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SOME APPLICATIONS OF THE HILBERT TRANSFORM

Stefania Constantinescu’

In acest articol, se dau unele proprietiti ale transformarii Hilbert, cu
interpretari in teoria matematicd a semnalelor aleatoare. Este studiatd
reprezentarea semnalelor analitice ca o generalizare a formei complexe a
semnalelor sinusoidale, un rol special fiind acordat proprietatilor spectrale, legate
de conceptul de densitate de putere. Este de asemenea analizat un exemplu practic
din domeniul circuitelor electronice.

In this paper we recall some properties of the Hilbert transform interpreted
in terms of the mathematical theory of the random signals. We study the
representation of the analitical signals as a generalization of the complex form of
the sinusoidal signals, a special part being focused on the spectral properties, in
connection with the concept of power density. It is also presented an example taken
from practice of the electronic circuits.
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1. Introduction

By making use of the Hilbert transform, one can describe some
constructions used in the signal theory in mathematical rigorous terms. In this
paper, one recalls the main facts regarding the Hilbert transform and one analyzes
some concepts like that of analytic associated signal, convolution filters, spectral
densities of stationary random signal.

2. On the Hilbert transform

Let h : R — C be a function from L? = L*(R). For any f € L' N L2, one
can consider the convolution Hy = h * f, which belongs to L?. If the Fourier

image h = Fh is bounded, then the linear operator H: L> — L? is well defined and
bounded; indeed, if f € L* N L2, then Hy = h.f and if ||h|| < M (M > 0 fixed),
then by the Parseval relation, ||Hf|| < M. ||f|| and since L* N L? is dense in L?, this
inequality extends to L2.
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Take now h(t) = % (t # 0). This function is not integrable on R; instead,
its primitive %lnltl is and one can take its associated distribution and then, the

distribution VP %, defined by
1 [ ot
VP? (p) =p.v. f %)dt (“principal value”)

for any test-function ¢. One knows that t. VP% =1, so h can be identified with
the distribution %VP% [2]. For any function s:R — C from L2, one defines its

Hilbert image

Hy=~VP<xs. (1)
Explicitly, for any t € R,
1 s(u
H(t) = p.v. f h(t —uw)s(uw)du = — J. W du.
T ) t—u

Since F {VP %} = —im.sgnw, from (1) one gets:

0 (w) = —i.8(w).sgnw. (2)
Because § € L?, it follows that Hy is a function which belongs to L.

PROPOSITION 1. Suppose that s: R = R belongs to L? and s(t) = 0 for any
t<0. If §(w) = A(w) + iB(w), w € R, then A(w) is even and B(w) is odd,
moreover,
1,1 1,1
Proof. Indeed, since Supp s € [0, ), then s(t) = s(t) * sgnt, for any t € R;
hence $(w) = (8§ * sgn)(w). But sgh(w) = %VP %, therefore $(w) = §(w) *
iVP % Thus, A(w) + iB(w) = iVP%* (A(a)) + iB(a))) and it remains to
separate the real and imaginary parts.
One knows that the Hilbert operator

1 1
H:1? = [?, s+— —VP—xs=H,
T t

is linear and continuous. Moreover, for any s € L?, H(H,) = —s, that is H? =
—id. Particularly, His bijective and H™! = —H. From the relation (2), one
obtains another definition of the Hilbert transform: H; = —iF ~1(8.sgn). One
also knows the following table:
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s(t) | sint cost (b))
H(t) ‘ —cost sin t 1

mt
According to prop. 1, one gets: A = Hg and B = —H,. Such a pair of

Hilbert images can also be obtained in another way. Namely, let f: R = R be a
function from L' N L? and put

1 1
a(w) = - f f(t)coswtdt, b(w) = p- f f(t) sin wt dt.
By the Fourier represe_ntation formula, )

f(t)=% fda) ff(u)cosw(t—u)du

= f (a(w) cos wt + b(w) sin wt)dw,
0
for any real t. Consider now the conjugate-function g, defined by
gt) = f (—a(w) sin wt + b(w) cos wt)dw.
0

Then
g) = %ffooo dw fooof(u) sinw(u—t)du =

}TlimA_)00 f: dw fjooof(u) sinw(u —t)du =

2 limy e [, F () =22 gy = 2limy g, 7 S (¢ + x)dx =
. 1 (oo 1-cosAx _ _ _1 o f(t+x)—f(t—x) _
limy o0 > f_m—x [ft+x)— f(t—x)]dx = nfo ———dx =

%p.v. ffw%dx. Thus, g = —Hyand similarly, f = Hy.

NOTE. One can also define the discrete Hilbert transform. Namely, consider the
sequence h = (hy,), n € Z, defined by h,, = ﬁ if nis odd and h,, = 0 for n even.
For any sequence s = (s,), n € Z, such that s, = 0 for n < 0 and Y,|s,| < oo,
its discrete Hilbert image is Hs = (z,,), where z, = Y, h,_p, s, (Hs =h*s, in
analogy with (1)). If s, = p, +iq, and put p = (p,), ¢ = (qn), ¢ = H, and
p = —H, and it founds again (3); [5]
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3. . Some representations of the signals
It is useful to introduce some terminology from Signal Processing.

Recall that any function s: R — € from L? is also called a signal with finite
1

energy; its norm ||s||, = ( f_ooools(t)lz)2 is the energy of s. Any linear continuous
operator T: L? — L? is also called a continual filter. If there is a function p € L' N
L? (called weight) such that Tx = p * x for any x, then one says that T is a
convolution filter, with the transfer function p(w) = F{p(t)}.

By definition, if s:R — R belongs to L?, one can consider a new signal
$ € L?, defined by

s(t) = s(t) + iHg(t), fort € R, 4)

called the analytic signal associated to s [1], [4]. Mathematically, this terminology
is justified by the fact that under some conditions, $ is the restriction of a complex
holomorphic (= analytic) function.
Example. For s(t) = cost, one gets $(t) = cost + isint and for s(t) = sint,
$(t) = sint — i cost. By extension, one defines the distribution 6(t) = §(t) +
VP~
PROPOSITION 2. The filter T : L? — L2, s(t) +— $(t) is a convolution filter,

with the transfer function

- 228

Proof. For any s € L?, we have

$(t) =PY® s(t) + iH (t) =PYD s(t) +i (%VP% * s(t)>
- (5@) +Llyp 1) v s(0) = 6() * s (D),
bis t

hence Ts = & = s. Thus, T is a convolution filter. Its transfer function is
. i 1 i
F{o6()} = F{6(O)} + ;T{VP ?} =1+ E(—in. sgnw) = 1+ sgnw = H(w),

for any real w # 0.

COROLLARY. For any s € L2 and any w real, F{s(t)}(w) = H(w).$(w), i.e.
§=H.3.
NOTE. The passage from s to $ is a generalization of the complex form of the
sinusoidal signals. By (4), the imaginary part of s is just the Hilbert image of s
and conversely, if we know $, then the signal can be directly recovered, since
s = Res.
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Fix w, > 0. For any signal s: R - R from L2, one can consider 3, s, s;,

defined by
5(t) = $(t).e"@ot; 5 (t) = Re §(t) and s;(t) = Im 3(t),
for ant real t.
NOTE. If T:L? - L?, x(t) — y(t) is a convolution filter with the transfer
function H(w), then by proposition 2, the filter x(t) — F(t) = y(t).e ‘@0t
(wo > 0 fixed) will have the transfer function
_(2ZH(w + wg), w>0
Hl(“’)_{ 0, w<0

Thus, if H(w) is symmetrical around w, (i.e. null outside an interval centered at
wy), then H; is even; the filter x(t) — y(t) is said band-pass and x(t) — ¥ (t)
low-pass. Therefore, by considering the Hilbert transform, the band-pass filters
can be replaced by low-pass ones.

From (4), it follows that s(t) = Re $(t) = Re (5(¢).el@o?) =
Re (s,(t) + i 5;(t))e'®ot = s5,.(t) cos wyt — s;(¢) sin wyt Hence, from s, and s,
one can recover s; conversely, s,(t) = Re §(t) =2Y® Re (S‘(t). e‘i“)ot) =
s(t) coswot + Hg(t).sin wyt and s;(t) = —s(t) sin wgt + Hg(t).cos wyt.

These formulas are different ways of signal representations, which use the
Hilbert transforms. In what follows, we will estimate their spectral densities and
mean powers.

4. Spectral densities estimations

Let (Q, K, P) be a probability field and s = (s;), T € R be a stationary
random signal (= random process) relative to this field; for any 7 € R, s; is

supposed to be a random variable from L?((2), hence having means and variances.
Then one can define its autocorrelative function R

R(t) = M(S¢47 - S7), for any real t; (6)

this is independent in 7, one to the stationarity hypothesis. Obviously, R(0) =
M|sg|? and Ris even. The Fourier image of R, P,(w) = f_czoR(t)e_i“”dt is
called the power spectral density of the random signal s. By the Fourier inversion
formula,

R(®) =5 J7, P@)e™dw. (M

Since R is even, P(w) = P(—w) = ZfOOOR(t) coswtdt and for any w real,
P;(w) is real.
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PROPOSITION 3. For any stationary random signal s, the power spectral
density of the analytic signal s is

P(w) = {4135(0)), ©>0

0, w<0 ®)

Proof. Generally, if T:L? - L%, x(t) — y(t), is a convolution filter with the
weight G hence y = G *x, then it holds the following relation for the
autocorrelations of inputs/outputs: R, (t) = G(—t) * G(t) * R,(t) and for
spectral densities, P, (w) = |H(w)|*P,(w), for any real w; here H(w) = F{G(t)}
is the transfer function of T [1]. Applying this for the filter s(t) — $(t) from
prop.2, it follows that Ps(w) = |H(w)|?. P;(w) and apply the proposition 2.

In analogy to proposition 3, we will give the power spectral densities for
§, s, and s;.

PROPOSITION 4. Fix wy > 0 and a stationary random signal s in L?(€2). Then
a) Ps(w) = Ps(w + wp);
b) P (w) = P (w) and if P;(w) is symmetrical around wy, i.e. null outside

an interval centered in w, this equals %Pg(a)).

Proof. a)

Rs(£) =PY® M(3(t +1).5(v)) = M(3(t + 7). e7i@o(H+D) 3(1). eiwoT) =

M(3(t + 1).5(7). e7i@0t) = Ry(t). e i@t

Then Py(w) = F{Rsn} = fjooo Ri(t). e i@r@oltdt = P.(w + wy).

b) On the other hand, R:(t) = M ((sr(t + 1) +is;(t + T)). (sr )+ lSl(T))) =

M[sr(t +1).5,.(7) + 5;(t + 7).5,(1) + i(si(t + 7). 5.(1) — 5. (t + 7). si(r))] =
R, (t) + R, (1) + i[M(si(t +1).5,.(1) — M(sr(t +1).5; (T))]By direct
computation, R, (t) = Ry, (t), hence Py (w) = P;,(w) and M(sr (t+1).5s; (1')) =
—M(sr(r). s;(t+ ‘L')), therefore, Rs(t) = 2R, (t) + ZiM(sL-(t + 7). sr(r)). If
P;(w) is symmetrical around w,, then by a), Ps(w) is symmetrical around w = 0,
hence an even function. Then R; has only real values and consequently,

M(s;(t +7).5.(x)) = 0 for any t and R; = 2R, .

Example. Fix wy > 0, B > 0 and suppose that s = (s;), T € R is an ideal random
signal with the power spectral density

w € [wy — B,wy + B]

N,
P(w)=1""
s(w) { 0, otherwise

In this case, one says that s is a white noise with the frequency band width equal
to 2B. By prop. 4, we can explicit the mean powers for s, §, s, and s;. Namely,
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co (J)[)+B
1 1 1
M|s,|? =by(6) R(0) =ty o f P(w)dw = 7 f Nodw = EB'NO'
—o0 wo—B

Similarly,
~ 1 co 2 o 2 o0
M|$y?| = %f_w P; (w)dw =PToP3 - fo P (0 + wy)dw = ;fwo P (w)dw =
2 (wo+B 2 10 1
;fwoo Nodw = =B.N, and also, Mls,.|? = M|s;|* = §M|S|2 =—B.N,.
An application
Consider an electronic circuit like that from figure 1, where the input signal s is
the tension, which can be regarded as a stationary random signal with the power
spectral density P;(w). Denote by y(t) the tension at the output. By Kirchhoff
law, s(t) = Ri(t) + y(t), where the current intensity is i(t) = C.y'(t). Thus
RCy'(t) + y(t) = s(t) for any real t. By applying the Fourier transform, it
follows that RC(iw).Y(w) + Y(w) = S(w), hence the transfer function of the
circuit, regarded as a filter x(t) +— y(t), will be
Y(w) 1
H = = .
@) =Sy = T+ RCwi

—kt
If G(t) =F HH(w)} = {ke t= 0, where k = R_lc’ it follows that y(t) =

0,t<0
1 1
G(t) xs(t). Moreover, |H(w)|?= TR 1+(2)2 , hence P,(w)=
k
Ps(w)ﬁ. For |w| >» k, H(w) is neglectable and so will be P,(w). The
1+(2
k
previous circuit is an example of low-pass filter.
R
3 AVAVANY. L)
T
s(t) >i T y(t)
3 ®
Fig. 1.

5. Conclusions

In 1 we have recalled some properties of the Hilbert transform. In 2 we
analyzed the notion of analytic signal $ associated to a given signal s € L?(R) and
we introduced a modulation 3(t) = $(t)e~'“ot around a fixed frequency wy. This
assures a correspondence between band-pass and low-pass filters. The filter
s(t) v s(t) plays a special part (prop. 2, 3). Another concept which is analyzed
in 3 is that of power spectral density; this permits to estimate the mean powers of
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some signals and to study the behavior of some filters (prop. 4). In this work, we
presented some concepts taken from Electrical Engineering and we gave some
significant examples.
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