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REVERSIBILITY AND IRREVERSIBILITY IN PHYSICAL 
SYSTEMS 

Mircea STAN1 

Se propune o abordare sistematică a reversibilităţii şi ireversibilităţii temporale 
în sistemele fizice. Din acest punct de vedere sunt apoi analizate, pe baza unui 
formalism simplu, unele mărimi şi legi de evoluţie din diferite domenii ale fizicii 
(mecanică clasică şi cuantică, electrodinamică, etc.). 

This paper deals with a systematic approach to the study of temporal 
reversibility and irreversibility in physical systems. Using a simple formalism, 
several physical quantities and kinetic laws are then checked in some domains 
(classical and quantum mechanics, electrodynamics, et al.) through this point of 
view. 

Keywords: reversibility, irreversibility, time - reversal operator, symmetrical and 
anti-symmetrical quantity 

1. Introduction 

There are many papers linked to the problem of reversibility and 
irreversibility in physical systems [2, 4, 6]. Generally this problem is connected to 
the behavior of a kinetic equation to the time - reversal operation tt −→ . A 
reversible evolution is proved by the invariance of a kinetic equation in respect 
with the time reversal operation. 

One considers that mechanical kinetics are reversible, while the statistical 
evolutions are irreversible, although some irreversible features are involved in the 
last case, too [2, 5]. 

Another distinction may be amphasized between classical and quantum 
systems. In quantum systems we must distinguish between a deterministic - 
reversible behavior (described by the Schrödinger equation) and a probabilistic - 
irreversible kinetics. The quantum irreversibility is due to the measuring process 
which converts into a statistical mixture of states, the initial coherent state. A 
number of theories and models have been developed to prove several selection 
rules which forbids a coherent superposition of some macroscopically states       
[1, 3]. The main purpose of these "dechoerence models" is to explain the passing 
from a microscopic reversible kinetics to a macroscopic irreversible behavior [3, 7]. 
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This paper proposes a systematic path to establish the feature of a kinetic 
law, based on a time-reversal operator. Some particular situations are than 
investigated. 

2. The Time - Reversal Operator in Classical Physics 

Let it ( )tpqAA ,,=  a physical quantity depending only by the spatial 
coordonates ( )q , generalized moment a ( )p  and time ( )t . We shall define now 
the time - reversal operator R̂ , by 

 { }tttpppqqqR −=→−=→=→≡ ',','ˆ .   (1) 
Some properties of this operator are obviously accordingly (1): 
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The R̂  operator is therefore a linear one. The eigenvalue equation for R̂  is then 
  aAAR =ˆ . 
Obviously, by applying once more the R̂  operator we return to the initial state. 
  ( ) AAaARaaARAR ==== 22 ˆˆˆ , 
therefore 1±=a . If AAR =ˆ , we shall denote A as a symmetrical quantity; if 

AAR −=ˆ , we shall call A an antisymmetrical quantity (by reference to the time 
reversal operator). 
 More generally, let it be now; 
  ( )tAAAAA n ,,...,, 21=  
a physical law, with nAAA ,...,, 21  physical quantities depending on pq,  and t. If 

  ( ) AtARARARAAR n == ,ˆ,...,ˆ,ˆ'ˆ 21  

we shall call A a symmetrical function. If AAR −=ˆ , the A is antisimetrical. 
 For example, in the classical mechanics, according to the time uniformity 
and to the space isotropy, the Lagrangian ( )qp,L  and the Hamiltonian ( )qp,H  

must be symmetrical. It follows that the generalized force 
i

i q
LF

∂
∂

−=  is 

symmetrical. In particular, the symmetry of the Lorentz force ( )BveF ×=  
implies BBR −=ˆ , therefore the induction B  is an antisymmetrical quantity. In 
the electrical force EeF = , the electrical vector E  must be symmetrical too. 
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 3. Reversibility in Physical Kinetic Laws 

 We shall refer now to a physical kinetic law described by the equation*: 

  ( ) ( ) ( ) 0,,,
00

=+
∂

∂
+

∂

∂ ∑∑
==

tqc
q

Atqb
t
Atqa p

pk

p
p

n

i
i

i
i .  (3) 

 We consider that such an equation is general enough to cover the most 
cases of physical interest. 
 By applying the R̂  operator, we find 
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where ARA ˆ* = . 
 Two situations occur: 
a) AA =*  i.e. A is symmetrical. In this case the equations (3) and (4) are identical 
in the following situations: 
 )α  i even and cba pi ,,  symmetrical; 

 )β  i odd; cbp ,  symmetrical and c antisymmetrical; 

 )γ  i odd; ia  symmetrical, pb  and c antisymmetrical. 

b) AA −=* , i.e. A is antisymmetrical. In this case (4) leads to  
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Equations (3) and (5) are the same if: 
 )α  i even; pi ba ,  antisymmetrical an c symmetrical; 

 )β  i even; pi ba ,  symmetrical an c antisymmetrical; 

 )γ  i odd; ia , c symmetrical, pb  antisymmetrical. 
 If one of these situations is fulfilled, the physical evolution described by 
equation (3) is named reversible. In the other situations, the evolution is 
irreversible. 
 We can therefore predict the nature of a physical equation solution, 
without solving the equation. The existence of a reversible evolution suggests a 
conservation law. Each conservation law implies a reversible evolution, but the 
reciprocal is not generally true. When A is conserved, it means that A is 
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symmetrical, indeed. The reversibility do not include always a conservation law, 
but can suggest such a conservation. 
 For illustration, we checked through the agency of this criterion some 
physical laws. 
 In classical mechanics, the laws are reversible when a dependence of odd 
powers of the velocity do not occur*. For example, the Newton, Lagrange or 
Hamilton equations are reversible. The wave equation in isotropic mediums is 
reversible, too. All these equations are of a α  type. 
 In relativity, we shall observe that the interval between two events is a 
symmetrical one. Also the Lorentz transformations are invariant to the time 
reversal operator, so they are reversible. 
 In the mechanics of continuous media, the Navier - Stokes equation is 
irreversible, while the Lamé or Euler equations are reversible. The conservations 
laws are always reversible, but the laws of transport phenomena are irreversible. 
 In electrodynamics, some laws (for example the magnetic flux law or the 
Gauss law) are reversible, while orders are irreversible (like Biot - Savart or 
Faraday laws). 

 4. Reversibility in Quantum Mechanics 

 In quantum mechanics, the problem of time reversibility requires a 
separate approach since the continuous or discontinuous evolutions are involved. 
 The continuous evolutions are described by Schrödinger equation (in the 
spin - coordonates representation): 

  ( ) ( ) ( )tsqspq
t

tsqi ,,ˆ,ˆ,ˆˆ,,
ψ=

∂
ψ∂ H ,    (6) 

with spq ˆ,ˆ,ˆ  operators corresponding to spq ,, . We shall now define the time-
reversal operator** R: 
  { }tttssspppqqqR −=→−=→−=→=→= ',',','ˆ . 
In the absence of an external magnetic field, the Hamiltonian Ĥ  is real and 
symmetric: 
  ( ) ( ) ( )spqspqspqR ˆ,ˆ,ˆˆ'ˆ,'ˆ,'ˆˆˆ,ˆ,ˆˆˆ HHH =−−= . 
The Schrödinger equation is therefore irreversible the wave function being 
symmetrical. It follows that: 
  ( ) ( )tspqPtspqP −−−= ,,,,,,  
namely the probability to find the quantum system in the spq ,,  state at t time is 
the same with the probability to find the system in spq −− ,,  state, at t−  time. 

                                                            
* Where such a dependence appears, the evolution is irreversible. 
** A similar transformation occurs for spq ˆ,ˆ,ˆ , i.e. qqq ˆ'ˆˆ =→ ; sssppp ˆ'ˆˆ;ˆ'ˆˆ −=→−=→ . 
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 For the discontinuous evolutions (transitions) induced by simultaneous 
action of a small perturbation and a measuring apparatus, there exists in the first 
degree of nonstationary theory of perturbation: 
  ( ) ( )α→βΠ=β→αΠ  
named sometimes microversibility formula [5]. Here ( )β→αΠ  is the transition 
probability from state α  (described by αψ  at αt  time) to a state β  (described by 

βψ  at βt  time): 

  ( ) ( )βββαααΠ=β→αΠ tpqtpq ,,,,, . 
 As the probability transitions do not depend explicitly to t, it results that 
Π  is symmetrical. 

 5. Statistical Irreversibility 

 The evolutions of real macroscopic systems are always irreversible. 
Generally, the statistical description of a macroscopic system can be performed in 
two ways: microstatistical and macrostatistical. 
 The microstatistical description utilizes as independent variables the ii pq ,  
coordonates and moment of all particles. The macrostatistical needs a smaller 
number of variables (macrovariables) nααα ,...,, 21  obtained by a coarse graining 
average in the phase space of some microscopic correspondend values [2, 5]. 
Since the coarse graining average do not carry of the statistical feature of the 

{ }nααα≡α ,...,, 21  variables, we can introduce for α  a distribution probability 
( )tP ,α  and also a transition probability ( )','|, ttW αα . 

 For markovian systems, P verifies the master equation [4]: 

  ( ) ( ) ( ) ( ) ( )[ ] 'd|','|,',
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is the transition probability per unit of time. 
 Using the Kramers - Moyal expansion it is possible to transpose the master 
equation into a purely differential equation (the Fokker - Planck generalized 
equation) [2, 5]: 
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  ( ) ( ) ( ) ( )αΔααΔ+ααΔ≡αΔ ∫ d|wnn . 

 In the second order of approximation, equation (8) leads to the main 
Fokker - Planck equation: 
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 We checked the behavior of these equations to the time reversal operator: 
  { }tttR −=→α=α→α= ',' . 
 Since ( )αα |'w  is time independent, it follows that wwR =ˆ . The 
probability ( )tP ,α  must be also symmetrical ( )PPR =ˆ  because a negative 
probability has no sense. Therefore (8) and (9) are reversible. This result is in 
agreement with other authors who studied the same problem [2, 5]. 
 Although the equation for ( )tP ,α  is reversible, the evolution of the 
observed macrovariables ( )tA  is irreversible in a macroscopic system. If we put 

  ( ) ( ) ( )∫ αα=α= tPttA ,  

one leads to a reversible law for ( )tA . In our opinion, this contradiction shows 
that the formula ( ) ( )ttA α=  is not generally true. We can put ( ) ( )ttA α=  only 
at equilibrium, in stationary case, or in a slowly relaxation processes. In the other 
situations the ergodicity of the systems is not fulfilled and the pass from 
macrostatistical variables to observed macrovariables, involves perhaps an 
additional time average. This question nevertheless needs a different approach. 

6. Conclusions 

 1. A time - reversal operator R̂  is introduced to check up the behavior of 
physical quantities and kinetic laws. With regard to this operator a physical 
quantity can be symmetrical or antisymmetrical while a kinetic law can be 
reversible as irreversible. 
 2. A reversible law suggests the existence of a conservation law. 
 3. Based on the proposed kinetic law (3), the reversibility of some 
individual physical systems is investigated. 
 4. In macrostatistical investigation of the macroscopic systems, a 
contradiction between the reversible character of the probability evolution and the 
irreversible character of the evolution of macrovariables occur. This suggests that, 
generally, the macrovariables are not purely statistical averages of some 
corresponding fluctuating quantities. 
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