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LOCALITY AND SYMMETRY IN INTERCONNECTING 

Cristian LUPU1, Tudor NICULIU2 

Localitatea este comportamentul (auto-organizare structurala) a unei 
colectivităţi in jurul unei origini. Localitatea de grup este comportamentul unei 
colectivităţi determinat de anumite proprietăţi de grup, de exemplu simetriile unor 
figuri plane finite. Localitatea de grup este un alt punct de vedere asupra localităţii. 
Exprimând interconectarea ca model de colectivitate, demonstrăm că dihotomia 
localite-globalite acoperă matematic unul dintre înţelesurile structurale ale 
colectivităţii: local şi global, adica, un potenţial structural al dinamicii 
colectivităţii, sau o auto-organizare structurală a unei colectivităţi.  

Locality is the behavior (structural self-organization) of a collectivity around 
an origin. Group locality is a behavior of a collectivity determined of certain group 
properties, e.g., symmetries of finite plane figures. Group locality is another point of 
view on the networks locality. Expressing the interconnection as collectivity model 
we prove that the dichotomy locality-globality covers mathematically one of the 
structural meanings of the collectivity: local and global, i.e., a structural potential 
of a collectivity dynamics, or a structural self-organization of a collectivity.  
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1. Introduction. Structure and Collectivity 

A complexity system modelling means the perception of a self-
organization of the system and the proper modelling. “To perceive a complex”, 
said Wittgenstein in [1], “means to perceive the relations of its constituent parts in 
a determined way”. One of nature’s characteristics is the collectivity. Professor 
Moshe Sipper said: “during the past few years a new wind swept, slowly changing 
our fundamental view of computers. We want them, of course, to be faster, better, 
more efficient, and proficient at their tasks. More interesting, we are trying to 
imbue them with abilities hitherto found only in nature, such as evolution, 
learning, development, growth, and collectivity [2].  

We can observe collectivities in the not living world (universe galaxies, 
solar systems, crystalline units) as in the living world (ant hills, bee swarms, 
nations). What properties are behind the relations who tie the collectivities? 
Maybe is the gravity, the symmetry or the survival instinct? In a word, it is the 
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structural self-organization. The self-organization can be structural and 
functional. Our article refers to the structural self-organization applied to the 
interconnected collectivities. First let us define the collectivity. Therefore we must 
answer to another question: what is a set? A set “can be selected by a membership 
or by a relation which substantiate the membership or by bringing in the set field 
elements which fulfil the relation” [3]. Because Bourbaki names “collectivizing 
relation” the relation defining a set, we name collectivities only the sets selected 
or built by the help of the relations. Therefore, we exclude the sets selected by the 
membership, the most general. A collectivity means not a set made, for example, 
of a star, a planet, a crystal, an ant, a bee and a man. The relation that substantiates 
the membership of a collectivity is connected with its structure: a collectivity is 
made of the least structural entities; e.g., an interconnection means nodes and 
links, equivalent to the graph definition. In this paper we try to begin to study the 
collectivities by the help of the concepts of structure - locality and architecture - 
globality. The architecture is a connection concept between the structure and the 
function. We start by defining the concept of structure [4]: the word is inherited 
from Latin that contains structura - building, and struere - to build, with the past 
participle structus. The connection between parts - first meaning - is something 
less necessary, less outlined, more approximately, more vaguely and more 
generally than the total interdependence system of each part with all other parts - 
second meaning. The architecture measures by the degree of membership to 
global properties. The symmetry is a global property. Helping the interconnection 
as a collectivity model we try to prove that the dichotomy locality-globality 
covers mathematically one of the structural meanings of the collectivity: the 
localization and the globalization, i.e. a structural potential of a collectivity 
dynamics, or a structural self-organization of a collectivity. 

2. Interconnection as a Collectivity Model 

A geometric figure remains itself even represented in other coordinate 
system, decreased, enlarged, color modified. This invariance of transposing is an 
isomorphism. The linguistic researchers contribute resolutely to the understanding 
and to the using of the structure concept unifying both meanings: the coherent, 
coagulated globality and the relations system between local parts or, in few words, 
the globality and the locality. This step in the evolution of the structure term 
opens a path to the identification between structure and essence of an object or a 
phenomenon. Wittgenstein writes in Tractatus “the manner in which the objects 
depend some on the others in the state of affairs constitutes the structure of the 
state of affairs”.  

Therefore, the structure of a collectivity can be self-organized locally and 
globally, e.g., an interconnecting structure estimates locally by neighbourhoods. 
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Thus, locality is the behavior (structural self-organization) of a collectivity around 
an origin. The origin can be temporal or spatial. The locality definition refers to 
the first meaning of the structure concept (the connection between parts).  

Globality is the behavior (structural self-organization) of a collectivity 
around a property; e.g., the interconnections can be estimated and designed by the 
help of the symmetry properties. The globality definition concerns to the second 
meaning of the structure concept at which referred Wittgenstein - total 
interdependence system of each part with all others. On the other hand, the 
collectivity architecture, a connection concept between the structure and the 
function, gives a global meaning to the collectivity with the aim to better 
understand the connection between the structure and the function of the 
collectivity. Thus, we speak of the universe -, system -, house -, town -, computer 
-, or interconnecting -, communication architecture. Architecture measures by the 
degree of membership to global properties.  

The symmetry is a global property. Helping the interconnection as a 
collectivity model we try to prove that the dichotomy locality-globality covers 
mathematically one of the structural meanings of the collectivity: the localization 
and the globalization, i.e. a structural potential of a collectivity dynamics, or a 
structural self-organization of a collectivity. The interconnections made of N 
nodes and L links model very well, in the sense given by Wittgenstein to the 
perception of structural self-organization, a collectivity. The nodes are the 
members of the collectivity that are tied by links - interconnected collectivities; 
they do not limit at sets with the same type of nodes - resulting collectivities with 
non homogenous nodes, and/or at sets with the same type of links - resulting 
collectivities with non homogenous links. What is certain is that structural entities 
forming the collectivity are interconnected one way or another. We limit, without 
losing too much of generality, to the orthogonal interconnections or orthogonal 
collectivities. Any number N can be represented as a product of whole numbers, 
N=mr·mr-1·…m1, i.e.,to each node of an interconnection we can associate an 
address X with r digits, 0 ≤ X ≤ N-1. We present some orthogonal interconnections 
as collectivities, i.e. sets selected or built by relations. 

A generalized hypercube, GHC, is an orthogonal collectivity with 
N=mr·mr-1·…m1 nodes interconnected in r dimensions. In every dimension i of a 
collectivity the mi nodes are interconnected all by all. The relation which 
establishes the interconnection of N nodes all by all is: the nodes addressed by X 
= (xr xr-1 ... xi+1 xi xi-1 ... x1) are connected addressed by X' = (xr xr-1 ... xi+1 x'i xi-1 ... 
x1), where 1 ≤ i ≤ r, 0 ≤ x'i ≤ mi – 1 and x'i ≠ xi. The hypercube, HC, is a GHC with 
N = mr.  The binary hypercube, BHC, is a HC with N = 2r  nodes, and the 
completely connected structure}, CCS, is another HC with N = m nodes. 

A generalized hypertorus, GHT (Fig. 1), is another orthogonal collectivity 
with N=mr·mr-1·…m1 nodes interconnected in r dimensions. In every dimension i, 
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1 ≤ i ≤ r, the mi nodes are “collectivized” in a torus. The relation which establishes 
the r tori of GHT collectivity is: nodes addressed by X = (xr xr-1..xi+1 xi xi-1..x1) are 
connected with the nearest neighbor nodes addressed by X' = (xrxr-1..xi+1x'ixi-1..x1), 
1 ≤ i ≤ r, x'i=| xi±1|modulo mi. Hypertorus, HT, is a GHT with N = mr nodes, and 
torus, T, is a HT with N=m nodes. BHC can be and HT with N=2r nodes. 

A generalized hypergrid, GHG, is, also, an orthogonal collectivity having 
N=mr·mr-1·…m1 nodes interconnected in r dimensions. In every dimension the mi 
nodes are being collectivized in a chain, or, better said, every node X is connected 
in a grid  with  the nodes addressed by X' = (xr xr-1 ... xi+1 x'i xi-1 ... x1), x'i =  xi ± 1|  
xi ≠ 0 and xi ≠ mi – 1; x'i =  xi + 1|  xi = 0; x'i =  xi - 1|  xi = mi -1, for 1 ≤ i ≤ r. The 
hypergrid, HG, is a GHG with N = mr nodes. The chain, C, is a HG with N=m. A 
binary hypercube can be, also, a hypergrid with N = 2r nodes. 

 

 
Fig. 1. An interconnected collectivity having a structure of GHT 

 

 
Fig. 2. An interconnected collectivity having a structure of GHS 

 
Figures 1 and 2 represent two examples of simple associations in 

collectivity modeled by a homogenous interconnection, respectivelyby a non-
homogenous interconnection. At homogenous regular interconnections, as the 
GHC or HT, the origin position - point of view, does not matter. The collectivities 
that they model are spherical. The diameter is the same, doesn’t matter the point 
of view. At irregular networks, as GHG and other non-homogenous 
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interconnections, e.g. GHS, it matters where the position of the origin is, it matters 
the point of view. The “structural” behavior around the origin at the collectivities 
modeled by these interconnections is not spherical anymore.  

GHC, GHT and GHG are collectivities represented as homogenous at links 
interconnections or homogenous interconnections (the collectivities are 
homogenous at nodes, also; this paper does not refer to the non homogeneity at 
nodes). Most generally, the non homogenous collectivities can be represented as 
non homogenous (at links) interconnections. Examples of non homogenous 
collectivities are the collectivities represented by generalized hyper structures, 
GHS, [5]. A GHS (Fig. 2) is an orthogonal collectivity with N=mr·mr-1·…m1 nodes 
interconnected in r dimensions and in which every node X is collectivized 
(connected) in every dimension i, 1 ≤ i ≤ r, to the nodes addressed by a 
collectivizing (interconnecting) vector  ( )U ik

j
ijX

1=
 = (xr xr-1 ... xi+1 x'i xi-1 ... x1). 

( )U ik

j
ijX

1=
 specifies that a node of GHS is connected (non homogenous) by a 

vector of elementary collectivizing structures instead of a single structure in the 
homogeneous collectivities. This is non homogeneity at links of GHS specified by 
the collectivizing vector having, on the one hand, r elements, and on the other 
hand, ki, 1 ≤ i ≤ r, elementary collectivizing structures (homogenous) for which 
are specified the unions ( )U ik

j
ijX

1=
, j = 1, 2, …, ki. So, Xij  are homogeneous 

elementary structures, like tori, grids, and chains, and must not be disjoint for a 
dimension.  

Why does the origin position matter? The structural non-homogeneity of 
an association in a collectivity from an origin is equivalent to a functional 
potential. E.g., the more numerous and more varied the links in an interconnected 
collectivity from a point of view - an origin - are, the more sophisticated, more 
adaptable at a demand, or more self-organized the functions are The 
interconnected collectivities, non-/homogenous, can be appreciated, initially, by 
two general measures: locality and globality [6]. 

3. Interconnection Locality 

The term interconnection locality is used by Hillis when presented the 
problems of memory allocation at Connection Machine [7]. He generalizes the 
characteristic of physical locality of the memory, hidden to the programmer of 
conventional von Neumann computers, and the characteristic of bidimensional 
physical locality in the implementation of the integrated circuits technology.  

We consider the interconnection locality to be classified firstly structural 
(topological), and, secondly, functional [5]. Therefore, the locality of the 
interconnected collectivity will be defined by two localities: a structural locality 
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and a functional locality. The structural localities can be appreciated, measured, 
by neighborhoods. The neighborhoods can be classified as surface (radial) 
neighborhoods and volume (spherical) neighborhoods. The surface neighborhood 
of an interconnected collectivity is the number of nodes at a distance d, SNd(O) = 
Nd(O), where O is the origin chosen arbitrarily. The volume neighborhood is 
VNd(O)=∑i=1

dNd(O). The structural locality can be evaluated analytically by 
neighborhoods. Another more synthetical measure of the structural locality is the 
diameter: at the same number of nodes, the smaller diameter corresponds to the 
greater structural locality. A problem is: neighborhoods and the diameters depend 
on the origin positions. At homogenous regular interconnected collectivity, as the 
generalized hypercubes or hypertori, the origin position does not matter. At 
irregular interconnected collectivity, as the generalized hypergrids and other non-
homogenous interconnected collectivity, the origin position matters. The 
topographic model presented in [5] helped us to study the description and the 
behavior of the direct interconnected collectivity, homogenous and, especially, 
non-homogenous. The structural locality is invariable information depending on 
the interconnected collectivity topology. A functional point of view on 
interconnection locality can take into consideration the message routing 
distributions, ΦO(d), where O is the origin and d is the distance. As the structural 
locality, the functional locality measures also by neighborhoods: a functional 
surface neighborhood, FSNd(O)=ΦO(d)×Nd(O), and a functional volume 
neighborhood, FVNd(O)=∑i=1

d ΦO(i)×Ni(O). For the functional locality, there is 
also a synthetic measure, the functional average distance. The surface and volume 
neighborhoods and the diameter or the degree are analytical and synthetic 
evaluation means of the intercommunication capability of interconnected 
collectivity, measuring structural locality of the interconnected collectivity.  

By functional neighborhoods and, indirectly, by functional average 
distance, it expresses which part of the structural locality is used by 
communication process implemented on the collectivity. In other words, the 
functional neighborhoods and functional average distances express the functional 
locality of interconnected collectivity. Obviously, for a given network, SNd ≥ FSNd 
and VNd ≥ FVNd. The difference between the two types of neighborhoods 
represents what we named the neighborhood reserve. The neighborhood reserve is 
of surface, SNRd = SNd − FSNd, or of volume, VNRd = VNd − FVNd. Using the 
neighborhood reserve, we introduced a design/evaluation criterion of a topology 
by enunciating the following conjecture: The intercommunication structural 
potential of an interconnected collectivity is optimally used in a communication 
process characterized by a routing distribution Φ if the neighborhood reserve is 
minimal.  

To evaluate the structural locality of an interconnected collectivity, besides 
the neighborhoods and their reserves, we proposed a simple measure: the Moore 
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reserve based on the Moore bound. The Moore bound is the maximum number of 
nodes which can be present in a graph of given degree l and diameter D: NMoore= 
=1+l(((l−1)D−1)/(l−2)). The bound is deduced from a complete l-tree with 
diameter D and is an absolute limit for a diametrical volume neighborhood, 
VNd(O)=∑i=1

dNd(O), in any graph/ network of l degree, D diameter. Except the 
complete l-ary trees, this bound is rarely reached. Therefore, we compute for the 
direct interconnection a network how far is this bound: the farther away Moore 
bound the structural locality properties are worse. We implement this by the 
Moore reserves. The surface Moore reserve is the difference between the number 
of nodes at distance d in a corresponding Moore tree - degree in considered 
network, and the surface neighborhood in considered network: SMRd=l(l–1)d–

1−Nd. The Moore reserve is the difference between the Moore bound at the 
distance d and the volume neighborhood: MRd=NMoore(d)–VNd.  

4. Group Locality 

Any interconnected collectivity, in the meaning of communications 
maintenance or connectivity, is more secure if it is more symmetrical. On the 
other hand, one of the most important properties of any physical space structure is 
the symmetry. The transformation that keeps the structure of the space is named 
automorphism. Giving a space configuration, a structure, a form, an 
interconnection, we can emphasize a set of space automorphisms, which leave 
unchangeable this interconnection. Thus, the emphasizing automorphisms form a 
group/ subgroup, which describes precisely the symmetry of giving configuration. 
The amorphous space has a total symmetry corresponding to the group of all 
automorphisms. The symmetry of an interconnection will be described, as we 
have told, by a subgroup of all automorphisms. The total symmetry of the space 
defined by n points (nodes, permutations) will be described by Sn!, while a partial 
symmetry is expressed by a subgroup of permutations. Therefore, symmetrical 
groups Sn! model the symmetry of a space defined by n nodes and inversely. The 
total symmetry of a space is represented by a total interconnection, a completely 
connected structure with n! nodes. To define the locality by group properties, we 
give as first referencing examples the physical symmetry characteristics of some 
plane figures. A plane figure can have as constitutive symmetries only the 
identity, rotation, translation, reflection and reflection-translation.  

A rectangle has four symmetries: the identity transformation, I; the two 
reflections S1 and S2 vs. non-parallel sides perpendicular bisectors, AS1 and AS2; 
the rotation with 180°, R. The four automorphisms can be exemplified by a 
rectangle interconnection, the vertexes of which are noted 1, 2, 3 and 4. With this, 
we equate the symmetries of the rectangle with following permutations 
(generators): I=(1 2 3 4), S1=(2 1 4 3), S2=(4 3 2 1) and R=(3 4 1 2). The four 
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rectangle symmetries form a commutative group to the composition operation but, 
equating them with permutations, we notice that these symmetries form only a 
subgroup of the symmetric group of order 4, S4!. The rectangle symmetries share 
the symmetric group S4! in subgroups of four elements. The Cayley graph of these 
subgroups, using as generators the symmetries (without I), is a completely 
connected structure with 4 nodes, Fig. 3. The graph of this figure is vertex 
symmetric as any Cayley graph. Let us notice that the subgroup of rectangle 
symmetries can have other generators than all three symmetries, e.g., only R and 
S1 (RS1=S1R=S2) or only R and S2 (RS2=S2R=S1) or only S1 and S2 (S1S2=S2S1=R). 
With these generators, we obtain other Cayley graphs: minimal rectangle 
symmetries Cayley graphs, Fig. 4.  
These graphs are Hamiltonian cycles in the complete Cayley graph of the 
rectangle ymmetries. 

 
Fig. 3. Complete Cayley graph of rectangle  

 
Fig. 4. Minimal Cayley graphs of rectangle symmetries 
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We can examine the symmetry properties of plane figures, which share the 
symmetric groups Sn! in different subgroups. In the Table 1 we give some figures 
of which groups (subgroups) of symmetry GS share symmetry groups Sn!, where n 
is the nodes number of the examined figure. As we see in Table 1, the (sub)groups 
of symmetry of the plane figures, GS, define a partial symmetry, more weak than 
the complete symmetry defined by the corresponding symmetric groups Sn!. GS 
divides, shares Sn! in more subgroups. The groups of symmetry generators action 
is, generally, more local. The interconnections of the elements of a (sub)group 
defined by the symmetries of a plane figure emphasize, in general, a certain 
locality in comparison to the interaction globality which supposes the symmetry 
of the group Sn!. 

Table 1. 
The sharing of the symmetric groups by the symmetries of some plane figures 

Structure Group of symmetry GS Sn! Sharing 
Segment {I, S} |S2!|=|GS| 

Isosceles Δ  {I, S} |S3!|=3×|GS| 
Trigon {I, R1, R2} |S3!|=2×|GS| 

Equilateral Δ {I, R1, R2, S1, S2, S3} |S3!|=|GS| 
Tetragon {I, R1, R2, R3} |S4!|=6×|GS| 
Rectangle {I, S1, S2, R} |S4!|=6×|GS| 

Square {I, R1, R2, R3, S, T, U, V} |S4!|=3×|GS| 
Pentagon {I, R1, R2, R3, R4, S1, S2, S3, S4, S5} |S5!|=12×|GS| 

 
Group locality [5] is an interconnection (behavior, interaction, granularity) 

of some nodes - sets of elements - determined by certain group properties. This 
definition differs radically from (interconnection) locality definition used in this 
paper and in other works, where the locality is understood first as neighborhood 
[8]. While the old definitions of interconnection locality are based on logical 
distances between the nodes of some structure and then on some structuring rules, 
the definition given now to the locality is based on certain properties of 
interconnection (sub)group of nodes, e.g., figure symmetries, which divide, share 
the group (Sn!). A quantitative appreciation, a measure of group locality, which we 
note Ln, is given by the ratio of the symmetric group order and the group of 
symmetries order used for dividing in subgroups; the minimum number of 
interconnection symmetries is 2 - excluding the trivial case of a single symmetry – 
I, consequently, the maximum group locality corresponding to (1), will be |Sn!|/2. 
The minimum group locality, Ln=1, or the maximum globality (maximum granule), 
is obtained when |Sn!|=|GS|.  

Ln=|Sn!|/|GS|      (1) 



24                                                       Cristian Lupu, Tudor Niculiu 

Table 1 shows the minimum locality is obtained for an interconnection of 
two points, L2=1, and for an interconnection in an equilateral triangle, L3=1. The 
maximum group locality, in the same table, is in the case of interconnection 
through a pentagon, L5=12. Group localities should be compared at the same 
number of interconnecting nodes; e.g., the group localities of the tetragon and 
rectangle are the same for they refer to the same symmetric group, S4!, while we 
can not say anything about group localities of isosceles triangle and square for 
they refer to the different symmetric groups, S3! and S4!. In Table 1 there are 
geometrical figures with the same number of symmetries, e.g. the rectangle and 
tetragon, leading to the same group locality.  

How we distinguish the interconnections that have the same Ln or which of 
the two figures is more symmetric? At this question, we answer giving another 
example. The tetragon has other four symmetries: I identity and R1, R2, R3 
rotations, with 90°, 180° and 270°, in the same sense. To express these 
symmetries as permutations we number constitutive triangles as in Fig.5: the 
tetragon has the same number of symmetries as the rectangle but other properties 
of symmetry. To represent the group of R1, R2, R3 we have extended the definition 
of the graph Cayley to the directed Cayley graph. A directed Cayley graph is 
made only of vertices and arcs. If the Cayley graph has edges, it will be named 
mixed Cayley graph. For tetragon, the complete Cayley graph is mixed graph, Fig. 
6. This graph is undirected only on diagonals and the generators R1 and R3 go 
through the graph vertices in the opposite directions. In the group table of tetragon 
symmetries we emphasize a single subgroup of order 2, {I, R2}, while among the 
rectangle symmetries there are 3 such subgroups, {I, R}, {I, S1}, {I, S2}. 

 
Fig. 5. Symmetries of a tetragon 
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Fig. 6. Complete Cayley graph of tetragon symmetries 

 
Now we can answer the question concerning symmetries of the figures 

that have the same group localities, through a conjecture: a plane structure is 
more symmetrical as the complete Cayley graph is more undirected. So, by using 
the mixed Cayley graphs we introduce the possibility of symmetry measurements 
(symmetric group locality): an interconnection structure is more symmetric as 
mixed Cayley graph is more symmetric, i.e. it has more edges and fewer arcs. 
Taking these into account, the symmetry can measure by Sn given by ratio 
between the number of edges of the mixed Cayley graph (NEMCG), representing 
the interconnecting structure, and the order of symmetrical subgroup GS: Sn = 
NEMCG / |GS|. Asymmetry is the inverse of the symmetry. Table 2 shows some 
symmetries/asymmetries of Table 1 figures, computed with the above formulas. 
Symmetries Sn and asymmetries ASn can be compared for the same number of 
nodes n (interconnection of Sn!). 

Table 2. 
Some plane figures symmetries and asymmetries 

Structure Symmetry Sn Asymmetry ASn 
Segment S2=1/2=0.5 AS2=2/1=2 
Isosceles triangle S3=1/2=0.5 AS3=2/1=2 
Tetragon S4=2/4=0.5 AS4=4/2=2 
Rectangle S4=6/4=1.5 AS4=4/6=0.66 

 

5. Conclusion 

Instead of relying on the logic distances between the nodes, we wanted to 
design/evaluate a network based on the group properties. The group locality put 
the properties, a constructive, synthetic principle, before the analytic principle of 
distances, especially formulated for the interconnection locality. The logic 
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distances “disappear” into the group locality, displaying the properties. Therefore, 
the group locality is qualitatively a step forward to the interconnection locality 
relying on logic distance. The interconnection locality principle helped us to 
design/evaluate new non-homogenous interconnection networks, as generalized 
hyper structures, and the group locality principle let us imagine new 
interconnection paradigm based on symmetrical morphemes and ensembles. The 
conclusion is: discovering the rules that govern the future interconnection 
environment is a major challenge [9]. 
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