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LOCALITY AND SYMMETRY IN INTERCONNECTING

Cristian LUPU', Tudor NICULIU?

Localitatea este comportamentul (auto-organizare structurala) a unei
colectivitati in jurul unei origini. Localitatea de grup este comportamentul unei
colectivitati determinat de anumite proprietati de grup, de exemplu simetriile unor
figuri plane finite. Localitatea de grup este un alt punct de vedere asupra localitatii.
Exprimand interconectarea ca model de colectivitate, demonstram ca dihotomia
localite-globalite acopera matematic unul dintre intelesurile structurale ale
colectivitatii: local si global, adica, un potential structural al dinamicii
colectivitatii, sau o auto-organizare structurald a unei colectivitati.

Locality is the behavior (structural self-organization) of a collectivity around
an origin. Group locality is a behavior of a collectivity determined of certain group
properties, e.g., symmetries of finite plane figures. Group locality is another point of
view on the networks locality. Expressing the interconnection as collectivity model
we prove that the dichotomy locality-globality covers mathematically one of the
structural meanings of the collectivity.: local and global, i.e., a structural potential
of a collectivity dynamics, or a structural self-organization of a collectivity.
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1. Introduction. Structure and Collectivity

A complexity system modelling means the perception of a self-
organization of the system and the proper modelling. “To perceive a complex”,
said Wittgenstein in [1], “means to perceive the relations of its constituent parts in
a determined way”. One of nature’s characteristics is the collectivity. Professor
Moshe Sipper said: “during the past few years a new wind swept, slowly changing
our fundamental view of computers. We want them, of course, to be faster, better,
more efficient, and proficient at their tasks. More interesting, we are trying to
imbue them with abilities hitherto found only in nature, such as evolution,
learning, development, growth, and collectivity [2].

We can observe collectivities in the not living world (universe galaxies,
solar systems, crystalline units) as in the living world (ant hills, bee swarms,
nations). What properties are behind the relations who tie the collectivities?
Maybe is the gravity, the symmetry or the survival instinct? In a word, it is the
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structural  self-organization. The self-organization can be structural and
functional. Our article refers to the structural self-organization applied to the
interconnected collectivities. First let us define the collectivity. Therefore we must
answer to another question: what is a set? A set “can be selected by a membership
or by a relation which substantiate the membership or by bringing in the set field
elements which fulfil the relation” [3]. Because Bourbaki names “collectivizing
relation” the relation defining a set, we name collectivities only the sets selected
or built by the help of the relations. Therefore, we exclude the sets selected by the
membership, the most general. A collectivity means not a set made, for example,
of a star, a planet, a crystal, an ant, a bee and a man. The relation that substantiates
the membership of a collectivity is connected with its structure: a collectivity is
made of the least structural entities; e.g., an interconnection means nodes and
links, equivalent to the graph definition. In this paper we try to begin to study the
collectivities by the help of the concepts of structure - locality and architecture -
globality. The architecture is a connection concept between the structure and the
function. We start by defining the concept of structure [4]: the word is inherited
from Latin that contains structura - building, and struere - to build, with the past
participle structus. The connection between parts - first meaning - is something
less necessary, less outlined, more approximately, more vaguely and more
generally than the total interdependence system of each part with all other parts -
second meaning. The architecture measures by the degree of membership to
global properties. The symmetry is a global property. Helping the interconnection
as a collectivity model we try to prove that the dichotomy locality-globality
covers mathematically one of the structural meanings of the collectivity: the
localization and the globalization, i.e. a structural potential of a collectivity
dynamics, or a structural self-organization of a collectivity.

2. Interconnection as a Collectivity Model

A geometric figure remains itself even represented in other coordinate
system, decreased, enlarged, color modified. This invariance of transposing is an
isomorphism. The linguistic researchers contribute resolutely to the understanding
and to the using of the structure concept unifying both meanings: the coherent,
coagulated globality and the relations system between local parts or, in few words,
the globality and the locality. This step in the evolution of the structure term
opens a path to the identification between structure and essence of an object or a
phenomenon. Wittgenstein writes in 7ractatus “the manner in which the objects
depend some on the others in the state of affairs constitutes the structure of the
state of affairs”.

Therefore, the structure of a collectivity can be self-organized /ocally and
globally, e.g., an interconnecting structure estimates locally by neighbourhoods.
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Thus, locality is the behavior (structural self-organization) of a collectivity around
an origin. The origin can be temporal or spatial. The locality definition refers to
the first meaning of the structure concept (the connection between parts).

Globality is the behavior (structural self-organization) of a collectivity
around a property, e.g., the interconnections can be estimated and designed by the
help of the symmetry properties. The globality definition concerns to the second
meaning of the structure concept at which referred Wittgenstein - total
interdependence system of each part with all others. On the other hand, the
collectivity architecture, a connection concept between the structure and the
function, gives a global meaning to the collectivity with the aim to better
understand the connection between the structure and the function of the
collectivity. Thus, we speak of the universe -, system -, house -, town -, computer
-, or interconnecting -, communication architecture. Architecture measures by the
degree of membership to global properties.

The symmetry is a global property. Helping the interconnection as a
collectivity model we try to prove that the dichotomy locality-globality covers
mathematically one of the structural meanings of the collectivity: the localization
and the globalization, i.e. a structural potential of a collectivity dynamics, or a
structural self-organization of a collectivity. The interconnections made of N
nodes and L links model very well, in the sense given by Wittgenstein to the
perception of structural self-organization, a collectivity. The nodes are the
members of the collectivity that are tied by links - interconnected collectivities;
they do not limit at sets with the same type of nodes - resulting collectivities with
non homogenous nodes, and/or at sets with the same type of links - resulting
collectivities with non homogenous links. What is certain is that structural entities
forming the collectivity are interconnected one way or another. We limit, without
losing too much of generality, to the orthogonal interconnections or orthogonal
collectivities. Any number N can be represented as a product of whole numbers,
N=m,m,.;-...m;, 1.e.,to each node of an interconnection we can associate an
address X with r digits, 0 < X < N-1. We present some orthogonal interconnections
as collectivities, i.e. sets selected or built by relations.

A generalized hypercube, GHC, is an orthogonal collectivity with
N=m, m,.;...m; nodes interconnected in » dimensions. In every dimension i of a
collectivity the m; nodes are interconnected all by all. The relation which
establishes the interconnection of N nodes all by all is: the nodes addressed by X
= (Xy Xp-1 ... Xi+1 X; X1 ... X1) are connected addressed by X' = (x, x,-1 ... Xj+1 X Xi1 ...
x1), where 1 <i<r, 0<x'7<m;— 1 and x'; # x;. The hypercube, HC, is a GHC with
N = m'. The binary hypercube, BHC, is a HC with N = 2" nodes, and the
completely connected structure}, CCS, is another HC with N = m nodes.

A generalized hypertorus, GHT (Fig. 1), is another orthogonal collectivity
with N=m, m,;-...m; nodes interconnected in » dimensions. In every dimension i,
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1 <i<r, the m; nodes are “collectivized” in a torus. The relation which establishes
the r tori of GHT collectivity is: nodes addressed by X = (x, x,-1..x;+1 X; Xi-1..X1) are
connected with the nearest neighbor nodes addressed by X' = (x,x,-1..x;+1x'X1.1..X1),
1 <i<r, x'=| xzxl|lmodulo m,. Hypertorus, HT, is a GHT with N = m" nodes, and
torus, T, is a HT with N=m nodes. BHC can be and HT with N=2" nodes.

A generalized hypergrid, GHG, is, also, an orthogonal collectivity having
N=m,m,_;*...m; nodes interconnected in » dimensions. In every dimension the m;
nodes are being collectivized in a chain, or, better said, every node X is connected
in a grid with the nodes addressed by X' = (x, x,-1 ... Xj+1 X Xi1 ... X1), X7 = x; £ 1]
xiz0andx;#m;— 1;x = x;+ 1] x;=0;x= x;-1| x;=m; -1, for 1 <i<r. The
hypergrid, HG, is a GHG with N = m" nodes. The chain, C, is a HG with N=m. A
binary hypercube can be, also, a hypergrid with N = 2" nodes.
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Fig. 2. An interconnected collectivity having a structure of GHS

Figures 1 and 2 represent two examples of simple associations in
collectivity modeled by a homogenous interconnection, respectivelyby a non-
homogenous interconnection. At homogenous regular interconnections, as the
GHC or HT, the origin position - point of view, does not matter. The collectivities
that they model are spherical. The diameter is the same, doesn’t matter the point
of view. At irregular networks, as GHG and other non-homogenous
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interconnections, e.g. GHS, it matters where the position of the origin is, it matters
the point of view. The “structural” behavior around the origin at the collectivities
modeled by these interconnections is not spherical anymore.

GHC, GHT and GHG are collectivities represented as homogenous at links
interconnections or homogenous interconnections (the collectivities are
homogenous at nodes, also; this paper does not refer to the non homogeneity at
nodes). Most generally, the non homogenous collectivities can be represented as
non homogenous (at links) interconnections. Examples of non homogenous
collectivities are the collectivities represented by generalized hyper structures,
GHS, [5]. A GHS (Fig. 2) is an orthogonal collectivity with N=m, m,;-...m; nodes
interconnected in » dimensions and in which every node X is collectivized
(connected) in every dimension i, 1 < i < r, to the nodes addressed by a

.. . . k; .
collectivizing (interconnecting) vector (Uj:IX v ) = (Xp Xyl wor Xig1 X Xi] oen X1).

(U;X v ) specifies that a node of GHS is connected (non homogenous) by a

vector of elementary collectivizing structures instead of a single structure in the
homogeneous collectivities. This is non homogeneity at links of GHS specified by
the collectivizing vector having, on the one hand, » elements, and on the other
hand, k;, 1 <i < r, elementary collectivizing structures (homogenous) for which

are specified the unions (U;X ¥ ), j=1,2, ..., k. So, XU are homogeneous

elementary structures, like tori, grids, and chains, and must not be disjoint for a
dimension.

Why does the origin position matter? The structural non-homogeneity of
an association in a collectivity from an origin is equivalent to a functional
potential. E.g., the more numerous and more varied the links in an interconnected
collectivity from a point of view - an origin - are, the more sophisticated, more
adaptable at a demand, or more self-organized the functions are The
interconnected collectivities, non-’homogenous, can be appreciated, initially, by
two general measures: locality and globality [6].

3. Interconnection Locality

The term interconnection locality is used by Hillis when presented the
problems of memory allocation at Connection Machine [7]. He generalizes the
characteristic of physical locality of the memory, hidden to the programmer of
conventional von Neumann computers, and the characteristic of bidimensional
physical locality in the implementation of the integrated circuits technology.

We consider the interconnection locality to be classified firstly structural
(topological), and, secondly, functional [5]. Therefore, the locality of the
interconnected collectivity will be defined by two localities: a structural locality
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and a functional locality. The structural localities can be appreciated, measured,
by neighborhoods. The neighborhoods can be classified as surface (radial)
neighborhoods and volume (spherical) neighborhoods. The surface neighborhood
of an interconnected collectivity is the number of nodes at a distance d, SN,(O) =
N4(O), where O 1is the origin chosen arbitrarily. The volume neighborhood is
VNd(O)ZZizlde(O). The structural locality can be evaluated analytically by
neighborhoods. Another more synthetical measure of the structural locality is the
diameter: at the same number of nodes, the smaller diameter corresponds to the
greater structural locality. A problem is: neighborhoods and the diameters depend
on the origin positions. At homogenous regular interconnected collectivity, as the
generalized hypercubes or hypertori, the origin position does not matter. At
irregular interconnected collectivity, as the generalized hypergrids and other non-
homogenous interconnected collectivity, the origin position matters. The
topographic model presented in [5] helped us to study the description and the
behavior of the direct interconnected collectivity, homogenous and, especially,
non-homogenous. The structural locality is invariable information depending on
the interconnected collectivity topology. A functional point of view on
interconnection locality can take into consideration the message routing
distributions, ®o(d), where O is the origin and d is the distance. As the structural
locality, the functional locality measures also by neighborhoods: a functional
surface neighborhood, FSNjO)=®o(d)xN4«O), and a functional volume
neighborhood, FVNA0)=Y-1" ®o(i)xN{O). For the functional locality, there is
also a synthetic measure, the functional average distance. The surface and volume
neighborhoods and the diameter or the degree are analytical and synthetic
evaluation means of the intercommunication capability of interconnected
collectivity, measuring structural locality of the interconnected collectivity.

By functional neighborhoods and, indirectly, by functional average
distance, it expresses which part of the structural locality is used by
communication process implemented on the collectivity. In other words, the
functional neighborhoods and functional average distances express the functional
locality of interconnected collectivity. Obviously, for a given network, SN, = FSN,
and VN; > FVN, The difference between the two types of neighborhoods
represents what we named the neighborhood reserve. The neighborhood reserve is
of surface, SNR; = SN; — FSN,, or of volume, VNR; = VN, — FVN,. Using the
neighborhood reserve, we introduced a design/evaluation criterion of a topology
by enunciating the following conjecture: The intercommunication structural
potential of an interconnected collectivity is optimally used in a communication
process characterized by a routing distribution @ if the neighborhood reserve is
minimal.

To evaluate the structural locality of an interconnected collectivity, besides
the neighborhoods and their reserves, we proposed a simple measure: the Moore
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reserve based on the Moore bound. The Moore bound is the maximum number of
nodes which can be present in a graph of given degree / and diameter D: Nysore=
=1+I(((I-1)"-1)/(I-2)). The bound is deduced from a complete I-tree with
diameter D and is an absolute limit for a diametrical volume neighborhood,
VN4(O)=%-1°NAO), in any graph/ network of | degree, D diameter. Except the
complete /-ary trees, this bound is rarely reached. Therefore, we compute for the
direct interconnection a network how far is this bound: the farther away Moore
bound the structural locality properties are worse. We implement this by the
Moore reserves. The surface Moore reserve is the difference between the number
of nodes at distance d in a corresponding Moore tree - degree in considered
network, and the surface neighborhood in considered network: SMR,;=I(I-1 )
'_N,. The Moore reserve is the difference between the Moore bound at the
distance d and the volume neighborhood: MR;=Nysore(d)—VN,.

4. Group Locality

Any interconnected collectivity, in the meaning of communications
maintenance or connectivity, is more secure if it is more symmetrical. On the
other hand, one of the most important properties of any physical space structure is
the symmetry. The transformation that keeps the structure of the space is named
automorphism. Giving a space configuration, a structure, a form, an
interconnection, we can emphasize a set of space automorphisms, which leave
unchangeable this interconnection. Thus, the emphasizing automorphisms form a
group/ subgroup, which describes precisely the symmetry of giving configuration.
The amorphous space has a total symmetry corresponding to the group of all
automorphisms. The symmetry of an interconnection will be described, as we
have told, by a subgroup of all automorphisms. The total symmetry of the space
defined by n points (nodes, permutations) will be described by S,;, while a partial
symmetry is expressed by a subgroup of permutations. Therefore, symmetrical
groups S,; model the symmetry of a space defined by » nodes and inversely. The
total symmetry of a space is represented by a total interconnection, a completely
connected structure with n!/ nodes. To define the locality by group properties, we
give as first referencing examples the physical symmetry characteristics of some
plane figures. A plane figure can have as constitutive symmetries only the
identity, rotation, translation, reflection and reflection-translation.

A rectangle has four symmetries: the identity transformation, /; the two
reflections S; and S, vs. non-parallel sides perpendicular bisectors, As; and As;
the rotation with 180°, R. The four automorphisms can be exemplified by a
rectangle interconnection, the vertexes of which are noted 1, 2, 3 and 4. With this,
we equate the symmetries of the rectangle with following permutations
(generators): I=(1 2 3 4), $i=(2 14 3), $»=(4 3 2 1) and R=(3 4 1 2). The four
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rectangle symmetries form a commutative group to the composition operation but,
equating them with permutations, we notice that these symmetries form only a
subgroup of the symmetric group of order 4, S4. The rectangle symmetries share
the symmetric group Sa in subgroups of four elements. The Cayley graph of these
subgroups, using as generators the symmetries (without /), is a completely
connected structure with 4 nodes, Fig. 3. The graph of this figure is vertex
symmetric as any Cayley graph. Let us notice that the subgroup of rectangle
symmetries can have other generators than all three symmetries, e.g., only R and
S1 (RS1:S1R:S2) or only R and Sz (RSZZSZR:Sl) or only Sl and Sz (SlSzzstlzR).
With these generators, we obtain other Cayley graphs: minimal rectangle
symmetries Cayley graphs, Fig. 4.

These graphs are Hamiltonian cycles in the complete Cayley graph of the
rectangle ymmetries.

I=(123 4 . SE=(4321)
51
R R
51
R=(3 412} 52 S1=(214%)

Fig. 3. Complete Cayley graph of rectangle

1 =1 51 1 52 3z 1 52 5z
E R R E 51 51
R 51 53 E Iz 51 351 53, R

Fig. 4. Minimal Cayley graphs of rectangle symmetries
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We can examine the symmetry properties of plane figures, which share the
symmetric groups Sy in different subgroups. In the Table 1 we give some figures
of which groups (subgroups) of symmetry Gs share symmetry groups Sy, where n
is the nodes number of the examined figure. As we see in Table 1, the (sub)groups
of symmetry of the plane figures, Gs, define a partial symmetry, more weak than
the complete symmetry defined by the corresponding symmetric groups S,. Gs
divides, shares S,; in more subgroups. The groups of symmetry generators action
is, generally, more local. The interconnections of the elements of a (sub)group
defined by the symmetries of a plane figure emphasize, in general, a certain
locality in comparison to the interaction globality which supposes the symmetry
of the group S,,;.

The sharing of the symmetric groups by the symmetries of some plane figuresTabZe §
Structure Group of symmetry Gg S, Sharing
Segment {L, S} |S21=(Gs|
Isosceles A {1, S} |S31[=3%|Gg|
Trigon {L Ry, Ry} IS31[=2x|Gs|
Equilateral A {I, R}, Ry, S, Sy, S5} [S311=|Gs|
Tetragon {L, Ri, Ry, R3} [S41]=6%|Gg|
Rectangle {I, Sy, Sy, R} |S41|=6x|Gg|
Square {LR,Ry, R;, S, T, U, V} [S41[=3%|Gg|
Pentagon {I, R;, Ry, R3, Ry, S, Sy, S5, Sy, Ss} | [Ssi|=12x%|Gg|

Group locality [5] is an interconnection (behavior, interaction, granularity)
of some nodes - sets of elements - determined by certain group properties. This
definition differs radically from (interconnection) locality definition used in this
paper and in other works, where the locality is understood first as neighborhood
[8]. While the old definitions of interconnection locality are based on logical
distances between the nodes of some structure and then on some structuring rules,
the definition given now to the locality is based on certain properties of
interconnection (sub)group of nodes, e.g., figure symmetries, which divide, share
the group (Sy1). A quantitative appreciation, a measure of group locality, which we
note L,, is given by the ratio of the symmetric group order and the group of
symmetries order used for dividing in subgroups; the minimum number of
interconnection symmetries is 2 - excluding the trivial case of a single symmetry —
1, consequently, the maximum group locality corresponding to (1), will be |S,,|/2.
The minimum group locality, L,=1, or the maximum globality (maximum granule),
is obtained when |S,,/|=|Gs|.

L,=[Sul/|Gs| (1)
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Table 1 shows the minimum locality is obtained for an interconnection of
two points, L,=1, and for an interconnection in an equilateral triangle, L;=1. The
maximum group locality, in the same table, is in the case of interconnection
through a pentagon, Ls=12. Group localities should be compared at the same
number of interconnecting nodes; e.g., the group localities of the tetragon and
rectangle are the same for they refer to the same symmetric group, S4, while we
can not say anything about group localities of isosceles triangle and square for
they refer to the different symmetric groups, S3; and Sy. In Table 1 there are
geometrical figures with the same number of symmetries, e.g. the rectangle and
tetragon, leading to the same group locality.

How we distinguish the interconnections that have the same L, or which of
the two figures is more symmetric? At this question, we answer giving another
example. The tetragon has other four symmetries: / identity and R;, R,, R;3
rotations, with 90°, 180° and 270°, in the same sense. To express these
symmetries as permutations we number constitutive triangles as in Fig.5: the
tetragon has the same number of symmetries as the rectangle but other properties
of symmetry. To represent the group of R;, R,, R3 we have extended the definition
of the graph Cayley to the directed Cayley graph. A directed Cayley graph is
made only of vertices and arcs. If the Cayley graph has edges, it will be named
mixed Cayley graph. For tetragon, the complete Cayley graph is mixed graph, Fig.
6. This graph is undirected only on diagonals and the generators R; and R; go
through the graph vertices in the opposite directions. In the group table of tetragon
symmetries we emphasize a single subgroup of order 2, {/, R,}, while among the
rectangle symmetries there are 3 such subgroups, {/, R}, {I, Si}, {/, S»}.

=(1234) RI=Z341) fE=pard =@123)

Fig. 5. Symmetries of a tetragon
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Fig. 6. Complete Cayley graph of tetragon symmetries

Now we can answer the question concerning symmetries of the figures
that have the same group localities, through a conjecture: a plane structure is
more symmetrical as the complete Cayley graph is more undirected. So, by using
the mixed Cayley graphs we introduce the possibility of symmetry measurements
(symmetric group locality): an interconnection structure is more symmetric as
mixed Cayley graph is more symmetric, i.e. it has more edges and fewer arcs.
Taking these into account, the symmetry can measure by S, given by ratio
between the number of edges of the mixed Cayley graph (NEycg), representing
the interconnecting structure, and the order of symmetrical subgroup Gs: S, =
NEwycg ! |Gs|. Asymmetry is the inverse of the symmetry. Table 2 shows some
symmetries/asymmetries of Table 1 figures, computed with the above formulas.
Symmetries S, and asymmetries 4S, can be compared for the same number of
nodes 7z (interconnection of S;,)).

Table 2.
Some plane figures symmetries and asymmetries

Structure Symmetry S, Asymmetry AS,

Segment S$,=1/2=0.5 AS,=2/1=2

Isosceles triangle S;=1/2=0.5 AS;=2/1=2

Tetragon S,~=2/4=0.5 AS=4/2=2

Rectangle S/~=6/4=1.5 AS,=4/6=0.66

5. Conclusion

Instead of relying on the logic distances between the nodes, we wanted to
design/evaluate a network based on the group properties. The group locality put
the properties, a constructive, synthetic principle, before the analytic principle of
distances, especially formulated for the interconnection locality. The logic
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distances “disappear” into the group locality, displaying the properties. Therefore,
the group locality is qualitatively a step forward to the interconnection locality
relying on logic distance. The interconnection locality principle helped us to
design/evaluate new non-homogenous interconnection networks, as generalized
hyper structures, and the group locality principle let us imagine new
interconnection paradigm based on symmetrical morphemes and ensembles. The
conclusion is: discovering the rules that govern the future interconnection
environment is a major challenge [9].
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