U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 1, 2016 ISSN 1223-7027

CHAOS AND SELF-STRUCTURING BEHAVIORS
IN LUNG AIRWAYS

Paraschiva POSTOLACHE', Letitia Doina DUCEAC?, Elena Geanina
VASINCU*", Maricel AGOP*, Roxana-Maria NEMES®

In the framework of the Scale Relativity Theory with fractal arbitrary
constant, a numerical simulations of aerosol dynamics in the lung is obtained. As a
result, chaoticity and self-structuring can be observed in the aerosol dynamics.
Moreover, a Kelvin-Taylor type effect appears at the aerosol colony periphery.
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1. Introduction

Although aerosol depositions in the lungs are often looked upon in the
context of industrial hygiene, aerosols also play an important clinical role. Three
principal mechanisms (inertial impaction, gravitational sedimentation and
Brownian diffusion) account for the majority of aerosols deposition in the lungs.
Deposition depends upon the mode of inhalation, the nature of the particles and
the physical characteristics of the subject inhaling these particles. Radioaerosols
are widely employed in measurements of total and regional deposition, and
topographical distribution may also be determined. Aerosols play an important
role in the treatment of various forms of respiratory diseases, those with the
bronchodilators, anti-inflammatories and antibiotics for the therapy of bronchial
asthma, COPD, bronchiectasis etc. being particularly important. On average only
10% of the therapeutic aerosols dose actually reaches the lungs. The rate of
removal of insoluble radioaerosols deposited in the lungs may be used as an index
of mucociliary transport. Aerosols are also used in a variety of other diagnostic
and research procedures, particularly for ventilation scanning, alveolar clearance,
measurement of alveolar permeability, and for measuring the size of pulmonary
air spaces [1][2].
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The size, mode and flow rate of the particles of drugs administered by
aerosols way are very important in the treatment of the acute respiratory diseases
and, especially, of the chronic inflammatory diseases, which are found worldwide
among the people of all ages. The aerosol administration of drugs for respiratory
diseases is one of the basic methods of pulmonary rehabilitation. The inhalator
way of the drugs administration in the treatment of respiratory diseases is more
advantageous than oral or parenteral administration because it allows selective
treatment of the respiratory tract by pulmonary local action and by acquiring
higher drug concentration in the lung, and simultaneously by decreasing the risk
of occurrence of side effects due to the low level of drug in the blood [1][2].

Molecular biology is driving scientists to the innermost reaches of the
aerosol's ultimate mechanisms, complexity, and capacity to evolve. Moreover,
advances in Mathematics, Physics, Chemistry, and Biology are showing how far—
reaching the powers of self-organization can be. These advances hold
implications for the origin of life itself and for the origins of order in the ontogeny
of every organism. Rather than the consequence of natural selection alone, the
order inherent in the great complexity within the aerosols may be largely self—
organized and spontaneous [3]. As a consequence, the lung morphology
(structure) and functionality by means of aerosol dynamics can be assymilated to
a complex system.

A fundamental property of complex systems is that of emergence, which
can be thought of as a new property or behavior, which appears due to non—linear
interactions within the system; emergence may be considered the ‘product’ or by—
product of the system. Until now, the concept of emergence has been mainly used
as an explanatory framework [4], to inform the logic of action research or as a
means of exploring the range of emergent potential of simulation of real complex
systems [5][6][7][8][9].

In order to underline the connection between emergence and self—
organization, one can discuss the features of the four meta—classes—first
introduced in McDonald and Weir [10]. Features were considered potential meta—
classes if (i) they were generated by non-linear interactions (ii) they were
independent with respect to a domain (iii) they were a central building block for
system interactions and (iv) their existence causes the open up of a new system
potential. Self-organization, which implies detailed organizational structure and
new system interactions emergence as a result of the behavior rules of the system
entities, is a well known feature of real complex systems. The term self—
organization is often used to describe the dynamics of complex systems,
emergence or the specific organizational changes brought about through the
autonomous entity behavior. Thus, self-organization can be defined as the
structural change in a complex system due to nonlinear, possibly noise-generating
interaction.
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In the present paper we propose a new model for analyzing lung aerosol
dynamics, taking into account that the aerosols movement trajectories are
continue but non-differentiable curves (fractal curves).

2. Mathematical Model

Let us consider the dissipative approximation of motions on fractal paths.
In such context, for irrotational motions of the aerosols that take place in a lung
airways matrix,

VxV =0, VxV,=0, VxV,=0, (la-c)
we can choose the aerosol’s complex velocity V of the form [11]
R 12 dt (2/Dr )’1
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where ¢=Iny is the complex aerosol’s velocity scalar potential. In
relation (1) and (2), V, is the differentiable and scale resolution independent

L

velocity, V

. 1s the non-differentiable and scale resolution dependent velocity, 4
is the spatial resolution scale, 7 is the temporal resolution scale, df is the scale
resolution, D, 1is the arbitrary constant fractal dimension, and y is the wave
function. For details on the physical meaning of these quantities, see refs.
[12][13][14].

By using the fractal operator of motion from [11] and using the method
described in [12][13][14] it results:

A A A 2 (2/D,)-1
ﬂ:ﬁ+v.vv_i2_(ﬁj AV =-vU, (3a)
dt Ot T\ T
or, furthermore
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where Uis the external scalar potential. The equation (3b) can be
integrated, yielding:
(a0 2 da\ "oy U
T\ 7 "\t o 2

up to an arbitrary phase factor which may be set to zero by a suitable
choice of the phase of . Relation (4) is a Schrédinger type equation.

For Wz\/;e’s, with \/; the amplitude and S the phase of y, the
complex velocity field (2) takes the explicit form:
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By substituting (5) in (3a), and separating the real and the imaginary parts,
up to an arbitrary phase factor which may be set at zero by a suitable choice of the
phase of  , we obtain:

%"'(VD 'V)VD :_V(Q+U)’
t

aa—’t’Jrv-(va):o, (6)

with Q the specific aerosol’s fractal potential

AP ASp  vE A7 ()PP
0= b 2 <z VoV (7)
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The first equation (6) represents the conservation law of aerosol
momentum, while the second equation (6) represents the conservation law of
aerosol probability density. Through the aerosol fractal velocity field,V,, the

specific aerosol fractal potential QO is a measure of non-differentiability of the
aerosols trajectories, i.e. of their chaoticity. Therefore the equations (6) with (7)
define the aerosol fractal hydrodynamic model (CFHM).

Since the position vector of the aerosol is assimilated with a stochastic
process of Wiener type (for details see [15][16], y is not only the aerosol scalar

potential of a aerosol complex velocity (through Iny ) in the frame of aerosol

fractal hydrodynamics, but also aerosol density of probability (through |y/|2) in the

frame of a aerosol Schrodinger type theory. It results the complementarity of these
two formalisms (the formalism of the aerosol fractal hydrodynamics and the one
of the aerosol Schrodinger type equation). Moreover, the chaoticity, either
through turbulence in the aerosol fractal hydrodynamics approach, either through
stochasticization in the aerosol Schrodinger type approach, is generated only by
the non — differentiability of the aerosol’s movement trajectories in a fractal space.

3. Numerical simulation of the aerosol dynamics process

In the following, using (6) in an axial symmetry we analyze the dynamics
of the aerosol, assuming that the aerosol — extraaerosolular medium interaction
mimes the dynamics of a barotropic type fluid [17]. Thus, we can choose
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o, = pc’5y, where p is the aerosol density, c is a characteristic grow velocity of

the aerosol and J; is the Kronecker symbol. The presence of an external
perturbation in the form of extraaerosolular medium is specified only by adequate

initial and boundary conditions (e.g. spatio-temporal Gaussian). In this situation,
let us introduce the normalized coordinates

V. k vV k
ot =t,kr =& kz =n,——=V,,—= =VU,£=N, ®)
@ ® Lo

and by admitting the adiabatic expansion, equations (6) and (7) become:
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For numerical integration we shall impose the initial conditions:
1
V.(0,,m)=0,7,(0,&,7) =0,N(0,&,17) =51<6<2,0<n21, (10)

and the boundary ones:
V.(z,L,n)=0,V.(z,2,7)=0, V, (z,1,7) =0, ¥, (7,2,7) =0,

N(r,l,n):é, N(T,Z,n)zé, V.(7,£,0)=0, V.(z,£,1)=0,

VI](T’g’O)ZO’ Vq(T,g,l):O, (11)
1Y 32
Ul | s ) 1
N(T»§,0)=Eexp | e N(rél)=<
5

where @ is aerosol specific pulsation, & is the inverse of a aerosol specific
length and p, is the aerosol equilibrium density.

The system (9) with the initial conditions (10) and the boundary ones (11)
was numerically integrated using finite differences [18].
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Figs. l1a-f. Three dimensional dependences of the normalized aerosol density field &,
normalized aerosol velocities fields, V' and ¥, on the normalized coordinates, ¢ and # for the
normalized time 7= 0.55 and 1= 0.17 (a, b, ¢); two dimensional contour of the normalized
aerosol density field N, normalized aerosol velocities fields, V- and V, for the same rand x (d, e,

f).

In Figures la-f and 2a-f the dynamics of the normalized aerosol density
field N and normalized aerosol velocities fields Ve and V), , respectively, are
plotted for the normalized time 7 = 0.55, respectively 7 = 0.75 for ¢ = 0.17 (three
dimensional and contour plot evolutions). The followings features of the aerosol
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expansion process result: 1) the generation of two aerosol structures (see the
dynamics from Figures la,d and 2a,d); ii) the symmetry of the aerosol normalized
velocity field V: with respect to the symmetry axis of the spatial-temporal
Gaussian (see the dynamics from Figures 1b,e and 2b,e); iii) aerosol shock waves
and aerosol vortices at the aerosol colony periphery for the aerosol normalized
speed field V;, (see the dynamics from Figures 1c,f and 2c,{).

1=0.17,7=0.75

1.0 1.2 1.4 1.6 1.8 2.0)

Figs. 2a-f. Three dimensional dependences of the normalized aerosol density field N,
normalized aerosol velocities fields, V: and V,, on the normalized coordinates, & and 5 for the
normalized time 7 = 0.75 and ¢ = 0.17 (a, b, ¢); two dimensional contour of the normalized
aerosol density field N, normalized aerosol velocities fields, V: and V,, for the same 7 and 1 (d, e,

).
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4. Conclusions

In the fractal hydrodynamic frame of the Scale Relativity Theory with

arbitrary constant fractal dimension, the lung aerosol dynamics are analyzed.
Thus, using a numerical simulation of the aerosol dynamics process, both their
chaoticity and self-structuring result. Moreover, a Taylor type effect can appear at
the lung airways periphery, thus affecting the endothelium.
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