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CHAOS AND SELF-STRUCTURING BEHAVIORS 
IN LUNG AIRWAYS 
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In the framework of the Scale Relativity Theory with fractal arbitrary 
constant, a numerical simulations of aerosol dynamics in the lung is obtained. As a 
result, chaoticity and self-structuring can be observed in the aerosol dynamics. 
Moreover, a Kelvin-Taylor type effect appears at the aerosol colony periphery. 
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1. Introduction 

Although aerosol depositions in the lungs are often looked upon in the 
context of industrial hygiene, aerosols also play an important clinical role. Three 
principal mechanisms (inertial impaction, gravitational sedimentation and 
Brownian diffusion) account for the majority of aerosols deposition in the lungs. 
Deposition depends upon the mode of inhalation, the nature of the particles and 
the physical characteristics of the subject inhaling these particles. Radioaerosols 
are widely employed in measurements of total and regional deposition, and 
topographical distribution may also be determined. Aerosols play an important 
role in the treatment of various forms of respiratory diseases, those with the 
bronchodilators, anti-inflammatories and antibiotics for the therapy of bronchial 
asthma, COPD, bronchiectasis etc. being particularly important. On average only 
10% of the therapeutic aerosols dose actually reaches the lungs. The rate of 
removal of insoluble radioaerosols deposited in the lungs may be used as an index 
of mucociliary transport. Aerosols are also used in a variety of other diagnostic 
and research procedures, particularly for ventilation scanning, alveolar clearance, 
measurement of alveolar permeability, and for measuring the size of pulmonary 
air spaces [1][2]. 
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The size, mode and flow rate of the particles of drugs administered by 
aerosols way are very important in the treatment of the acute respiratory diseases 
and, especially, of the chronic inflammatory diseases, which are found worldwide 
among the people of all ages. The aerosol administration of drugs for respiratory 
diseases is one of the basic methods of pulmonary rehabilitation. The inhalator 
way of the drugs administration in the treatment of respiratory diseases is more 
advantageous than oral or parenteral administration because it allows selective 
treatment of the respiratory tract by pulmonary local action and by acquiring 
higher drug concentration in the lung, and simultaneously by decreasing the risk 
of occurrence of side effects due to the low level of drug in the blood [1][2]. 

Molecular biology is driving scientists to the innermost reaches of the 
aerosol's ultimate mechanisms, complexity, and capacity to evolve. Moreover, 
advances in Mathematics, Physics, Chemistry, and Biology are showing how far–
reaching the powers of self–organization can be. These advances hold 
implications for the origin of life itself and for the origins of order in the ontogeny 
of every organism. Rather than the consequence of natural selection alone, the 
order inherent in the great complexity within the aerosols may be largely self–
organized and spontaneous [3]. As a consequence, the lung morphology 
(structure) and functionality by means of aerosol dynamics can be assymilated to 
a complex system. 

A fundamental property of complex systems is that of emergence, which 
can be thought of as a new property or behavior, which appears due to non–linear 
interactions within the system; emergence may be considered the ‘product’ or by–
product of the system. Until now, the concept of emergence has been mainly used 
as an explanatory framework [4], to inform the logic of action research or as a 
means of exploring the range of emergent potential of simulation of real complex 
systems [5][6][7][8][9]. 

In order to underline the connection between emergence and self–
organization, one can discuss the features of the four meta–classes–first 
introduced in McDonald and Weir [10]. Features were considered potential meta–
classes if (i) they were generated by non–linear interactions (ii) they were 
independent with respect to a domain (iii) they were a central building block for 
system interactions and (iv) their existence causes the open up of a new system 
potential. Self–organization, which implies detailed organizational structure and 
new system interactions emergence as a result of the behavior rules of the system 
entities, is a well known feature of real complex systems. The term self–
organization is often used to describe the dynamics of complex systems, 
emergence or the specific organizational changes brought about through the 
autonomous entity behavior. Thus, self–organization can be defined as the 
structural change in a complex system due to nonlinear, possibly noise-generating 
interaction.  
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In the present paper we propose a new model for analyzing lung aerosol 
dynamics, taking into account that the aerosols movement trajectories are 
continue but non-differentiable curves (fractal curves). 

2. Mathematical Model 

Let us consider the dissipative approximation of motions on fractal paths. 
In such context, for irrotational motions of the aerosols that take place in a lung 
airways matrix, 

ˆ 0, 0, 0D F∇ × = ∇ × = ∇ × =V V V ,    (1a-c) 

we can choose the aerosol’s complex velocity V̂ of the form [11] 
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where lnφ ψ≡  is the complex aerosol’s velocity scalar potential. In 
relation (1) and (2), DV  is the differentiable and scale resolution independent 
velocity, FV  is the non-differentiable and scale resolution dependent velocity, λ  
is the spatial resolution scale, τ  is the temporal resolution scale, dt is the scale 
resolution, FD  is the arbitrary constant fractal dimension, and ψ  is the wave 
function. For details on the physical meaning of these quantities, see refs. 
[12][13][14].  

By using the fractal operator of motion from [11] and using the method 
described in [12][13][14] it results:  
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or, furthermore  
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where U is the external scalar potential. The equation (3b) can be 
integrated, yielding: 
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up to an arbitrary phase factor which may be set to zero by a suitable 
choice of the phase of ψ . Relation (4) is a Schrödinger type equation. 

For iSeψ ρ= , with ρ   the amplitude and S the phase of ψ , the 
complex velocity field (2) takes the explicit form: 
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By substituting (5) in (3a), and separating the real and the imaginary parts, 
up to an arbitrary phase factor which may be set at zero by a suitable choice of the 
phase of ψ , we obtain: 
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with Q the specific aerosol’s fractal potential 
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The first equation (6) represents the conservation law of aerosol 
momentum, while the second equation (6) represents the conservation law of 
aerosol probability density. Through the aerosol fractal velocity field, FV , the 
specific aerosol fractal potential Q is a measure of non-differentiability of the 
aerosols trajectories, i.e. of their chaoticity. Therefore the equations (6) with (7) 
define the aerosol fractal hydrodynamic model (CFHM).  

Since the position vector of the aerosol is assimilated with a stochastic 
process of Wiener type (for details see [15][16], ψ  is not only the aerosol scalar 
potential of a aerosol complex velocity (through lnψ ) in the frame of aerosol 

fractal hydrodynamics, but also aerosol density of probability (through 2ψ ) in the 
frame of a aerosol Schrödinger type theory. It results the complementarity of these 
two formalisms (the formalism of the aerosol fractal hydrodynamics and the one 
of the aerosol Schrödinger type equation). Moreover, the chaoticity, either 
through turbulence in the aerosol fractal hydrodynamics approach, either through 
stochasticization in the aerosol Schrödinger type approach, is generated only by 
the non – differentiability of the aerosol’s movement trajectories in a fractal space. 

3. Numerical simulation of the aerosol dynamics process 

In the following, using (6) in an axial symmetry we analyze the dynamics 
of the aerosol, assuming that the aerosol – extraaerosolular medium interaction 
mimes the dynamics of a barotropic type fluid [17]. Thus, we can choose
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2
il ilcσ ρ δ= , where ρ is the aerosol density, c is a characteristic grow velocity of 

the aerosol and δil is the Kronecker symbol. The presence of an external 
perturbation in the form of extraaerosolular medium is specified only by adequate 
initial and boundary conditions (e.g. spatio-temporal Gaussian). In this situation, 
let us introduce the normalized coordinates 

0
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and by admitting the adiabatic expansion, equations (6) and (7) become: 

( ) ( )1
0

N
NV NVξ ηξ

τ ξ ξ η
∂ ∂ ∂

+ + =
∂ ∂ ∂

,      

( ) ( ) ( )2 11 N
NV NV NV V N γ

ξ ξ ξ ηξ
τ ξ ξ η ξ

−∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
,   (9) 

( ) ( ) ( )2 11 N
NV NV V NV N γ

η ξ η ηξ
τ ξ ξ η η

−∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
.    

For numerical integration we shall impose the initial conditions: 
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where ω  is aerosol specific pulsation, k is the inverse of a aerosol specific 
length and 0ρ is the aerosol equilibrium density.  

The system (9) with the initial conditions (10) and the boundary ones (11) 
was numerically integrated using finite differences [18]. 
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Figs. 1a-f. Three dimensional dependences of the normalized aerosol density field N, 
normalized  aerosol velocities fields, Vξ and Vη, on the normalized coordinates, ξ and η for the 

normalized time τ = 0.55 and μ = 0.17  (a, b, c); two dimensional contour of the normalized 
aerosol density field N, normalized aerosol velocities fields, Vξ and Vη, for the same τ and μ  (d, e, 

f).  
 

In Figures 1a-f and 2a-f the dynamics of the normalized aerosol density 
field N and normalized aerosol velocities fields Vξ and Vη , respectively, are 
plotted for the normalized time τ = 0.55, respectively τ = 0.75 for μ = 0.17 (three 
dimensional and contour plot evolutions). The followings features of the aerosol 

μ=0.17, τ=0.55
1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

a d

b e

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

f
c 



Chaos and self-structuring behaviors in lung airways                                 297 

expansion process result: i) the generation of two aerosol structures (see the 
dynamics from Figures 1a,d and 2a,d); ii) the symmetry of the aerosol normalized 
velocity field Vξ with respect to the symmetry axis of the spatial-temporal 
Gaussian (see the dynamics from Figures 1b,e and 2b,e); iii) aerosol shock waves 
and aerosol vortices at the aerosol colony periphery for the aerosol normalized 
speed field Vη (see the dynamics from Figures 1c,f and 2c,f). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figs. 2a-f. Three dimensional dependences of the normalized aerosol density field N, 

normalized  aerosol velocities fields, Vξ and Vη, on the normalized coordinates, ξ and η for the 
normalized time τ = 0.75 and μ = 0.17  (a, b, c); two dimensional contour of the normalized 
aerosol density field N, normalized aerosol velocities fields, Vξ and Vη, for the same τ and μ  (d, e, 
f). 

μ=0.17, τ=0.75

a d

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

b e

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

fc 

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0



298     Paraschiva Postolache, Letiţia D. Duceac, Elena G. Vasincu, M. Agop, Roxana M. Nemeş 

4. Conclusions 

In the fractal hydrodynamic frame of the Scale Relativity Theory with 
arbitrary constant fractal dimension, the lung aerosol dynamics are analyzed. 
Thus, using a numerical simulation of the aerosol dynamics process, both their 
chaoticity and self-structuring result. Moreover, a Taylor type effect can appear at 
the lung airways periphery, thus affecting the endothelium.  
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