leq \delta(1 + \delta)^{j-1} \leq \epsilon.$$

In particular, when $j = k$, setting $u_{F,H,\epsilon} = \prod_{j=0}^k u_j$ gives us $(\varphi \circ \phi)(u_{F,H,\epsilon}) = \prod_{j=0}^k (\varphi \circ \phi)(u_j) = 1$ and

$$\|u_{F,H,\epsilon}\| \leq \|u_0\| \|u_1\| \dots \|u_k\| \leq (1 + \delta)^{k+1} \leq 1 + \epsilon.$$

Also, for each $a \in F, \alpha \in H$, we have

$$\|au_{F,H,\epsilon} - (\varphi \circ \phi)(a)u_{F,H,\epsilon}\| = \|au_0 u_1 \dots u_k - (\varphi \circ \phi)(a)u_0 u_1 \dots u_k\| \leq \delta(1 + \delta)^{k-1} \leq \epsilon,$$

and

$$\|\alpha \cdot u_{F,H,\epsilon} - \varphi(\alpha)u_{F,H,\epsilon}\| = \|\alpha u_0 u_1 \dots u_k - \varphi(\alpha)u_0 u_1 \dots u_k\| \leq \delta(1 + \delta)^{k-1} \leq \epsilon.$$

This proves the above claim. Now, order the Triplet (F, H, ϵ) , $F \subseteq \mathcal{A}$, $H \subseteq \mathfrak{A}$ finite and $\epsilon > 0$, in the obvious manner manner, and let m be a w^* -cluster point of the net $(u_{F,H,\epsilon})_{F,H,\epsilon}$ in \mathcal{A}^{**} . Then, $\|m\| \leq 1$ and $\langle m, \varphi \circ \phi \rangle = 1$ and thus $\|m\| = 1$ and for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we get

$$\langle m, f \cdot a \rangle = \lim_{F,H,\epsilon} \langle u_{F,H,\epsilon}, f \cdot a \rangle = \lim_{F,H,\epsilon} \langle a \cdot u_{F,H,\epsilon}, f \rangle = (\varphi \circ \phi)(a) \langle m, f \rangle,$$

and similarly $\langle m, f \cdot \alpha \rangle = \varphi(\alpha) \langle m, f \rangle$. Therefore, m is required module (ϕ, φ) -mean. \square

Remark 2.1. *Using similar methods to those employed in the proof of above Theorem, the following can be shown: Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and $\varphi \in \Phi_{\mathfrak{A}} \cup \{0\}$, $\phi \in \Omega_{\mathcal{A}}$. Then for the following conditions, we have the same implications as Theorem 2.3.*

- (i) \mathcal{A} has a module (ϕ, φ) -mean of norm C ;
- (ii) \mathcal{A} contain an approximate (ϕ, φ) -mean with norm bounded C ;
- (iii) For each $a \in \ker(\varphi \circ \phi)$, $b \in \ker \phi$, there exists $m_{a,b} \in \mathcal{A}^{**}$ with $\|m_{a,b}\| = C$, $\langle m_{a,b}, \varphi \circ \phi \rangle = 1$ and $am_{a,b} = bm_{a,b} = 0$ and $\alpha \cdot m_{a,b} = \varphi(\alpha)m_{a,b}$;
- (iv) There exists a net $(u_j)_j$ in \mathcal{A} with $(\varphi \circ \phi)(u_j) = 1$, $\|u_j\| \rightarrow C$, for all j and $au_j \rightarrow 0$, for every $a \in \ker(\varphi \circ \phi)$ and $\|\alpha \cdot u_j\| \rightarrow |\varphi(\alpha)|$ for every $\alpha \in \mathfrak{A}$.

Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and $\varphi \in \Phi_{\mathfrak{A}} \cup \{0\}$, $\phi \in \Omega_{\mathcal{A}}$. Consider the set of all $f \in \mathcal{A}^*$ with the following property:

For each $\delta > 0$, there exists a sequence $(a_n)_n$ in \mathcal{A} such that $(\varphi \circ \phi)(a_n) = 1$, $\|a_n\| \leq 1 + \delta$ for all n , and $\|f \cdot a_n\| \rightarrow 0$. We denote this set by $\mathcal{N}(\mathcal{A}, \varphi \circ \phi)$.

We have the following result which is analogous to Lemmas 2.6 and 2.7 from [12].

Lemma 2.2. *Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and $\varphi \in \Phi_{\mathfrak{A}} \cup \{0\}$, $\phi \in \Omega_{\mathcal{A}}$. Then, the following hold.*

- (i) $\varphi \circ \phi \notin \mathcal{N}(\mathcal{A}, \varphi \circ \phi)$.
- (ii) $\mathcal{N}(\mathcal{A}, \varphi \circ \phi)$ is closed in \mathcal{A}^* and closed under scalar multiplication.
- (iii) If \mathcal{A} is commutative, then $\mathcal{N}(\mathcal{A}, \varphi \circ \phi)$ is closed under addition.
- (iv) If \mathcal{A} admits a module (ϕ, φ) -mean of norm 1, then $\mathcal{N}(\mathcal{A}, \varphi \circ \phi)$ is subspace of \mathcal{A}^* .

Proof. The proofs of [12, Lemma 2.6] and [12, Lemma 2.7] work verbatim if we put $\varphi \circ \phi$ instead of φ in their proofs. \square

We now aim at a criterion for the existence of module $(\varphi \circ \phi)$ -mean of norm 1 involving the set $\mathcal{N}(\mathcal{A}, \varphi \circ \phi)$.

Theorem 2.4. *Let \mathcal{A} be a Banach \mathfrak{A} -module with compatible actions and $\varphi \in \Phi_{\mathfrak{A}} \cup \{0\}$, $\phi \in \Omega_{\mathcal{A}}$. Then the following four condition are equivalent:*

- (i) There exists a module (ϕ, φ) -mean with $\|m\| = 1$;
- (ii) $\mathcal{N}(\mathcal{A}, \varphi \circ \phi)$ is subspace of \mathcal{A}^* and $f \cdot a - f, f \cdot \alpha - f \in \mathcal{N}(\mathcal{A}, \varphi \circ \phi)$ for all $f \in \mathcal{A}^*$ and all $a \in \mathcal{A}, \alpha \in \mathfrak{A}$ with $(\varphi \circ \phi)(a) = 1$.

Proof. Let (i) holds. By Lemma 2.2. $\mathcal{N}(\mathcal{A}, \varphi \circ \phi)$ is a subspace of \mathcal{A}^* . Let $f \in \mathcal{A}^*$ and $a \in \mathcal{A}, \alpha \in \mathfrak{A}$ with $(\varphi \circ \phi)(a) = 1, \varphi(\alpha) = 1$. By Theorem 2.3 there exists a net $(u_j)_j$ in \mathcal{A} such that $(\varphi \circ \phi)(u_j) = 1, \|u_j\| \rightarrow 1$ and

$$\|a \cdot u_j - (\varphi \circ \phi)(a)u_j\| = \|a \cdot u_j - u_j\| \rightarrow 0, \|\alpha \cdot u_j - \varphi(\alpha)u_j\| = \|\alpha \cdot u_j - u_j\| \rightarrow 0.$$

Since $\|(f \cdot a - f) \cdot u_j\| \leq \|f\| \|a u_j - u_j\|$ and $\|(f \cdot \alpha - f) \cdot u_j\| \leq \|f\| \|\alpha \cdot u_j - u_j\|$, it follows that $f \cdot a - f, f \cdot \alpha - f \in \mathcal{N}(\mathcal{A}, \varphi \circ \phi)$.

Conversely, suppose that $\mathcal{N}(\mathcal{A}, \varphi \circ \phi)$ is subspace of \mathcal{A}^* and that (ii) holds. Since $\varphi \circ \phi \notin \mathcal{N}(\mathcal{A}, \varphi \circ \phi)$ and $\|\varphi \circ \phi\| = 1$, by the Hahn-Banach theorem there exists $m \in \mathcal{A}^{**}$ such that $\|m\| = \langle m, \varphi \circ \phi \rangle = 1$ and $m|_{\mathcal{N}(\mathcal{A}, \varphi \circ \phi)} = 0$. By assumption, for each $a \in \mathcal{A}, \alpha \in \mathfrak{A}$ with $(\varphi \circ \phi)(a) = 1$ and $\varphi(\alpha) = 1$, we have

$$\langle m, f \cdot a \rangle = \langle a \cdot m, f \rangle = (\varphi \circ \phi)(a) \langle m, f \rangle,$$

$$\langle m, f \cdot \alpha \rangle = \langle \alpha \cdot m, f \rangle = \varphi(\alpha) \langle m, f \rangle$$

for all $a \in \mathcal{A}, \alpha \in \mathfrak{A}$ and $f \in \mathcal{A}^*$. This means that m is a module (ϕ, φ) -mean. \square

3. Conclusions

Let Banach algebras \mathcal{A} and \mathfrak{A} be Banach algebras. If $\varphi : \mathfrak{A} \rightarrow \mathbb{C}$ and $\phi : \mathcal{A} \rightarrow \mathfrak{A}$ are the classical character and module character, respectively, we showed when \mathcal{A} is module (ϕ, φ) -amenable. Moreover, we found the relations of module (ϕ, φ) -amenability of \mathcal{A} and its ideals.

Acknowledgements

The authors sincerely thank the anonymous reviewers for their careful reading of the manuscript and helpful comments.

REFERENCES

- [1] *M. Amini*, Module amenability for semigroup algebras, Semigroup Forum. **69** (2004), 243–254.
- [2] *M. Amini and D. Ebrahimi Bagha*, Weak module amenability of semigroup algebras, Semigroup Forum. **71** (2005), 18–26.
- [3] *A. Bodaghi*, Semigroup algebras and their weak module amenability, J. Appl. Func. Anal. **7**, No. 4 (2012), 332–338.
- [4] *A. Bodaghi*, Module (φ, ψ) -amenability of Banach algebras, Arch. Math. (Brno). **46**, No. 4 (2010), 227–235.
- [5] *A. Bodaghi and M. Amini*, Module character amenability of Banach algebras, Arch. Math. (Basel). **99** (2012), 353–365.
- [6] *A. Bodaghi, M. Amini and R. Babaee*, Module derivations into iterated duals of Banach algebras, Proc. Romanian. Acad., Series A. **12**, No. 4 (2011), 277–284.
- [7] *H. G. Dales*, Banach algebras and automatic continuity, London Mathematical Society Monographs 24, Clarendon Press, Oxford, 2000.
- [8] *F. Gourdeau*, Amenability and the second dual of a Banach algebras, Studia Math. **125** (1) (1997), 75–80.
- [9] *A. T. Lau*, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. **118** (1983), 161–175.
- [10] *B. E. Johnson*, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. **127**, Providence, 1972.

- [11] *E. Kaniuth, A. T. Lau, and J. Pym*, On φ -amenability of Banach algebras, *Math. Proc. Camb. Soc.* **144** (2008), 85–96.
- [12] *E. Kaniuth, A. T. Lau, J. Pym*, On Character Amenability of Banach Algebras, *J. Math. Anal. Appl.* **344** (2008), 942–955.
- [13] *M. S. Monfared*, Character amenability of Banach algebras, *Math. Proc. Camb. Soc.* **144** (2008), 697–706.
- [14] *H. Pourmahmood and A. Bodaghi*, Module approximate amenability of Banach algebras, *Bull. Iran. Math. Soc.* **39**, No. 6 (2013), 1137–1158.