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LEARNING LOCAL LINE DESCRIPTORS WITH FCNNS AND
TRANSFER LEARNING BY MINIMIZING TRIPLET
MARGIN LOSS

Zhangiang HUO?, Miaomiao FU?, Fen LUO®*, Yujie LIU*

In this paper, it is demonstrated how to learn line feature descriptors for line
matching from image data, which is very important for many image processing and
computer vision applications. In order to encode these functions, the FCNNs (Fully
Convolutional Neural Networks) based models are developed. The main
contributions of this method can be summarized form four aspects: (1) it describes
the line features with mean patches and standard deviation patches; this idea comes
from MSLD (mean-standard deviation line descriptor); (2) three FCNNs based
models are introduced, and the central-surrounding to data augmentation is used
before training; (3) the parameters of the pre-trained L2-Net are transferred to the
three models to solve the problem of insufficient amount of training data; (4) the
triplet margin loss is used to optimize these three models. The proposed method is
verified by the experiments on the Oxford dataset and other datasets, and the
experimental results show that the line feature descriptors obtained by our three
models have better robustness under the conditions of viewpoint change, rotation
change, blur change, and scale change and many others.

Keywords: Fully Convolutional Neural Networks; transfer learning; line feature
descriptor

1. Introduction

The description of local image features is one of the most basic tasks in the
image processing and computer vision fields. It is often used as a subroutine and
plays a vital role in various computer vision tasks, including image registration
[1], image stitching [2], and 3D reconstruction [3]. In the past two decades,
various methods for the local image feature description have been proposed. The
most popular handcrafted feature descriptor is the Scale Invariant Feature
Transform (SIFT) feature descriptor, which has the advantages of ensuring the
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invariance of the scale variety of local features and strong distinguishability [4].
Dong and Soattos proposed to accumulate the SIFT results of multiple different
scales to obtain the Domain-Size-Pooling SIFT (DSP-SIFT) and explained its
superior performance from the perspective of signal processing [5].

In recent years, due to the successful application of deep learning in many
fields, the research focus has gradually been turned from the handcrafted
descriptors to the learning-based descriptors. For instance, Zagoruyko et al.
proposed many neural networks based models, including Siamese networks, two-
channel networks (2chnet); these models have excellent performances [6] in
invariance and distinguishability. Tian et al. proposed a Convolutional Neural
Network (CNN) model named the L2-Net that uses the progressive sampling
strategy and the loss function composed of three error terms to learn the point
feature descriptors [7]. Based on the L2-Net architecture and inspired by the SIFT
matching criteria, Mishchuk et al. proposed a descriptor named the HardNet,
where the triple loss was applied to the L2-Net architecture to learn point feature
descriptors, thus further improving the matching performance of the L2-Net [8].

In the literature, many line feature descriptors for line feature matching,
including the mean-standard deviation line descriptor (MSLD) for line matching
proposed by Wang et al., have been reported. The MSLD provides a robust
descriptor for line matching [9]. In order to overcome the problems of
segmentation fragmentation and geometric variation, Zhang et al. proposed a line
feature descriptor called the Line Band Descriptor (LBD) [10], which has good
matching performance on various image changes. Liu et al. proposed an intensity
order curve descriptor (IOCD). The 10CD partitions the sub-region based on the
intensity of pixels in the neighborhood and achieves good distinguishability under
the conditions of deformation and complex illumination changes [11].

Although the above-mentioned descriptors have good performances, the
development of high-quality local line feature descriptors is still challenging due
to the factors that affect the final image appearance and problems with the line
itself. The factors affecting the image appearance include changes in the
viewpoint, the overall illumination of the scene, rotation, scale, and occlusion.
The problems with the line include the uncertainty of the endpoint of the line,
unavailability of a strong disambiguating geometric constraint, a lack of rich
textures in a local neighborhood of the line [9]. Therefore, compared with the
point feature descriptor, the line feature descriptor develops slowly and still stays
in the handcrafted stage. Therefore, how to use the existing dataset HPUPatches, a
dataset built by ourselves, to learn line feature description functions automatically
is meaningful work.

Aiming at solving the above-mentioned problems, this paper proposes to
learn local line feature descriptors using the FCNNSs and transfer learning while
minimizing the triplet margin loss. The main objective is to use the FCNNs and
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transfer learning to learn the line feature description function directly from the
pre-processed image patch without using any handcrafted features. Inspired by the
L2-Net and transfer learning [12], a deep fully-convolutional neural network
architecture is combined with transfer learning to represent line features. In this
work, three fully convolutional neural networks for line feature descriptor
learning are studied. These networks are trained with pre-processed image
patches.

The main contributions of this paper are as follows: (i) the line feature
description function is learned directly from the image patch data, and various
image transformations are implicitly considered; (ii) three types of network
architectures suitable for this function learning while improving the matching
performance of line descriptors are studied; (iii) the line descriptors applied to the
line matching problem using the benchmark dataset, and the results indicate that it
performs better than the existing handcrafted descriptors and further enhances the
descriptive power of the line feature descriptor.

2. Line dataset construction and network architectures
2.1 Line dataset construction

A line dataset denoted as HPUPatches dataset was constructed, where
HPU stands for Henan Polytechnic University. The dataset consisted of two
subsets, HPUPatches-train and HPUPatches-test. The HPUPatches-train and
HPUPatches-test consisted of approximately 180,000 64x128 image patches and
90,000 64%128 image patches, respectively. The following seven image changes
were involved in each subset: illumination, blur, viewpoint, rotation, JPEG
compression, noise, and scale. The four concrete steps of constructing the dataset
were as follows.

Step 1: By using mobile phone shooting and network downloading, a total
of 3400 pairs of images with different changes in the same scene were obtained,
involving seven transformations: illumination, blur, viewpoint, rotation, JPEG
compression, noise, and scale.

Step 2: Canny edge detection operator was used for image edge detection;
the points with the curvature greater than 0.8 were removed,; finally, the lines with
the number of pixels less than 20 were discarded to obtain extracted lines.

Step 3: A positive matching line pair was obtained. The specific method
was as follows. For any image pair, the matching line pair in the image pair was
obtained by the line matching techniqgue MSLD, and the matching error was
manually eliminated to obtain the positive matching line pair set S(L,L") in the
image pair, which was expressed as:

sty ={(L,L"),i=12,..,N} (1)
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where L;denoted the jth line in the first image of an image pair, L;' denoted the jth
line in the second image of an image pair that matches L; positive, and N, denoted
the number of matched line pairs.

Step 4: The line feature patches were determined corresponding to the
line. The specific method was as follows. For any line L composed of Num(L)
points in the set of positive matching line pairs obtained in Step 3, it was noted
that any pixel point onLwas Py, k=12, ..,Num(L). This step included
Steps 4.1-4.3.

Step 4.1: Get the support area for each point on the line. The specific
method was as follows. A square region having a length of 64 along the direction
of line L and the direction perpendicular to line L, which was centered on Py, was
defined as a support region of a point P,. The matrix of the brightness values of
the point P, support region was denoted as I (P, ).

Step 4.2: Get the mean patch and standard deviation patch of the line
feature. The specific method was as follows: the mean matrix M(L) and the
standard deviation matrix STD (L) of the straight line L were calculated according
to the support regions of the points acquired in Step 4.1 as follows:

IR ) +1(P,)+ 1 Byymip)
Num (L)

M(L) = ()

(1P ) —MiL) )+ (10P) ~2 (1)) +-t (1 (Prgym ()~ M0 ':L}}:
Num (L)

STD(L) = (3)

Step 4.3: Get line feature patches. Concatenate the mean patch and
standard deviation patch of the line L to obtain the line feature patch A(L) of the
size 64x128 pixels by:

_ ML) STDIL)
H(Lj - [mﬂx (ML) X 255, mazx (STD(L)) X 255 (4)

2.2 Network architectures

A neural network can process image patches in many ways, and multi-
resolution information can improve the matching ability of descriptors. Therefore,
an image patch with a size of 64x128 pixels was subjected to the downsampling
and center cropping to obtain the surrounding low-resolution image patch and the
central, high-resolution image patch, which were used as an input of the three
network models studied in this work. The image patch with a size of 64x128
pixels included a mean patch and a standard deviation patch, of which each had a
size of 64x64 pixels and was calculated from the point patches that made up the
line. The obtained image patches were used to explore and test three neural
network architectures, namely a Central-surround Siamese network (CS S-Net), a
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Central-surround Pseudo- Siamese network (CS PS-Net), and a Central-surround
2-Channel network (CS 2-Channel-Net).

2.2.1 CS S-Net

In the CS S-Net, there are two branch structures that share the same
architecture and the same parameter set. The CS S-Net architecture is shown in
Fig. 1. The two branching structures of the network are processed at two different
resolutions, surround low-resolution and central high-resolution. More
specifically; and, a 256-dimensional feature vector is obtained by processing the
input by seven convolution layers. In the second branch structure (central high-
resolution), the center of the mean patch and the standard deviation patch are used
as an input to obtain image patch of 32x64 pixels; and then obtain a 256-
dimensional feature vector is obtained by processing the input by seven
convolution layers. Finally, the output feature vectors of the two branches are
merged into the final output of the entire network.
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Fig. 1. The architectures of the CS S-Net and CS PS-Net networks. The only difference between
the two networks is that the two branches of the latter do not share parameters.

These two branch structures have the same convolutional layers as the L2-
Net [7] except for the last convolutional layer. Since the different inputs and the
same desired outputs, the convolution kernel size of the last convolution layer is
modified from 8x8 to 8x16, and the number of convolution kernels is modified
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from 128 to 256. In addition, the dropout regularization with the loss rate of 0.3 is
applied before the last layer. Due to the insufficient number of training samples in
the existing dataset, the transfer learning is used to set the initial values of the first
six layers of the two branches to the model parameter values of the L2-Net pre-
trained with the large dataset Liberty [13]; the Liberty contains approximately
450,000 image patches with the size of 64x64 pixels. The last layer of weight
tensor is initialized to an orthogonal matrix [14] with the gain equal of 0.6, and
the bias tensor is constant and set to 0.01. The CS S-Net converts the input two
32x64 pixels image patches into 512-dimensional descriptors.

2.2.2 CS PS-Net

From a complexity perspective, the CS PS-Net is between CS S-Net and
CS 2-Channel-Net. As shown in Fig. 1, it has the structure of the CS S-Net, but
the network parameters of the two branches are not shared, which increases the
number of parameters that can be adjusted during the training and provides more
flexibility than the CS S-Net, but is less flexible than the CS 2-Channel-Net.

2.2.3 CS 2-Channel-Net

Each branch of the CS S-Net and CS PS-Net performs a feature extraction
process, and the feature vectors extracted by the two branches are concatenated
into the final network output. The CS 2-Channel-Net skips the process of two
branches conducting the feature extraction but regards the two 32x64 pixels
image patches obtained by the method described in Section 2.2.1 as a two-channel
image patch having the size of 32x64x2. Moreover, the patch of size 32x64x2 is
fed to the first layer of the convolutional layer. The structure of the CS 2-Channel-
Net is shown in Fig. 2, where it can be seen that it converts the input 32x64x2
image patch into a 256-dimensional feature vector by seven convolution layers.
Compared to the two networks described above, the CS 2-Channel-Net provides
greater flexibility since it processes two patches simultaneously.

3. Triplet margin loss and model training

Transfer learning and supervised learning are used to train the three
models. A triplet margin loss based on the distance between the minimized match
descriptor and the closest non-matching descriptor is used, which leads to the
learning objective function L, which is expressed as:

d[:alr blj d(alrsz d[ﬂ’lrbnj

D= d(ay by) d(ayb,) ... d(ayb,)

®)
d(a,. b)) d(a,,b,) .. d(awbnﬁ

d[az, }) JZ— Eazb}, J=12,..,n (6)
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L= izgtlmrm (0,1 +d(a,b;) —min (d[a. b ),d[akmm, bi))) (7

L Imi
where n denotes the batch size; @; and b; denote the feature description vectors
that represent the network output for the network input consisted of two matched
image patches; b;  denotes the closest a; but non-matching line descriptor, and
a, . denotes the closest b; but non-matching line descriptor, while d(a;b;)
denotes the distance between two descriptors.

Jmin = Grgmin d[ai,bi),j =12,.,n,jF1i (8)
k,m = argmin d(a,,b; ),k =12,., nk+i 9)
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Fig. 2. The structure of the CS 2-Channel-Net network.

The three networks were trained using an SGD with an initial learning rate
of 10, a momentum of 0.9, and a weight attenuation of 0.0001. Training was done
in mini-batches with a size of 512. Since the construction of a large dataset for the
line feature network training requires much manpower and financial resources,
and the combination of transfer learning and convolutional neural networks has
achieved great successes in computer vision applications, such as image
recognition [15] and target tracking [16]. In this work, the transfer learning was
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introduced in the fully convolutional neural networks, which means that the first
six layer’s parameters of the three networks were initialized to the model
parameter values of the L2-Net pre-trained by the large dataset Liberty. The last
layer of weight tensor was initialized to an orthogonal matrix with a gain of 0.6,
and the bias tensor was set to 0.01. The training samples in the existing datasets
are insufficient, and there are also over-fitting problems caused by training from
scratch. Moreover, for CNN, the first few layers learn the low-level general
features of the image, which is suitable for most visual tasks, while several latter
layers learn the high-level features for specific tasks [17]. Therefore, a fine-tuning
strategy was chosen to train all network models.

The size of the constructed dataset allowed loading all image patches into
GPU (Graphic Processing Unit) memory and quickly acquiring the image patches
during the training. The RTX 2080Ti GPU in Pytorch [18] was used to train the
three networks; the training of all the models converged after ten epochs, so the
training process lasted about 3 to 4 hours.

4. Experimental evaluation

The trained models were applied to a variety of datasets. The experimental
results obtained by the three network models were compared with the results of
the state-of-the-art methods.

In order to evaluate the performance of the line feature descriptors
proposed in this paper, FPR95 and mAP (mean Average Precision) evaluation
indicators were used. The FPR95 is the False Positive Rate (FPR) at 95% recall,
and it is computed as:

FPR = —2 (10)
FP+TN

where FP (False Positive) indicates that the unmatched sample is predicted to be
matched, and TN (True Negative) indicates that the unmatched sample is correctly
predicted as unmatched.

In image matching, mAP is used as a performance evaluation indicator.
The AP (Average Precision) of a matching category on an image pair is calculated
as:
E‘IE Precision;
where np represents the total number of retrieved positively matched line pairs,
and Precision denotes the ratio of the number of the retrieved positively matched
line pairs to the total number of retrieved line pairs. The mAP is then calculated
as:

m .
mAp = Z=adh (12)
where m denotes the total number of image pairs in the test set.
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4.1 HPUPatches dataset

The three network models were first trained using a subset of the
HPUPatches-train, and then the performances of the three models were tested
using a subset of the HPUPatches-test. The results of the CS S-Net, CS PS-Net,
and CS 2-Channel-Net models regarding the performance indicator FPR95 are
presented in Fig. 3. As presented in Fig. 3, the CS 2-Channel-Net achieved the
best performance. This demonstrates the importance of the direct combination of
the information from the two patches from the first network layer, and the
importance of the multi-resolution information on the line description task. The
results obtained by the CS PS-Net were comparable to those of the CS S-Net.

0.035
0.03 | CS S-Net
CS PS-Net
0.025 F —#— CS 2-Channel-Net
& 002 F
&
= 0.015 f
0.01 F K
0.005 f
0 . . .
1 2 3 4 5 6
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Fig. 3. Experimental results of the CS S-Net, CS PS-Net, and CS 2-Channel-Net models regarding
the performance indicator FPR95.

4.2 Oxford dataset

The Oxford dataset [19], which is a standard dataset, was used to evaluate
the generalization capabilities of the three network models. The CS S-Net, CS PS-
Net, and CS 2-Channel-Net were evaluated on seven sets of image sequences:
Bikes (blur change), Graffiti (viewpoint and rotation combination change),
Leuven (illumination change), Ubc (JPEG compression change), Wall (viewpoint
change), Trees (blur change), and Boat (rotation and scale combination change).
There are six images in each group of image sequences, and the last five images in
each group had different degrees of changes compared with the first image. The
performance of the CS S-Net, CS PS-Net, CS 2-Channel-Net, and the existing
advanced handcrafted methods were evaluated by matching the last five images in
each set of image sequences to the first image.

The handcrafted descriptors used in the comparison were the MSLD [9]
and the IOCD [11]. The comparison results regarding the mAP are presented in
Fig. 4. For a fair comparison, all methods were adjusted to have the same number
of feature lines. As presented in Fig. 4, the CS S-Net, CS PS-Net, and CS 2-
Channel-Net achieved the best matching performance; they performed
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significantly better than the MSLD and 10CD especially under the conditions of
changes in the blur (Bikes and Trees), viewpoint (Graffiti and Wall) and rotation
and scale combination (Boat). The results of the total number of positive samples
recalled in seven sets of image sequences are presented in Table 1, where it can be
seen that the CS S-Net, CS PS-Net, and CS 2-Channel-Net achieved a significant
increase in the total number of positive samples recalled compared to the other
handcrafted descriptors.

1.0000
0.9000 |
0.8000 |
o 07000
<0.6000 [
T 0.5000 }
0.4000 |
0.3000 |
0.2000
Bikes Graffiti Leuven Wall Trees Boat Average
CS 2-Channel-Net ®CS PS- Net CS §-Net WMSLD ®=IOCD
Fig. 4. Experimental results of the mAP on the Oxford dataset.
Table 1
Results of the total number of positive samples on the Oxford dataset
Bikes | Graffiti | Leuven | Ubc Wall Trees Boat All
CS PS-Net 416 248 516 357 58 99 256 | 1950
CS S-Net 416 241 512 356 58 99 256 | 1938
CS 2-Channel-Net | 415 238 517 357 58 99 254 | 1938
MSLD 364 171 480 329 52 79 184 | 1659
I0CD 352 234 501 320 56 85 219 | 1767

4.3 Other dataset

In order to further prove the generalization capabilities of the CS S-Net,
CS PS-Net and CS 2-Channel-Net networks, a dataset consisting of four sets of
image sequences from the traditional handcrafted line feature description article
[10], which includes changes in the viewpoint, scale, low texture, and occlusion,
was used. The comparison results of the mAP are presented in Fig. 5, where it can
be seen that: 1) in terms of viewpoint and scale changes, the performances of the
proposed models were significantly better than those of the MSLD and I0CD; 2)
when the dataset HPUPatches-train did not contain occlusion and low-texture
changes, the proposed models were superior to the MSLD and IOCD in the case
of low-texture changes; and under the condition of occlusion change, the CS S-
Net, CS PS-Net, and CS 2-Channel-Net were superior to the MSLD and
comparable to the IOCD. The line matching results of the proposed descriptors for
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four pairs of images at NNDR of 0.8 are presented in Fig. 6. The results presented
in Fig. 6 further prove the effectiveness of the proposed descriptors.
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Fig. 5. Results of different models for various image changes in the dataset provided in the
traditional handcrafted line feature description article [10].
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Fig. 6. The matching results of the CS S-Net, CS PS-Net, and CS 2-Channel-Net descriptors.
5. Conclusion

In this paper, it is shown how the line feature description functions can be
leaned directly from image patches, which are encoded in the form of a fully
convolutional model. Three neural network architectures that are suitable for this
task are studied. Due to the lack of the existing training samples, transfer learning
is adopted to develop three neural network architectures suitable for line feature
description tasks by fine-tuning the L2-Net model pre-trained on the Liberty
dataset. Moreover, it is demonstrated that the developed models outperform two
popular handcrafted descriptors on several standard datasets, especially in the
presence of significant changes in the blur, viewpoint, rotation, and scale. Among
the three developed networks, the CS 2-Channel-Net network architecture
achieved the best results. However, these three network architectures are sensitive
to occlusion changes, so our future work will include the study on occlusion
invariance.
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