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REVERSIBILITY AND IRREVERSIBILITY IN PHYSICAL
SYSTEMS

Mircea STAN'

in sistemele fizice. Din acest punct de vedere sunt apoi analizate, pe baza unui
Sformalism simplu, unele marimi §i legi de evolutie din diferite domenii ale fizicii
(mecanicd clasica si cuanticd, electrodinamica, etc.).

This paper deals with a systematic approach to the study of temporal
reversibility and irreversibility in physical systems. Using a simple formalism,
several physical quantities and kinetic laws are then checked in some domains
(classical and quantum mechanics, electrodynamics, et al.) through this point of
view.
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1. Introduction

There are many papers linked to the problem of reversibility and
irreversibility in physical systems [2, 4, 6]. Generally this problem is connected to
the behavior of a kinetic equation to the time - reversal operation t — —¢. A
reversible evolution is proved by the invariance of a kinetic equation in respect
with the time reversal operation.

One considers that mechanical kinetics are reversible, while the statistical
evolutions are irreversible, although some irreversible features are involved in the
last case, too [2, 5].

Another distinction may be amphasized between classical and quantum
systems. In quantum systems we must distinguish between a deterministic -
reversible behavior (described by the Schrodinger equation) and a probabilistic -
irreversible kinetics. The quantum irreversibility is due to the measuring process
which converts into a statistical mixture of states, the initial coherent state. A
number of theories and models have been developed to prove several selection
rules which forbids a coherent superposition of some macroscopically states
[1, 3]. The main purpose of these "dechoerence models" is to explain the passing
from a microscopic reversible kinetics to a macroscopic irreversible behavior [3, 7].
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This paper proposes a systematic path to establish the feature of a kinetic
law, based on a time-reversal operator. Some particular situations are than
investigated.

2. The Time - Reversal Operator in Classical Physics

Let it A= A(q, p,t) a physical quantity depending only by the spatial
coordonates (¢), generalized moment a (p) and time (¢). We shall define now
the time - reversal operator R, by

R=lg—>q'=q.p > p'=—pt >1=-1}. (1)
Some properties of this operator are obviously accordingly (1):
RC=C (C=ct)
R(CA)= CRA
R(4; + 4y)= RA; + R4, 2
R(414y) = RA\R4,.
The R operator is therefore a linear one. The eigenvalue equation for R is then
RA=aA.
Obviously, by applying once more the R operator we return to the initial state.
R*A=R(ad)=aRA=a’4= 4,
therefore a=+1. If RA= A, we shall denote 4 as a symmetrical quantity; if

A

RA=—-A, we shall call 4 an antisymmetrical quantity (by reference to the time
reversal operator).
More generally, let it be now;
A= A4y, 4y,..., A, )
a physical law, with 4;, 4,...., 4, physical quantities depending on ¢, p and ¢. If
RA= 4(Ray, R4y ..., RAy 1) = 4
we shall call 4 a symmetrical function. If R4 = —4, the 4 is antisimetrical.
For example, in the classical mechanics, according to the time uniformity

and to the space isotropy, the Lagrangian L (p,q) and the Hamiltonian H (p,q)

. . L .
must be symmetrical. It follows that the generalized force F; __a is

0q;
symmetrical. In particular, the symmetry of the Lorentz force F = e(ﬁxg’)

implies RB =—B, therefore the induction B is an antisymmetrical quantity. In
the electrical force F = eF , the electrical vector £ must be symmetrical too.
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3. Reversibility in Physical Kinetic Laws

We shall refer now to a physical kinetic law described by the equation*:
n

i k p

S aila) =2+ 35, (0.0 4 clg.r)= 0. 3)
i=0 or 20 oq”

We consider that such an equation is general enough to cover the most
cases of physical interest.

By applying the R operator, we find

& igr Kk p4*
1 Yalen)

i=0 p=0

* A
where 4 =RA.
Two situations occur:

a) A =Adie Ais symmetrical. In this case the equations (3) and (4) are identical
in the following situations:
o) ievenand a;,b psC symmetrical;

B) iodd; b,,c symmetrical and ¢ antisymmetrical;

Y) i 0dd; a; symmetrical, b, and ¢ antisymmetrical.

b) A =-4 , 1.e. 4 is antisymmetrical. In this case (4) leads to
(_ l)l-HZai(q’_z) T pr(qa_z)_+c(q,_t)=0 . (5)

Equations (3) and (5) are the same if:
o) ieven; a;,b » antisymmetrical an ¢ symmetrical,;

P) ieven; a;,b, symmetrical an ¢ antisymmetrical;
y) i odd; a;, ¢ symmetrical, b, antisymmetrical.

If one of these situations is fulfilled, the physical evolution described by
equation (3) is named reversible. In the other situations, the evolution is
irreversible.

We can therefore predict the nature of a physical equation solution,
without solving the equation. The existence of a reversible evolution suggests a
conservation law. Each conservation law implies a reversible evolution, but the
reciprocal is not generally true. When A4 is conserved, it means that 4 is

" For simplification, the p dependence of 4 was omitted.
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symmetrical, indeed. The reversibility do not include always a conservation law,
but can suggest such a conservation.

For illustration, we checked through the agency of this criterion some
physical laws.

In classical mechanics, the laws are reversible when a dependence of odd
powers of the velocity do not occur . For example, the Newton, Lagrange or
Hamilton equations are reversible. The wave equation in isotropic mediums is
reversible, too. All these equations are of a a type.

In relativity, we shall observe that the interval between two events is a
symmetrical one. Also the Lorentz transformations are invariant to the time
reversal operator, so they are reversible.

In the mechanics of continuous media, the Navier - Stokes equation is
irreversible, while the Lamé or Euler equations are reversible. The conservations
laws are always reversible, but the laws of transport phenomena are irreversible.

In electrodynamics, some laws (for example the magnetic flux law or the
Gauss law) are reversible, while orders are irreversible (like Biot - Savart or
Faraday laws).

4. Reversibility in Quantum Mechanics

In quantum mechanics, the problem of time reversibility requires a
separate approach since the continuous or discontinuous evolutions are involved.

The continuous evolutions are described by Schrodinger equation (in the
spin - coordonates representation):

. 8 ) ,l (6 » &
Zh%: H(qapas)\v(q’s’t)’ (6)

with ¢, p,§ operators corresponding to ¢, p,s. We shall now define the time-
reversal operator  R:

R= {q —q'=q,p > p'=—p,s >§'=—s,t >t'= —t}.
In the absence of an external magnetic field, the Hamiltonian H is real and
symmetric:

R HA(éaﬁﬂﬁ): HA(é'a_ﬁ"_*e’): HA(‘i:ﬁ,*e)
The Schrodinger equation is therefore irreversible the wave function being
symmetrical. It follows that:

P(qa p,S,l) = P((],—p,—s,—l)
namely the probability to find the quantum system in the ¢, p,s state at ¢ time is
the same with the probability to find the system in ¢,—p,—s state, at —¢ time.

" Where such a dependence appears, the evolution is irreversible.
" A similar transformation occurs for §, p,§,ie. § >§'=4; p— p'=—p; § > §'=-§.
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For the discontinuous evolutions (transitions) induced by simultaneous
action of a small perturbation and a measuring apparatus, there exists in the first
degree of nonstationary theory of perturbation:

(o —B)=T1(8 - )
named sometimes microversibility formula [5]. Here H(oc - B) is the transition
probability from state o (described by y at 7, time) to a state B (described by

yp at 7g time):

H((l - B): H(qoppoutouqﬁapﬁat[})-
As the probability transitions do not depend explicitly to ¢, it results that
IT is symmetrical.

5. Statistical Irreversibility

The evolutions of real macroscopic systems are always irreversible.
Generally, the statistical description of a macroscopic system can be performed in
two ways: microstatistical and macrostatistical.

The microstatistical description utilizes as independent variables the g;, p;

coordonates and moment of all particles. The macrostatistical needs a smaller
number of variables (macrovariables) a,o,...,0, obtained by a coarse graining
average in the phase space of some microscopic correspondend values [2, 5].
Since the coarse graining average do not carry of the statistical feature of the
o= {(xl,a 2 ey O n} variables, we can introduce for o a distribution probability
P(o,¢) and also a transition probability (o, z|a',').
For markovian systems, P verifies the master equation [4]:
OP(o., ¢
L) _ [ [por.awfa @)~ Hooplal alder, )
t
where
. Wla,t|a',t
w((x'| oc) = lim —( | )
t'—>t 't
is the transition probability per unit of time.
Using the Kramers - Moyal expansion it is possible to transpose the master
equation into a purely differential equation (the Fokker - Planck generalized

equation) [2, 5]:
el SN S )] o

n=1
with
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<(Aa)"> - j (Ac) w(o+ A | o) d(Acr).

In the second order of approximation, equation (8) leads to the main
Fokker - Planck equation:

et) 2 pfanfaal)d S Panf(oal)]. O

We checked the behavior of these equations to the time reversal operator:
R= {a —a'=a,t o t'= .

Since w(a'|a) is time independent, it follows that Rw=w. The

probability P(c,z) must be also symmetrical (RP:P) because a negative

probability has no sense. Therefore (8) and (9) are reversible. This result is in
agreement with other authors who studied the same problem [2, 5].
Although the equation for P(o,¢) is reversible, the evolution of the

observed macrovariables A(z‘) is irreversible in a macroscopic system. If we put

Alt)=(a(t)) = j aP(a,t)

one leads to a reversible law for A(t). In our opinion, this contradiction shows
that the formula A(t)=(a(t)) is not generally true. We can put A(t)=(a()) only

at equilibrium, in stationary case, or in a slowly relaxation processes. In the other
situations the ergodicity of the systems is not fulfilled and the pass from
macrostatistical variables to observed macrovariables, involves perhaps an
additional time average. This question nevertheless needs a different approach.

6. Conclusions

1. A time - reversal operator R is introduced to check up the behavior of
physical quantities and kinetic laws. With regard to this operator a physical
quantity can be symmetrical or antisymmetrical while a kinetic law can be
reversible as irreversible.

2. A reversible law suggests the existence of a conservation law.

3. Based on the proposed kinetic law (3), the reversibility of some
individual physical systems is investigated.

4. In macrostatistical investigation of the macroscopic systems, a
contradiction between the reversible character of the probability evolution and the
irreversible character of the evolution of macrovariables occur. This suggests that,
generally, the macrovariables are not purely statistical averages of some
corresponding fluctuating quantities.
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